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High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic
and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well
understood and allow us to set and control the parameters of a sample that affect its magnetic
anisotropy during production. In the present paper we study the shape effects in the other widely used
magnetic materials - antiferromagnets, - which possess vanishingly small or zero macroscopic
magnetization. We take into account the difference between the surface and bulk magnetic anisotropy
of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and
crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic
anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause
formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface
determines the type of domain structure. The proposed model allows us to predict the magnetic

properties of antiferromagnetic nanoparticles depending on their shape and treatment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic nanoparticles (NP) are widely used as constitutive
elements for the information technology (e.g. memory cells, spin
valves, magnetic field controllers etc.). To drive and control the
magnetic state of a particle and values of critical fields and
currents, we can use not only internal properties of magnetic
material, but also shape and size of the sample. As for ferromag-
netic (FM) particles, shape effects allow us to tailor the
effective magnetic anisotropy and critical field values during
production.

On the other hand, nowadays technologies use antiferromag-
netic (AFM) nanoparticles along with (or sometimes instead of)
FM ones. Experiments with AFM particles show that the reduction
of size to tens of nanometres leads to noticeable changes of
properties compared to the bulk samples: an increase of lattice
parameters in the magnetically ordered phase [1-3]; an increase
of the magnetic anisotropy [4]; a pronounced decrease of AFMR
frequency [5]. Some of the finite size effects could be caused by the
shape and faces orientations of nanoparticle. For example, according
to the Néel predictions [6,7], small AFM particles exhibit uncom-
pensated magnetic moment with the size- and shape-dependent
value [8,9]. Recent experiments with rather large (100-500 nm
size) AFM particles [10-12] discovered the shape effects similar to
the shape-induced phenomena in FM materials: (i) switching of
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AFM vector from crystallographic to particle easy-axis with an
increase of aspect ratio; (ii) correlation between the type of
domain structure and such parameters as aspect ratio of the
sample and orientation of faces.

However, the mechanism of the finite-size and shape effects in
AFM nanoparticles is still an open issue.

Shape effects in AFM particles could, in principle, originate from
a weak ferromagnetic moment [13] thus reducing the difference
between AFM and FM systems to quantitative one. On the other
hand, AFMs show some peculiar features (like exchange enhance-
ment, gap in the magnon spectra, coupling to the external magnetic
field) that have no counterparts in FMs.

Understanding the mechanisms of the shape effects specific to
AFM ordered systems is crucial for optimizing and finetuning the
properties of AFM-based devices and clarifying the fundamental
questions whether the shape effects reside in AFM with vanish-
ingly small macroscopic magnetization, and which of peculiar AFM
properties might depend on the particle shape. For this purpose
we investigate the finite-size and shape effects in AFM particles,
regardless of their macroscopic magnetization, combining two
previously shown statements: (i) the shape effects in AFM materials
may originate from the long-range fields of “magnetoelastic” charges
due to spontaneous magnetostriction below the Néel temperature
(so-called destressing fields) [14]; (ii) “magnetoelastic” charges
may arise from the surface magnetic anisotropy [15]. We consider
the particles with the characteristic size below the several critical
lengths of monodomainization (which, for convenience, are
referred to as “nanoparticles” though their dimensions could also
fall into submicron-micron range).
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The basic idea is to consider a priori the surface and bulk
properties as different: to distinguish the constants of surface and
bulk magnetic anisotropy and, as a consequence, equilibrium orien-
tation of AFM vectors at the surface and in the bulk. Up to our
knowledge, M.I. Kaganov [16] was first who pointed out the role of
the surface magnetic anisotropy effects on spin-flop transitions in
magnetic materials, considering the magnetic moment at the surface
as an additional parameter. This idea was then generalized to account
for surface exchange interactions and was applied to description of
various inhomogeneous states at a nanoscale range, including
vortices and twisted phases [17-19]. In our work we further develop
this approach introducing into model the magnetoelastic coupling,
which, as we believe, noticeably affects the properties of the
nanosized AFM particle. We show that due to the long-range nature
of magnetoelastic and elastic forces, the surface anisotropy contri-
butes to the magnetic energy of the sample. This contribution is
proportional to the particle volume, depends on the aspect ratio and
crystallographic orientation of the sample faces, and affects equili-
brium (single- and multi-domain) state of AFM nanoparticle. The
proposed approach requires consistent description of the magnetic
and elastic subsystems of AFM particles and thus differs from the
well-known formalism for the FM [20].

2. Model

To describe the equilibrium magnetic state of a NP we need to
introduce at least three additional (in comparison with bulk samples)
parameters that characterize: (i) shape, (ii) size, and (iii) orientation
of sample faces.

We consider a thin flat rectangular particle (thickness h<b < a,
Fig. 1), typical for experimental studies (see, e.g., [12]). The thickness
h of a particle is, however, large enough to ensure an AFM ordering
(i.e. significantly larger than the magnetic correlation length).

The sample surface (see Fig. 1b) consists of four faces with the
normal vectors nj = (cos y;, sin y;), j=1,...,4 (x, y are parallel to
crystallographic axes). We disregard the upper and lower faces
(z=Z=const) as they do not contribute to the effects discussed
below. Equations that define the surface are (Ze[0,h], X, Y are
parallel to the particle edges):

X=a/2. Ye[-b/2.b/2l, m=(10) w;=y.
Y=b/2, Xe[-a/2,a/2], my=(0,1), w,=y+m/2,
X=-a/2, Ye[-Db/2,b/2], m3=(—1,0), w3;=y+n,
Y=-b/2, Xe[—-a/2,a/2], ny4=(0,-1), wy,=w+37x/2. (1)

For such a model, the additional external (in thermodynamic
sense) parameters of the NP are: (i) aspect ratio a/b (defines the
shape), (ii) width b (defines characteristic size), and (iii) angle y
(defines the orientation of the surfaces).

We consider a typical collinear AFM with two equivalent sub-
lattices M; and M, ; the Néel (or AFM) vector L = M; — M, plays a role

of the order parameter. Far below the critical point the magnitude of
the AFM vector is fixed (we assume |L| =1).

