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Abstract

We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin

chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative

modification of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation,

proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra

computational effort.
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1. Introduction

Many different types of magnetic systems are commonly
modeled by spin Hamiltonians, such as the Heisenberg
model. In special limits, such model Hamiltonians can be
solved analytically, e.g., by the Bethe Ansatz for integrable
one-dimensional systems. Away from special limits, power-
ful numerical methods, such as Monte Carlo simulations or
density-matrix renormalization group techniques, provide
much useful information, but at high computational cost.
Full exact diagonalization is even more expensive, and thus
limited to rather small systems. Quite generally, analytical
and numerical techniques work best for models in which all
sites are equivalent, so that translational invariance can be
used to reduce the complexity of the problem.

In magnetic nanostructures [1] and molecular magnets
[2], the generic many-body features of spin Hamiltonians
coexist with additional real-life complications, such as
impurities, defects, boundaries, textures, etc. The resulting
spatially inhomogeneous spin Hamiltonians do not have
translational symmetry, and often also lack other simplify-
- see front matter r 2008 Published by Elsevier B.V.
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ing symmetries, which makes them hard to treat by
traditional analytical and numerical methods.
Mean-field theory can, of course, always be applied, but

is not sufficiently reliable to permit quantitative modeling,
and is often even qualitatively wrong. In this paper we
describe one analytical and one numerical method to
obtain beyond-mean-field energies for spin chains without
translational invariance.
The analytical calculations are based on model density-

functional theory (DFT). In ab initio electronic-structure
calculations DFT [3] is a useful way to include correlations
beyond the mean-field approximations, at very little
additional computational cost. To deal with defects within
DFT for spin chains, we propose a local-bond approxima-
tion (LBA), akin to the local-density approximation (LDA)
of ab initio DFT and the local-spin approximation (LSA)
previously proposed for spin systems with impurities [4–7].
These schemes are described in Section 2.
To obtain results with higher precision than is possible

by local approximations, and to judge the performance
of such simple improvements on mean-field theory, we
also perform fully numerical calculations, employing an
iterative modification of the power algorithm, described in
Section 3. Representative results are discussed in Section 4.
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Fig. 2. Ground-state energy of an AFM spin 1
2
chain with an AFM defect

of strength JD ¼ þ3J (circles), and with an FM defect of strength JD ¼

�3J (squares). Exact data (full symbols) are compared to LBA data (open

symbols) and mean-field data (stars).
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2. Local approximations for spin Hamiltonians

DFT has been applied to model Hamiltonians, such as
the Heisenberg [4–7] and the Hubbard [8] model, within
generalized LDAs. Specifically for the Heisenberg model
with impurity spins, this scheme consists in adding to the
mean-field energy a local approximation to the correlation
energy Ec, of the form

ELSA
c ½J;Si� ¼

X

i

ehomc ðJ;SÞ

�����
S!Si

, (1)

where the sum runs over all sites i, and ehomc ðJ;SÞ is the per-
site correlation energy of the homogeneous spin S

Heisenberg model, for which various approximations exist
[4,5]. This so-called LSA [4,5] has been applied to
investigate the energetics of impurities in one-, two- and
three-dimensional Heisenberg models [4–7]. Impurities here
are defined, relative to a homogeneous model in which all
sites have the same spin S, as sites with a spin SIaS (see
inset of Fig. 1 for an example).

Another important class of spatial inhomogeneity,
defects, cannot be treated within the LSA. We define
defects, again with respect to a homogeneous model, as
bonds having strength JDaJ (see insets of Figs. 1 and 2 for
examples). To extend the local-approximation scheme to
spin Hamiltonians with defects, we here propose the LBA

ELBA
c ½Jb;S� ¼

X

b

ehomc ðJ;SÞjJ!Jb
, (2)

where the sum runs over all bonds b, and for ehomc ðJ;SÞ we
use the same expressions employed in the LSA. Concep-
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Fig. 1. Ground-state energy of an AFM spin 1
2
ring with a spin 3

2
impurity

(triangles), and with an AFM defect of strength JD ¼ 5J (circles), treated

exactly (filled symbols) and via local approximations LSA/LBA (open

symbols). Within mean-field theory (stars), the impurity and the defect

yield the same ground-state energy. Inclusion of correlation energy in the

LSA (impurity case, open triangles) and the LBA (defect case, open

circles) removes this spurious degeneracy.
tually, the LBA decomposes the system in bonds, acting
between sites, whereas the LSA decomposes it in sites,
connected by bonds. Both approximation schemes become
exact for infinite homogeneous systems, and both can be
used in analytical calculations, as all one has to do to
obtain corrections to the mean-field energies is to evaluate
Eq. (1) or (2) site by site or bond by bond.