To obtain equilibrium distribution L(r) for the NP of given
shape and size, we minimize the total energy W which includes
several terms of different nature. First of all, we may consider the
surface as a separate magnetic phase [21-23] with a small but
finite thickness sy, (narrow peripheral region S of thickness gy, in
Fig. 2) and thus distinguish the bulk, Wy, and the surface, Wy,
contributions:

W = Wy +Wsur. (2)

Then, we can also distinguish different contributions to the
bulk energy, Wy, the most important are those that describe the
magnetic anisotropy, Wanis, exchange, weye,, and magnetoelastic,
Wm_e coupling. We assume that the bulk magnetic anisotropy
corresponds to tetragonal symmetry with two equivalent easy
directions in the NP plane (x or y in Fig. 1b) and model respective
contribution to the energy density as follows:

Wanis =3 K1 L2 =K 1 (L +L3), 3)

where K >K , > 0 are the phenomenologic anisotropy constants.

Exchange interactions (responsible for inhomogeneous distri-
bution of the Néel vector inside the sample) give rise to a gradient
term

Wexch = 3 (VLY 4

where a is a phenomenological constant. Competition between
the exchange coupling (4) and magnetic anisotropy (3) defines the
characteristic size &, of the domain wall (DW): &y =(1/2)
\/a/KJ_.

Magnetoelastic coupling in AFM materials can be pronounced
(compared with FM ones) due to the presence of strong crystal
field and, as a result, strong spin-orbit coupling (like in oxides
LaFeOs; or NiO). In the simplest case of the elastically isotropic

a
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Fig. 2. Space distribution of AFM vector (arrows) in a single domain (a) and
multidomain (b) states.
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Fig. 1. Sample (a) and orientation of the Néel vector L (b) with respect to crystal axes (x,y) and sample edges (X,Y).
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material, the density of magnetoelastic energy is:
Win—e = AisoL’Trl +22anis[(L ® L= 1)@ —31 Tr )], (5)

where 1 is the strain tensor, [ is the identity matrix, constants
diso and A,y describe isotropic and shear magnetostriction,
respectively.

Final expression for the bulk energy is thus given by

Wbulk = /V(Wanis +Wexch +Wm—e +Welas) dV, (6)

where w5 is the elastic energy density (see, e.g. [24]), V=abh is
the NP volume, all other terms are defined above.

At last, let us focus on the magnetic surface energy W, which is
of crucial importance for our model and needs special discussion.
Experiments with the nanoscale AFM particles reveal a significant
difference between the magnetic ordering and hence the magnetic
properties of the surface from those of the bulk. In particular,
depending on the material, treatment, and other technological
factors, the NP surface may lack the long-range magnetic structure
(paramagnetic or spin glass [23,25]), or may have different type of
ordering (e.g. multi- vs. two-sublatteral in the bulk [26]), or different
easy axis/axes. We consider the last case and assume, for the sake of
simplicity, that the easy magnetic axis at the surface is perpendicular
to the normal n; then, expression for the magnetic surface energy
takes the form:

4 .
Wsur = Ksurygs (Ll'l)2 ds = Ksur Z s (Lnj)2 dS, (7)
=15

where K, >0 is a phenomenological constant. W, obviously
depends on orientation of edges: angles y;, or, equivalently, vectors
n; (see (1)).

It is instructive to compare the specific surface magnetic
anisotropy Ksur/dsyr With the magnetic anisotropy constant K | :
they have the same order of value (Kgyr/dsur oc K 1 ), if the broken
exchange bonds play the main role in formation of the surface
properties; while in the case of dominating dipole-dipole interac-
tions Kgur/Jsur can be much greater than K, [13].

It should be stresses, that, in principle, all introduced phenom-
enological constants fall into two categories: internal [27] (indexed
“in”) and superficial (indexed “sur”); interactions of both types can
contribute to the shape effects. However, in our model we
distinguish only between the magnetic constants Kgu/dsyr and
K |, taking this difference as the most important.

The expression (2) for the NP energy is the functional over the
field variables L(r) (the AFM vector) and u(r) (the displacement
vector). We reduce the number of independent variables to three
assuming that: (i) vector L lies within the xy plane and can be
parametrized by a single angle ¢ (see Fig. 1b because of a strong
easy-plane anisotropy (K,>K,); (ii) strain component u, in a
rather thin plate (h>a, b) can be considered as homogeneous and
thus can be excluded from consideration (see [24]). The standard
minimum conditions generate the set of differential equations for
one magnetic, ¢(r), and two elastic, ux(r), u,(r) variables in the
bulk:

—aA@+K | sin 4@+ 2anis[— (U —Uyy) SIN 20+ 21y cos 2¢] =0,

(8)
Ay + Ve Vx div u = — (Aanis/H)[Vx €OS 20+ V, sin 2¢], 9)
Auy + Ve Vy div = — (Aapis/W)[Vx Sin 2¢p—Vy cos 2¢]. (10)

Here, operators A and div are two-dimensional, veg=(1+v)/
(1—v) is the effective Poisson ratio (instead of 3-dimensional v
[24]), u is the shear modulus.

Equations for the AFM vector at the j-th face (variables (pg’ﬂr,
see (1))

—Ksur sin 2(pd), +y)) +amV)pd), =0 (1)

could be considered as the boundary conditions. They differ from
the standard boundary conditions for AFMs (see, e.g., [28,29]) due
to the presence of the additional surface term with Kgy,.

In the limit Ky, — 0 the solutions of Egs. (9), (10), (11) are well
known: the AFM vector L(r) = const lies along one of the easy axes
(@i, =0 or m/2), the displacement vector u(r) generates the
homogeneous field of the magnetically-induced strain:

i i
0 0 anis
u)(,’—ui,y) = ——— COS 2(pin,

uf) = _/12;{7;15 sin 2, (12)
In the massive (infinite) samples the spontaneous striction (12)
causes magnetoelastic gap in the spin-wave spectrum (in assump-
tion of “frozen” lattice), but does not affect the equilibrium
orientation of the AFM vector (all the magnetostrictive terms in
(8) cancel out, eliminating the shape effect).

For the finite-size samples with nonzero surface anisotropy
(Ksur # 0) the easy direction at least in some near-surface regions
unavoidably differs from that in the bulk and so, the spatial
distribution of the AFM vector should be non-uniform. As a result,
the sources of the displacement field - the nonzero gradient
terms, or “magnetoelastic charges” - appear in the r.h.s of Egs.
(9) and (10). In the following section we discuss this issue in more
detail.

3. Shape-induced anisotropy

The consistent theory of shape effects in AFMs should account
for the long-range elastic and magnetoelastic interactions and thus
should rest upon the complete set of Egs. (8)-(10). However, the
displacement field u(r) can be formally excluded from considera-
tion once the Green tensor G (r,r’) for Eqs. (9) and (10) is known
(see Appendix A). In this case the spatial distribution of the AFM
vector L(r) should minimize the energy functional

W[L(l‘)] = /V(Wmag + Wexch) av + Wsur + Wadd, (] 3)

which includes the additional term of magnetoelastic nature:

222 [ [ /
;“'5////Vm[Lj(l')Lm(r)]ij(r, 1)V [L(r)Li(r")] av dv’
222 / L ’
+7;nls¢;_¢‘sLj(l'sur)Lm (rsur)qu‘(rsun rsur)Lk(rsur)Ll(rsur) dSm dsl

14

Wadd =

Analysis of the Exp. (14) shows that any inhomogeneous
distribution L(r) gives nonzero, generally positive contribution to
energy W,q4. Due to the “Coulomb-like” nature of the elastic forces
(Gji(r,r") oc 1/|r—1’|) this contribution scales as sample volume V.
In addition, nonlocality of the W44 term turns Egs. (8) to integro-
differential ones and thus complicates the problem.

In the present paper we propose the simplified approach to solve
Egs. (8)-(10) using the following peculiar features of antiferromagnets.

First, we consider the magnetostriction of AFMs as a secondary
order parameter which means that in the thermodynamic limit (in
neglection of boundary conditions) the homogeneous spontaneous
strains (12) preserve the symmetry of the magnetically ordered state
and orientation of the easy axis. In addition, though usually the
magnetoelastic energy is comparable (up to the order of value) to the
4-th order magnetic anisotropy (i.e. to K constant), it can be much
less than the uniaxial magnetic anisotropy. Thus, assuming strong
uniaxial surface anisotropy Ksu>K | Osyr, We can disregard the
influence of magnetoelastic strains on equilibrium orientation of
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AFM vector at the surface. However, this assumption does not restrict
the relation between Ky, and the characteristic DW energy opw,
because apyw oc \/K | Jaj;>>K | 6syr (Where J>>K | characterizes the
exchange coupling, aj, is the lattice constant, and we used the
following relations: a oc ]alzat, Osur o€ At ).

Second, we propose the following hierarchy of characteristic
length scales: the width of magnetic inhomogeneity is much less
than the sample size, &y <a, b, but much greater than interatomic
distance, &pyy>>ay, (due to exchange enhancement); the width of
elastic inhomogeneity has interatomic scale and thus is much less
than &py,. Note, that the value of &y in nanoparticles with the
large fraction of the surface atoms can be much smaller than that
for the bulk samples due to variation of magnetoelastic and
exchange coupling (see, e.g. [30]). Thus, inequality &p,,<a, b keeps
true in a wide range of the sample dimensions down to tens of
nanometers (below this range applicability of the continual model
is questionable).

Thus, within the above approximations, equilibrium orientation
of the AFM vector at the surface results mainly from competition of
the magnetic interactions: surface magnetic anisotropy and inho-
mogeneous exchange coupling, once the bulk vector L;, is fixed.
Orientation of L;,, in turn, is defined by interplay between the bulk
magnetic anisotropy and magnetostrictive contribution induced by
spatial rotation of AFM vector in the thin ( oc &y, ) near-surface
region (see Fig. 3). So, the effective shape-induced magnetic
anisotropy and equilibrium distribution of AFM vector could be
determined self-consistently according to the following procedure:
(i) to calculate Ly, starting from some (initially unknown) “seed”

o d Ll
b
1.0 Surface
0.8
Core Domain
o5 wall y <
N n
0.4 \
\ X
\
0.2 \
\
b/2| &, < Y
0.0 : T — T 1

0

Fig. 3. Distribution of the Néel vector in the vicinity of Y=b/2 face, multidomain
state. (a) Periodic (period d) domain structure, double arrows indicate orientation
of AFM vectors inside domains and in the near-surface region (shaded horizontal
stripe). (b) Space dependence of Ly(¢) (solid line) calculated from (15) provided that
¢@in =0. The horizontal line defines the center & of a virtual full domain wall
(dotted line). Shaded vertical bar indicates the position of surface region. Direction
of DW normal coincides with the axis ¢ of the local coordinate system (inset).

distribution of the AFM vector L;, in the NP bulk; (ii) to substitute
thus defined seed distribution into equations for the displacement
vector and to determine the corresponding field sources (magne-
toelastic charges); (iii) to calculate charge-induced average strains
whose contribution into free energy is proportional to the sample
volume; (iv) to define the effective magnetic anisotropy which
accounts for the average strains and calculate L;j,.

Note, that the form of the seed distribution (and hence the free
variable of the structure) is different for a single- and a multi-
domain states. In the first case L;,, is homogeneous within the bulk
but can deflect from the magnetic easy axis, so, ¢, is the
appropriate free variable. In the second case we assume, in
analogy with FM, that AFM vector within each of the domains is
fixed and parallel to one of two equivalent easy axes; then, free
variable coincides with the fraction of type-I (or type-II) domains.

3.1. Seed distribution and magnetoelastic charges

In the simplest case of a single-domain state (Fig. 2a), there are
two homogeneous regions: the “shell” (of the thickness ds,;) and
the core. An equilibrium value ¢, inside the core is fixed, constant
(as Agy, =0), but unknown (in some cases discussed below
@in=0 or /2 that corresponds to one of the easy axes). We
calculate the value ¢, at the surface from Eq. (11) with account of
the standard expression for the domain wall profile:

1
cosh((&—&o)/Epw)’

Face normals generate the set of variables &=(+X-—a/2),
(+Y—-b/2) of the local coordinate system (see the inset in
Fig. 3b). Position &, of the DW center is calculated from the
boundary conditions (see below). In (15) we neglect the possible
difference between the DW width &py, = (1/2)\/a/K | in the near-
surface region and in the core.

Substituting (15) in (11), we obtain the following equation
for &

. d
sin 2<w<§>—q)m>=2énwd—‘§= (15)

. Ksur sin 2y, + sin 2q;

tan 2¢0), = —— Vj+obw (p‘“, (16)
opw COS 2¢i, —Ksur COS 2y

where opy = vaK | =2&,,/ K 1 is the characteristic energy of the
domain wall. The values ¢%,. at the opposite faces coincide:

1 3 2 4
qg(su)r = Qg(su)rv (p(su)r = qD(SU)l” (See (1 ))

Analysis of Exp. (16) shows that the AFM vector at the surface
can be either parallel to the edge: gog&r =, as shown in Fig. 2 (in
the limit of large surface anisotropy, Ksuyr>opw ), or coincide with
the bulk AFM vector: g%, = ¢,, (for the vanishing surface energy,
Ksur<apw ). In the last case the surface influence and, correspond-
ingly, shape effects disappear.