3. Numerical ground-state energy

To obtain energies of higher quality than is possible with
analytical calculations employing local approximations, we
resort to a numerical scheme. Even in the presence of
impurity spins and/or bond defects, the Heisenberg
Hamiltonian

Ĥ ¼
X

i

JiŜi � Ŝiþ1, (3)

where Ji is the exchange integral between nearest-neighbor
spin-vectors Ŝi and Ŝiþ1, conserves the z-component of the
total spin, Ŝz. The Lieb–Mattis theorem guaranties that the
GS pertains to the subspace of minimum jSzj. As basis
vectors we therefore use the set of quantum numbers
fjm1;m2; . . . ;mNig, where mi are the eigenvalues of Ŝi, and
can take values �Si;�Si þ 1; . . . ;Si. A practical way of
generating this set of states is by decomposing integer
numbers. For instance, for a chain with four spins 1

2
, the

binary decomposition of the integer 6 gives the sequence
0110, representing the vector j � 1

2
; 1
2
; 1
2
;� 1

2
i, one among

other five of the subspace with Sz ¼ 0. It is straightforward
to assemble the matrix representation of Ĥ in this base.
However, although the resulting matrix is sparse, storing it
is impractical: for 20 spins 1

2
the order of the matrix is
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184 756, with 1 108 536 non-vanishing elements. In practice,
we therefore do not store the matrix, but compute each
matrix element every time it is needed; this saves a lot of
memory, but is time consuming.

To obtain the ground-state energy of Ĥ we propose an
iterative modification of the well-known power algorithm.
This modification, to be described in more detail in a
separate publication, is easy to code and requires less
memory than the Lanczos method, although it typically
takes more processing time to extract the ground state. The
power algorithm starts by decomposing a trial function for
the ground-state eigenvector in terms of the unknown
eigenvectors jcni of Ĥ, according to jcT i ¼

P
n anjcni,

with an constants. If � is an upper limit of the energy
spectrum, acting k times with the operator Ĥ � � on jcT i

yields

ðĤ � �ÞkjcT i ¼
X

n

anðEn � �Þ
k
jcni, (4)

where Ĥjcni ¼ Enjcni. For antiferromagnetic (AFM)
chains, the highest energy � corresponds to the ferromag-
netic (FM) configuration, whose value is trivial even
in the presence of impurities or defects. For k!1,
the above series is dominated by the ground-state
term a0ðE0 � �Þ

k
jc0i. Therefore, we can extract E0 by

performing

E0 ¼ lim
k!1

hfjðĤ � �Þkþ1jcT i

hfjðĤ � �ÞkjcT i
þ �, (5)

where jfi is any vector non-orthogonal to the ground state.
Without the constant �, the method yields the highest (in
modulus) eigenvalue instead. Our experience shows that
the best trial function is the Néel state, a mean-field
approximation for the ground state, consisting of a
sequence of an up and down spins.

To speed up the search for E0, we implement the above
limit iteratively: at each step k, we use for jfi the state
jfk�1i ¼ ðĤ � �Þ

k�1
jcT i obtained in the previous step.

This reduces the processing time to reach convergence,
which we characterize by two successive values of E0=N

differing by less than 10�13. Typically, a few hundred
k-steps are required for chains larger than 20 spins, and
only a few dozens for smaller chains. Using a desktop
microcomputer with 1.5MB of RAM, we obtained the
ground-state energy of a homogeneous chain with 30 spins
1
2
, reproducing the results of Ref. [9]. Bond defects do not
require more memory space.

4. AFM spin chains with FM and AFM defects

As a first application of the LBA concept we compare, in
Fig. 1, an AFM spin 1

2 ring (periodic boundary conditions)
with one impurity spin SI ¼

3
2
to an AFM spin 1

2
ring with

one bond defect JD ¼ 5J. In the mean-field approximation,
both systems are, erroneously, predicted to have the same
ground-state energy. This spurious degeneracy is lifted by
adding the LSA and LBA correlation energies, respectively.
Judged by the remaining distance to the exact data, LSA
performs slightly better for the impurity than LBA does for
the defect, but both provide significant improvements on
the mean-field data.
FM defects, with JDo0, can be handled similarly.

However, an ambiguity arises in how the local substitution
is to be performed. In principle, the LBA can be applied
to a FM defect by substituting J ! jJij, J ! Ji or
J ! dJi ;jJij. The first possibility can lead to positive
correlation energies, in violation of the variational princi-
ple. The second and third possibilities correctly predict
negative correlation energies, but numerically the second is
slightly inferior to the third for the type of system
investigated here, as judged by comparison to exact data.
Below, we thus employ the third substitution. Physically,
this choice, J ! dJi ;jJij, means that a FM bond does not
contribute to the correlation energy, which is rather
reasonable, as at zero temperature the mean-field energy
of a homogeneous FM chain is already exact.
In Fig. 2 we show ground-state energies of an AFM spin

chain (open boundary conditions) with one AFM defect
JD ¼ þ3J, and of the same chain with one relaxed FM
defect, JD ¼ �3J. Comparison of LBA data with exact
data shows that the LBA significantly improves on the
mean-field approximation both for FM and AFM defects.
Quantitatively, the performance for the FM defect (squares
in Fig. 2) is better than that for the AFM defect, but in
both cases a significant improvement over the mean-field
data is achieved. Note, in particular, that for an FM defect
the mean-field curve is even qualitatively wrong, predicting
a wrong sign for the slope at N ! 0, whereas the LBA
recovers the correct behavior.
We stress that the LBA calculations for both AFM

and FM defects, as well as LSA calculations for impurities,
can be done analytically, in any dimensionality and
for any system size, regardless of boundary conditions
and symmetries. Such local approximations thus provide
a very convenient way to obtain beyond-mean-field results
at the expense of a conventional mean-field calculation.
When used in this way, local approximations yield robust
results of moderate precision, even for large and complex
systems.
High precision results, on the other hand, cannot be

expected from simple local approximations. Improved
algorithms for fully numerical diagonalization, such as
that described in Section 3, can be used to make progress
from exactly the opposite starting point: high precision for
small systems.
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