Note that the surface DW is “incomplete”: in general, DW
center is located outside the sample (see Fig. 3b) and its coordinate
53) depends on the surface anisotropy

ot Ksyr sin 2u/j+aDW sin 2¢;,
opw €O0S 2¢;, — Ksyr COS 21//j'

8) =&pw sin a7
In a single-domain nanoparticle the AFM vector rotates from Ly,
to Li, in a narrow, almost zero-width ( < &py<a, b) region and so,
we can model the spatial dependence of L(r) with a step-like
function. Within this approximation, r.h.s. of Egs. (9) and (10)
are nontrivial only at the surface; this fact makes it possible to
use a homogeneous form of these equations for the bulk region of
the NP:

Au+vegVdivu =0 (18)
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with the following boundary conditions for the displacement
vector:

(- V)Ugyr + Vert iV Ugyr = anie- (19)

In (19) we introduced the tensor of magnetoelastic charges as
follows:

AMm—e

@[Lsur ® Lsur*Lin ® l-4in]- (20)
For a rectang{t}ﬂar shaped rg;ample the chearges at the opposite edges
coincide: @ (m)=0Q m3), O (112) =Q  "(n4). We can
express all the components of the Q tensor in terms of two
nontrivial combinations, Q" ¢ = —Qy fand Q) "¢ = 2Qy% €
(in X, Y coordinates).

From definition (20) and the relations (16) it follows that

opw €08 2(@in +y) F Ksur
VI F 2Kauwopw €08 2@y +y) +dyy
(21)

m-e A ni:
Qy T(mp)= f ( €OS 2(@in+y)—

and

TpwW
\/ K2, F 2Ksuropw €OS 2(@i +Y)+ 0%y,
(22)

QTﬁe(ﬂl.z):}% sin 2((/)in+l/’)(1 -

Magnetoelastic charges (20) (as well as (21), (22)) are similar to
“magnetostatic charges” at the surface of FMs but have another,
magnetoelastic, nature (i.e. depend on magnetostriction), and
depend on the surface magnetic anisotropy Ks,. Magnetoelastic
charges disappear in the limiting case of small surface anisotropy
Ksur<opw and reach the maximum possible value when Kgy>>opy
(as illustrated in Fig. 4). Like magnetostatic, magnetoelastic charges
depend on the crystallographic orientation of the sample faces and
vanish for those parts of the surface where Ly, I Ly,,. From Egs. (18),
(19) it follows that magnetoelastic charges produce long-range
(decaying as 1/r?) elastic fields, which, in turn, lead to the “destres-
sing” effects (similar to “demagnetizing” effects in FMs).

Another way to interpret the formation of magnetoelastic
charges presents itself in terms of incompatibility of seed sponta-
neous deformations at the surface and in the bulk. To this end,
sufficient condition for charges to appear stems from the differ-
ence between the surface and bulk values of any physical quantity:
magnetic (e.g. nonmagnetic or paramagnetic surface), magnetoe-
lastic, or elastic (e.g. rigid shell).

10F - oo oo
Y
0, -0,,-0,
0.5 & 0,0, / L,
X
12
[0}
o
c 0.0
<
o
o,
05+
A0 b ———
0 1 2 3 4 20 30 40 50
K/opy

Fig. 4. Magnetoelastic charges Q™ ¢ (in ZAaps/p units) vs. surface constant Kgyr
calculated for single-domain state, y = z/4. Inset shows the charge distribution
over the particles edges. Arrows indicate orientation of AFM vector at the surface
and in the bulk.

3.2. Average strains and shape-induced anisotropy

At the next, (iii), stage of the algorithm we solve Egs. (18), (19)
for the displacement vector which, in a general case, generates
non-uniform field of additional (compared with (12)) elastic
deformations. However, the main contribution to the magnetic
anisotropy comes from the shear strains averaged over the sample
volume (labeled as(---)) :

z me
1+1/eff{[ 1

=) (%) QY *mp—-Qf

2uyyy = —ﬂ{[Qrznfe(nz)+Q'2“7e(n1)] {1 1 ielf/f fsz (gﬂ
i (3)1Q5

where J;(a/b), J,(a/b) are the dimensionless shape functions of the
aspect ratio a/b (see Fig. 5):

ay 2 b b>\ b a?
i (b) {arctan B arctan — +E In (1 +a_2> ia In (1 +b—2>

2 2
I (g) = % {g In (1 +%> +% In (1 +Z—2> .
Note that J,(a/b) =J,(b/a); J1(a/b)= —];(b/a), so, J;(1)=0 for a
square (a=b); in the opposite limiting case of high aspect ratio
(a>b) J1(00) =1, J5(c0) - 0.
Substituting Exps. (21), (22), (23), and (24) into Eq. (8) we
arrive at the following equation for magnetic variable:

(Uxx — Uyy) = f(my)+Q7

“mo1[1+ven)s ()]

)}, (23)

“()-Q5 )]}, 24)

(25)

(26)

K. sin 4¢;,,+ K5 sin 2(@,, +y)+K5 sin 4@y, +y) =0, (27)

where we introduce the shape-dependent coefficients Kih, Kflh,
and take into account that Ag = 0. In the limiting (and practically

2.0 -
1.5 -
S
S
"é 10 4 J,(ab)
®© alb=1
e
n
J,(a/b)
054+ - e e e e e SN~ - — — — -
alb=16
0.0 T T T T T T T T T 1
0 5 10 15 20 25

a/b

Fig. 5. Form-factors J,(a/b), J,(a/b) vs aspect ratio a/b. Arrows show the points
where the functions J; (a/b=1) and Kf,h (a/b~16) change the sign.
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important) case Ksy:>opw

a

K =2k (5), K=k <[2(5) 1], K™ _ e,

anis

(1+Vesr)u”
(28)

In a general case the coefficients K3 and K5 depend on the
constant Kg, of surface magnetic anisotropy and vanish when
Ksur<opw (see Appendix B).

Eq. (27) for the magnetic variables ¢;, can be treated as the
minimum condition for the effective energy density of the sample

Weff

v oS 2y +y) +K

77[KL cos 4@, +2K5" cos 4@, +y)l.

(29)

Wesf =

which, apart from the magnetic anisotropy, includes contributions
from magnetoelastic and surface forces (the underlined terms). The
last two terms in (29) cause the shape effects in AFM nanoparticle.
To illustrate this result we consider some typical cases.

Let the sample edges be parallel to the easy magnetic axes
(w =0). In this case, as follows from (27) and (29), the term with
K5 removes degeneracy of states ¢, = 0 and ¢, = 7/2. This term is
equivalent to uniaxial anisotropy, which selects the state with the
collinear orientation of AFM vectors at the surface and in the bulk as
energetically favorable. This means that the AFM vector is parallel to
the long edge of the rectangle: if a > b, then I<§h >0 and LIX
(¢, =0). The second shape-induced term with K3 renormalizes
the “bare” magnetic anisotropy constant, K, —K | +th; however,
this effect makes no influence on the orientation of the AFM vector.
For the square sample (a=b) the shape-induced correction has the
same sign as K (Kff‘ >0) and thus does not affect equilibrium
orientation of the AFM vector. The change of Kflh sign appears for the
samples with large aspect ratio (a/b ~ 16, see Fig. 5), where uniaxial
anisotropy governs the orientation of the AFM vector, and shape-
induced renormalization of K, is insignificant.

The role of the terms with K5" becomes noticeable when the
faces (edges) of the square (a=b) sample are cut at the angle
w=m/4 (ie. along the “hard” magnetic axes). In this case the
uniaxial anisotropy vanishes, K" =0 and the effective magnetic
anisotropy constant decreases: K, —-K —Kih. Assuming that K |
and KSh have the same (spin-orbit) nature, we conclude that the
shape can change the direction of the easy axes (if K <K ) or
entirely compensate the 4-th order magnetic anisotropy (if
K, %Kflh), as it was recently observed in the experiments [12].

4. Multidomain state, destressing energy and critical size

In the multidomain state the seed distribution can, in principle,
model the domains and domain boundaries both in the bulk and
at the surface. To simplify the problem we assume that distribu-
tion of the AFM vector Lg,(r) within each face is homogeneous
and Ly, aligns due to the surface anisotropy (Ksur>>opw ), as shown
in Fig. 3a. In this case, orientation of the AFM vector and,
correspondingly, angle @, can take one of two values within the
bulk: ¢! =0 or ¢! =x/2 (domains of two types, I and II). At the

1 3 2 4
surface ¢l = @&k and % = @i

Magnetoelastic charges appear near the surface (due to the
difference between Lgy: and L;,) and at the domain walls in the
bulk (due to the difference between L}, and LI ). The total charge
of the full domain wall is zero because of the perfect compensation
of the charges with opposite signs. So, the field of internal charges
decreases rapidly with distance (as 1/r due to Coulomb-like
nature of the “elastic” forces) and can be neglected.

Near—surface domain structure generates two types of the charges
o, ! ¢ and Q,, , corresponding to two types o of the domains with L},
and L (see Eq. (20)). Thus, distribution of Q, § s space-dependent

We consider the simplest case of the stripe domain structure (see
discussion of possible generalization below) and model it as

Q" o=@ H+@Q" -Qp V. (30)
Here 7 is a local coordinate parallel to the j-th edge of the sample (for
example, 77, = —X in Fig. 3), and f(#;) is a periodic function with zero
mean value: f(n;+d)=f@;), (f(n;))=0; d is a domain structure
period.

In the case of the fine domain structure, d<b,a, the averaged
value (Q]m e) is independent of j and coincides with that averaged
over the particle volume. As in the single-domain state, the
effective contribution from the averaged charges to the magnetic
energy density is similar to (29):

Weestr = — 4 {21<3"<cos 2@y W) +KTK cos 2(@y, +y))? —(sin 2<</);n+w)>2]}.
(31)

The term with K;h corresponds to the uniaxial shape-induced
anisotropy. The second term, with Kflh, depends nonlinearly on the
domain fraction and is analogous to the demagnetization energy
of FM. Previously [14] we named this contribution as destressing
energy, since it determines the equilibrium domain structure in
the presence of the external fields (in the defectless samples).

We estimate the energy contribution of the second term in (30)
using the analogy between the theory of elasticity and electro-
(magneto-)statics: the total field of the alternating charge dis-
tribution with zero average decays exponentially into the sample
at distances d: ujocexp(—I|X +a/2|/d),exp(—|Y +b/2|/d). The
corresponding contribution to the total energy density can easily
be obtained by analogy with the well-known Kittel expressions for
FMs (formulae (54), (63) in [20]):

Whear — sur :Aﬂ(Q;n_e - Q;;l_e 2% (32)
where A is a factor of the order of unity, S is the surface area.
Comparison of (32) and (31) shows that Wyear — sur/Wgestr oc d/£<1
(where 7 is the characteristic size sample). However, contribution
Whear— sur,» though small, defines the details of the domain structure
(period, number of domains, orientation and shape of DW). Also, as
in the case of FM, a period of the equilibrium domain structure is
determined by the competition between the energy (32) (which
increases with d increase) and the total DW energy density Wyound =
opw?S/(Vd) (which decreases with d increase). An optimal value dopt

(up to an unessential numerical factor) is

& (33)

A Mm—e Ame

HQ;  —Qy

The period dop: of the domain structure defines the critical NP
size Z¢, below which the formation of AFM domains becomes
energetically unfavorable:

dopt ~

Iapw ) (34)

AMm—e Ame

(Ql - QII

Let us compare expressions (33), (34) with the similar expres-
sions for the FM samples for two limiting cases.

4 = dopt

Strong surface anisotropy, Ksu>>opw. In this case, (Q;nfe

- Q;Tﬁe) o€ Aanis/p and
Gpw apw
Co =dopt =—5—— ¢ o< Epw- G35
j‘inis/:u K.

Here we used the fact that the magnetic anisotropy in the AFM
has the same nature as the magnetoelastic energy, resulting in

2
Ky o ’?'anis/:u'
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Weak surface anisotropy, Ksuw>opw. In this case (Q;n_e

Q) %) o AanisKsur/(cpw ), and so,

apw apw 2 apw 2
fer = dOPt B j’inis/,u <K5ur> * §DW <m> >>§DW. (36)

Thus, in AFMs, as opposed to FMs, the domain size and the
critical particle size depend on the properties of the surface (in
this particular case - on the magnetic surface anisotropy). In the
presence of strong surface anisotropy the characteristic size of the
domain is of the same order of magnitude as the DW width.
A similar result is obtained in the FMs, provided that the magnetic
anisotropy is of the same order as the shape anisotropy. In the
limiting case of zero surface magnetic anisotropy the critical
particle size tends to infinity, in agreement with the expected
absence of the shape effects in the large AFM samples (thermo-
dynamic limit).

We emphasize that, in contrast to FMs, the equilibrium struc-
ture of AFMs is formed by the orientational domains only (the
angle between vectors L in neighboring domains < 180°). The
translational 180° domains in collinear AFMs (that have opposite L
directions) are physically indistinguishable and should be identi-
fied by the presence of the interfaces. This problem is out of the
scope of the paper.

5. Domain structure of bulk samples

The above model predicts the occurrence of the domains in
arbitrarily large (bulk) samples, provided that K, # 0. Contribu-
tion of the magnetoelastic charges to the surface energy is
proportional to the sample volume and competes with the
anisotropy energy in samples of any size. On the other hand,
increasing the characteristic size of the sample, we can reduce the
influence of surface on the local properties up to the thermo-
dynamic limit. Thus, we can question the existence of the upper
critical size, above which the sample can be considered as single-
domain. To find a rigorous answer, we need to solve a complicated
problem, which is beyond the scope of our work; we confine
ourselves to a few physical considerations.

Formally, we may move to the case of physically large samples (to
the thermodynamic limit) in two ways: either as limg,, o lim,_ «,
or in the other order lim,_ o limg,, . o. In the first case, the surface
leads to the shape effects and the domain structure formation.
Increasing the sample size, and thus the domain size, we obtain
large homogeneous regions, in which the influence of domain walls
and the surface can be neglected (this issue is discussed in detail
below). In the second case, we exclude the surface from considera-
tion and get the homogeneous throughout the sample solution (12),
which corresponds to the energy minimum. The domain structure is
absent and the size of the sample is not important as a thermo-
dynamic parameter.

We emphasize that our estimates of the domain structure period
(33) and lower critical sample size (34) are based on the simplified
Kittel's model of striped domain structure with one characteristic
period. While the optimal period is less than or equal to the critical
sample size (34), such choice of seed distribution seems reasonable.
However, if the sample size (and dqp) increases, the contribution of
the charges Q,n;,e to the energy grows. At the same time, energy can be
decreased by the branching (fractalization) of the domain structure:
the surface of “large” domain stimulates formation of small domains
inside. Similar structures were observed in ferromagnetic and ferroe-
lastic materials (such as martensites, in which deformation is the
primary order parameter [31]). In [32] authors show that the scale
invariance of the two-dimensional Laplace equation causes the fractal
nature of the ferromagnetic and intermediate state superconducting

structures. In our case, assuming the Coulomb nature of the elastic
forces, we can also expect that the system of Egs. (18) contains a
similar (probably more difficult) fractal solution. We suppose that a
multi-domain hierarchical structure, which contains ever smaller
regions with various orientations of the AFM vector, may also appear
in large AFM samples. This leads us to the following conclusions.

First, for large # we need to adjust the estimate (33) for the
domain structure period dop. Indeed, the total length of the
domain walls in the fractal structure increases with the domain
size d as d®, where Dy, is the Hausdorf fractal dimension. Thus, the
total energy of the domain walls changes as Wpoung oc 2d”" 2
(similar estimate for multiferroic BiFeO3z was made in [33]), and
the optimal domain size is dop oc #1/3 P, For the striped domains
Dp=1, which yields (33); for branching structures, obviously,
Dy >1, and the dependence dop(¢) is stronger. Second, in the
fractal structure the ratio of the surface energy to the bulk energy
decreases with increasing ¢ slower than 1/¢, indicating the
important role of the surface in large samples.

Finally, we note that branching domain structure also allows
transition to thermodynamic limit: as we have already noted, for
periodic structures the field of magnetoelastic charges is screened
over distances of the order of dopc from the surface. Thus, even in
multidomain sample the local magnetic properties of homoge-
neous regions (such as orientation of AFM vector, AFMR frequen-
cies, susceptibility, etc.) depend on the internal (bulk) parameters
only, and the role of the surface energy is insignificant.

Let us discuss another, practical, approach to the concept of the
upper critical dimension. Imagine that initially the multidomain
sample is transferred to a single-domain, homogeneous state
(without DWs) by an external field. The question is: will the
domain structure appear after the field is switched off? As in the
case of the FM materials, the answer depends on various para-
meters, including the size of the sample, and the magnitude of the
DW formation activation barrier Uy,,. As we have already noted,
the domain formation starts at the surface - from edges or vertices
of the particle, depending on the crystallographic orientation of
the surface. The domain nucleus creates the elastic stress field;
energy density of this field decreases with distance (in analogy
with the elastic energy of dislocation field) as [(Q™)? /u]ln r/rq (o
is a characteristic size of the order of the nucleus curvature radius).
If Up,e > [(Q™®)?/u], then the domain walls preferably form in areas
where the field of magnetoelastic charges located at the opposite
edges add constructively. Hence, we estimate the upper critical
size of the sample: Z&P o rg exp Uparpt/(Q™)?. In small particles,
¢ < ¢, the interaction of charges located at the opposite edges is
sufficient for the DW formation. If # > #¢F, the sample may remain
in the metastable single-domain state.

6. Discussion

We proposed the model that takes account of the magnetic
surface anisotropy and magnetoelastic coupling and predicts
the additional shape-dependent magnetic anisotropy in AFM. The
surface anisotropy selects one of the easy magnetic axes as energe-
tically favorable, while magnetoelastic long-range interactions trans-
fer the influence of the surface on the entire NP bulk. Formally, the
model describes such effects using the tensor of magnetoelastic
charges (20) localized at the NP surface. The developed theory should
appropriately describe the magnetic behavior of AFM particles with
the pronounced magnetostriction, like NiO, a-Fe,O; (hematite),
Cry03, LaFeO3, low-doped La; _ 4SryCuOy, etc. (see Table 1). Moreover,
analysis of various experiments with these materials gives clear
evidences of different shape-induced effects which we discuss in this
section.
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Shape-induced magnetic anisotropy manifests itself in two
ways: (i) as uniaxial anisotropy, which splits energy of otherwise
degenerated equilibrium orientations of AFM vector; (ii) as a
“demagnetizing” (destressing) factor, which promotes formation
of a certain domain type.

The first effect occurs when the shape-imposed easy axis is
perpendicular to the “proper” easy magnetic axis of the crystal (e.
g., induced by an external magnetic field). The constants of
intrinsic and shape-induced magnetic anisotropy are of opposite
signs; so, there is a critical aspect ratio a/b, at which spin-flop
transition of the AFM vector takes place. Such a behavior was
observed in the rectangular-shaped stripes of LaFeOs, in which the
effective magnetic field was induced by the exchange coupling
with underlying FM layer [10]. In particular, in the wide (b=1 pm)
stripes with small aspect ratio the AFM vector was oriented along
the field-defined easy magnetic axis, while in the thin
(b=200 nm) stripes with the large aspect ratio AFM vector was
parallel to the long edge of the sample, perpendicular to easy axis.
At intermediate value boc 500 nm (critical aspect ratio), the
stripes demonstrated AFM domain structure that may originate
due to the balance of shape-induced and proper magnetic aniso-
tropies in the “spin-flop” point.

Correlation between the sample shape and effective magnetic
anisotropy, K,nis, deduced from the spin-flop field values was
established in the experiments [23,41]. Fig. 6 shows Kg,;s values
for the elliptical Cr,03 nanoparticles at different aspect ratios a/b

Table 1
Parameters of AFM: u is magnetostriction, Ty is the Néel temperature (for bulk
samples).

Crystal u (107°) Ty (K) Ref.
NiO 9 573 [34]
Cr,05 28 308 135]
LaFeOs 238 738 [36,37]
Lay_,St,CuO, 1000 200 [38,39]
a-Fe,05 o1 250-260 [40]
a
3.5
3.0
1 v
2.5
\8 ]
o 2.0
—
[ ]
k=)
— 1.5
° ]
©
X' 104
0.5
0.0
: . : . : . :
2 3 4 5
a/b

[42] (down triangles). To validate the predictions of our model, we
fit the experimental data (solid curve in Fig. 6) according to the
expression

Kanis (%) —K©Q__2Km-e 1(%) 37)
where K;?fis =7.8 x 10* erg/g can be treated as a “bare” magnetic
anisotropy, K™ ¢ =8.8 x 10% erg/g has magnetoelastic origin and
Ji(a/b) is a shape factor introduced in (25) (see also Eq. (28)).

Unexpectedly good agreement between calculated and mea-
sured dependencies [43] in Fig. 6 shows that for relatively large NP
(b =30 nm) the main contribution to the shape effect arises from
the flat sections of the surface (in this case shape factors J;(a/b) of
the rectangular and elliptical particle are approximately the same).

The second effect appears when the domain structure is
reversibly changed under the action of external fields (magnetic
or mechanical). In the flat rectangular NP with a # b, the shape-
induced anisotropy (see Eq. (31)) plays the same role as the
external field, resulting in unbalance between the domains of
different types. Reversible (or partly reversible) field-induced
restructurization of the domain structure was observed in the
bulk samples of different AFMs and discussed in our previous
papers (see e.g. [14,44]). Here we would like to mention the shape
memory effect in lightly doped La,_,Sr,CuO, [38] observed
directly (as variation of the domain structure seen in polarized
light) and indirectly (in magnetoresistance measurements). We
believe that field-induced variation of the domain fraction in this
case results from the competition between the destressing energy
Eq. (31) and magnetic energy of the sample [45].

The constant of the surface anisotropy also determines the
critical parameters limiting formation of the domain structure. For
example, if the NP size is comparable with the domain structure
period d, formation of the domain walls and thus of domain
structure is unfavorable. On the other hand, for the elongated
samples with a>d but |K§h((a/b)cr)| > K, (see (29)), there is only
one possible equilibrium orientation of the AFM vector and thus
only one type of domains. In this case, the orientation of the easy
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154 |\
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20 40 60 80
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Fig. 6. Anisotropy constant of Cr,O5 nanoparticles as a function of (a) aspect ratio a/b; (b) minor size b. Down triangles show experimental data [23] for the elliptic particles
with fixed a=170 nm, solid curve fits these data according to Eq. (37). Up triangles in the right panel (b) correspond to the experiments [41] with the spherical particles

(a=Db). Dashed line results from the linear fit of the inverse size dependence ( oc 1/b).
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Fig. 7. Multidomain state of the nanoparticle with edges parallel (a) or at an angle 45° (b) relative to crystal axes. Arrows outside the rectangle indicate the orientation of the

Néel vector at the surface.

axis depends not only on ratio a/b, but also on the angle y, which
determines the orientations of the sample edges. So, the control of
the AFM particles shape allows us not only to create single-domain
samples, but also to drive the magnetic ordering direction.

The magnetoelastic charge-based formalism allows us to predict,
at least qualitatively, the morphology of the domain structure
depending on the size of the NP and crystallographic orientations
of its edges. Note that charge contribution increases the energy
density of NP compared with the case of an infinite crystal.
So, charge-less (or zero mean) configuration is more favorable, as
in FMs. If the NP edges are parallel to the crystallographic axes, the
surface charges disappear in the structure that shown in Fig. 7a, -
when the domain of a certain type grows from the edge into the bulk
as far as possible. This type of the domain growth was observed
experimentally in [12]; the authors named it “edge effect”. Edge
effect disappears if sample edges are rotated at angle y = 7/4 with
respect to easy magnetic axes. Really, in this geometry charge
vanishes only in average (due to formation of the domain structure
that is periodic along the edge, Fig. 7b). In this case, we assume that
domain formation starts from the vertices of the rectangle, and the
surface tension stresses can play a significant role in this process.
A detailed discussion of this issue is beyond the scope of this paper.

The explicit form of the shape-induced anisotropy constants
(28), (29) depends on the magnetic properties of the surface. In
our model we suggest that the magnetic ordering at the surface
somehow differs from that in the bulk, e.g. by orientation of easy
axis (see (1)). However, it is possible to generalize the model and
consider other typical situations: e.g., the surface of the sample is
paramagnetic, unlike the bulk. In this case, we expect that the
nonmagnetic shell will impose additional stresses (that result from
incompatibility between magnetostriction of the core and zero
strain at the surface) in the particle, which for large (multidomain)
samples could show up in the destressing energy (similar to (31)).
In the single-domain particles these stresses could result in the
increase of the observed magnetostriction compared to the bulk
samples, as it was experimentally found in NiO [1,46] and Cr,03
[41] nanoparticles.

It is necessary to mention another contribution into shape-
induced anisotropy ignored in our model. Namely, inhomogeneous
distribution of AFM vectors (and/or elastic strains) at the surface
can give rise to the “Laplas”-like stress proportional to the
curvature of the surface. In the spherical-shaped particles the role
of Laplas stress grows with a decrease of particle size. In particular,
Fig. 6b illustrates this fact using as an example the size depen-
dence of the effective anisotropy K,;s of small (b <30 nm) Cr,03
particles. Experimental data [41] (up triangles) are rather well
fitted with the inverse dependence K,soc 1/b (dashed curve).
In the rectangular samples additional Laplas stresses may appear
in the vicinity of the apexes.

Note that we have considered the ideal, i.e. defectless, sample,
eliminating the energy of twin boundaries and disclinations (the
latter inevitably arise in the areas of convergence of three or more

domains), and neglecting peculiarities of the AFM vector distribu-
tion near the vertices of the rectangle. Certainly, these factors
should influence the domain structure formation and the effective
magnetic anisotropy of the sample. However, we assume that only
the surface relates the internal magnetic properties of NP and its
form. We have shown that the shape effects can be caused by the
long-range fields of non-magnetic nature - elastic forces - and so
they should appear in the “pure” AFM samples (without FM
moment as well). The effects described above should be more
pronounced in the small (up to few critical lengths) samples: in this
case, the formation of the magnetic structure is determined mainly
by the surface and the influence of the defects can be neglected.

The developed model can be applied to AFM particles whose
dimensions are large enough to admit micromagnetic description.
Typical thickness of the surface layer can be estimated as 1-3 nm
(see, e.g., [47,48]), the minimal domain size observed in 12 nm
particles of NiO was as small as 4 nm [49]. So, the model can
describe, at least qualitatively, the particles even within the
nanoscale range (i.e. 10-100 nm), however, below 100 nm the
model should be generalized to account for the surface curvature,
as explained above.

The proposed model is suitable for description of the bit-
patterned media with AFM layer widely used in information
technologies (see, e.g. [50-55]). Typical element has a submicron
(down to 200 nm) size, rectangular shape and usually is well
separated from the neighbors, so, it can be viewed as an alone-
standing AFM particle considered above. On the other hand, such
multilayered systems pose new interesting and nontrivial pro-
blems related to competition of shape effects resulted from both
FM and AFM layers, interparticle interaction through the elasti-
cally soft substrate, etc.

In conclusion, the results obtained show that the shape can be used
as a technological factor which allows us to drive, control and set the
properties of antiferromagnetic nano- and submicron-sized samples.

The work is performed under the program of fundamental
Research Department of Physics and Astronomy, National Academy
of Sciences of Ukraine, and supported in part by a grant of Ministry of
Education and Science of Ukraine (N 2466-f).

Appendix A. Green tensor method for the displacement field
calculation

Assuming that we know the distribution of the AFM vector L(r),
let us examine Eqgs. (9)-(10) for the elastic subsystem. The
corresponding boundary conditions at the surface are:

1 + Ueff

1- 3I/eff

Nx(Vxly + Vyly) — 1y (Vyly — Vylly)

, <nx(vxuxvyuy)+ny(vxuy+vyux)>
n divu+

2}“anis

= - T Lsur(Lsurn)- (A- ])
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To simplify, we skip the terms that describe the isotropic
magnetostriction (as insignificant for further discussion).
We denote the bulk forces vector by

Vx €0S 2¢+V, sin 2
fo [ xCB 2Pty ¢ , (A2)
Vy sin 2¢—Vy, cos 2¢
and the surface tension tensor (of the magnetostrictive nature) by
2(/Lmis/l")Lsur ® Lsur.
Let the functions Gy(r,r’) (k,j=x,y) be the solutions of the
equation:

Aij(l', r)+ yefkaV,G,j(r, ry=— 5kj5(r —r'), (A3)
with the following boundary conditions:
(M, V)G(Tsur, ')+ Vetr [N ViGjj(Four, T') + 1 Vi Gyj(Tsur, ) = 0. (A4)

Here, dy; is the Kronecker symbol, &(r—r’) is the Dirac delta-
function, n is the surface normal in point rg,.

The functions G(r,r’) coincide with Green tensor for isotropic
medium with fixed stresses (accurate within constants). In this
case, we can represent the displacement vector as follows:

zj'anis / ’ / , )
y(r) = 2o /V Gig(T. 1)L (X)Li(r')] dV

2Aani , . , .
;‘“S ¢ Gi(r, T )L (1, Li(rg,,) dS, (A5)

Substituting (A.5) into energy expression (6) and taking into
account boundary conditions (A.4), we obtain elastic and magne-
toelastic energy contributions:

202 ,
Wagq = Panis / / Vil (E) L (E)]Gig (8, )V (L)L ()] dV V"
K Jvv

2220 , L ’
+7;msygs¢;l,j(l'sur)[.m (l'sur)ij(l'sura o) Le(Cgu)Li(Xgy) S dS;.

(A.6)

Appendix B. Shape-induced contribution into the magnetic
energy for an arbitrary constant K,

In the general case, magnetoelastic charges (21) and (22)
depend on the ratio s = opw /Ksur, Which we took as a unit when
obtained Eqgs. (28) and (29). Here, we generalize these expressions
for arbitrary values of s.

Substituting (21), (22) and (23), (24) into Eq. (8), we obtain
expressions (27), where coefficients K5, K" depend on variables
¢(in):

K=k () 5 - (e () 5 5] @

et ) ) (- ) - (]
(B.2)

Here,

Ag = \/1 + 25 cos 2(¢;, +y)+5s2. (B.3)

In the limiting case of the small magnetic anisotropy (s>1)
both shape-dependent constants vanish:

K =Kk, (B2o0, K= -k, (1) L2t g

b/s s
(B.4)

Eq. (27) may perform as the minimum condition for the
effective energy:

Wegr = —1Ki cos 4(pin—%1<m’e[ 1(%)(/\+ -AD)

4
+ (14 venlz (3) ) A+ +4)]
—%Km‘e [(2]2 (g) - 1) (3 5€0S AP +y)+2(A - +A+)3)
~2(5)A-—A,7). (B.5)
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