Journal of Magnetism and Magnetic Materials 489 (2019) 165457

journal homepage: www.elsevier.com/locate/jmmm

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

Research articles

Thermal fluctuations in antiferromagnetic nanostructures R

a,b,:k

Yuriy G. Semenov?, Xiniy Xu®, Ki Wook Kim

Check for
updates

# Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA

" Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

ARTICLE INFO ABSTRACT

Keywords:

Antiferromagnetic nano-particles
Thermal noise

Retention time

A theoretical model is developed that can accurately analyze the effects of thermal fluctuations in anti-
ferromagnetic (AFM) nano-particles. The approach is based on Fourier series representation of the random ef-
fective field with cut-off frequencies of physical origin at low and high limits while satisfying the fluctuation-
dissipation theorem at the same time. When coupled with the formalism of a Langevin dynamical equation, it

can describe the stochastic Néel vector dynamics with the AFM parameters, circumventing the arbitrariness of
the commonly used treatments in the micro-magnetic simulations. Subsequent application of the model to
spontaneous Néel vector switching provides a thermal stability analysis of the AFM states. The numerical si-
mulation shows that the AFM states are much less prone to the thermally induced accidental flips than the
ferromagnetic counterparts, suggesting a longer retention time for the former.

1. Introduction

Thermal fluctuations are evidently considered a destructive factor
as the electronic devices shrink to the nanoscale dimensions. However,
the situation is not so clear cut in spintronic devices based on magnetic
switching in nano-particles. While spontaneous reversal of the magne-
tization negatively affects the lifetime of the binary states in a magnetic
memory or logic, thermal magnetic fluctuations can be exploited to
accelerate or even determine the magnetization flip in ferromagnetic
(FM) devices for heat-assisted magnetic recording [1-4]. Furthermore,
other widely adopted mechanisms such as spin transfer torque require a
slight misalignment for the desired magnetization rotation [5].

The theoretical approaches to the modeling of thermal effects are
based on stochastic itinerancy in the magnetization orientation induced
by a fluctuating effective field Hy,(t) that essentially supposes a white
noise satisfying [6]

(Hpnj(t)Hpy(t")) = DpmG 0 (¢ — ). 1)

The amplitude of uncorrelated random component j = x, y, z of the
vector Hy,(t) is regulated by the fluctuation-dissipation theorem
Diy = 20 kBT’

yMgpy V (2)

where ag, ¥, Mgy, and V denote the Gilbert damping parameter, gyro-
magnetic ratio, magnetization, and volume of the FM mono-domain,
respectively. Incorporating Hy,(t) into the stochastic Landau-Lifshitz-
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Gilbert equation (LLG) in the form of a white noise, while satisfying the
requirement of no correlation at different times as described [Eq. (1)],
gives rise to the mathematical problem of accounting for a “rapidly
varying, highly irregular function” [7]. Further, this treatment of Hy,(t)
leads to an infinite variance.

In the quantitative studies, micro-magnetic simulations have been
used widely that treat the FM particle as an ensemble of magnetic cells
with a FM exchange interaction between them. Each cell is subjected to
a random field Hy,(¢) which is not correlated with those of the neigh-
bors. Likewise, the random fields in the time-domain implementation
are assumed invariable once selected during each time interval At (in
the range of 20-100 ps) and without interdependence between the time
steps. This approach recovers a finite variance [8]

ZC(GkB T

2 —
(Hjpj (D)) = MoV AL 3)

that is also in compliance with the fluctuation-dissipation theorem
discussed above. The arrangement adopted in the time domain is in
recognition of the finite auto-correlation time 7, in the magnetization
dynamics of the realistic systems in contrast to the no correlation as-
sumption of Eq. (1). Nonetheless, the arbitrariness in the time dis-
cretization At of the stochastic fields adds a significant uncertainty in
the final results [9]. Similarly, concerns exist on applicability of the
bulk parameters ag, Mgy and V to (sub-) nanometer scale cells with
arbitrarily chosen sizes and shapes.

The difficulties of the conventional treatment are compounded in
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the simulation of more complex antiferromagnetic (AFM) dynamics.
The AFMs have recently received much attention due to their potential
advantages in spintronic applications over the FM counterparts [10].
Accordingly, accurate description of Néel vector dynamics is crucial in
the realistic conditions at the ambient temperature. In this work, we
develop an alternative approach for the effect of the random thermal
fluctuations in the AFM structures based on a Langevin-type dynamical
equation. The model is then adopted to analyze thermal stability of the
AFM states in the nano-scale dimensions (i.e., lifetimes) highlighting its
potential applications.

2. Thermal field modeling in AFMs

Treating the ratcheted field effect on AFM stochastic dynamics as
antiparallelly ordered FM cells in the manner of micro-magnetic si-
mulations poses challenges beyond those faced by FM counterparts. For
one, the dynamic equations for AFM (or Néel) vector L (= M; — M,
where M; and M, are sublattice magnetizations) involve the time de-
rivative %H,h(t) that is not compatible with abrupt changes in Hy,(t)
often associated with the thermal fields. Even when this singularity is
somehow avoided, such a step-function treatment would evidently
overestimate the high frequency components of the noise, resulting in
parasitic excitation of spurious optical magnons in the AFM. Another
difficulty stems from the fact that the correlation time of thermal fields
may be comparable to the temporal scale of AFM dynamics which is
much faster than the FM counterparts [2]. In fact, the effect of a finite
correlation time was a subject of a detailed investigation even for much
slower FM dynamics in the case of colored thermal noise [11]. In
general, an increase in the auto-correlation time would enhance the
inertial effects and lead to stronger magnetization damping. Thus, the
desired solution is a representation of the thermal fields with a finite,
physically determined correlation time that can be incorporated into
the stochastic Néel vector dynamics for numerical evaluation. An al-
ternative theory based on the Fokker-Planck equation was proposed
previously to describe small deviations around the deterministic tra-
jectory of the Néel vector [12]. In contrast, the approach pursued here
can lead to an exact solution of the stochastic equation that is applic-
able to large fluctuations as well.

The thermal noise model under consideration is based on a spectral
representation of Hy,(t) in contrast to the introduction of random step
functions in the time domain as it allows a number of advantages. First,
the response of a damped AFM vector indicates that the random fluc-
tuations via Hy,(t) also decay within the corresponding characteristic
time 17, (i.e., the longest time of relevance). Thus, 27/7, essentially
provides the truncation frequency in the noise spectrum. Similarly, the
auto-correlation time 7. (or more precisely, its inverse) can be in-
corporated as the upper bound in the high frequencies. Further, the
association of 7,' to the broadening 8, of AFM resonant frequency
(6, = 27/t,) offers a physical ground for the discretization of the
spectral domain in the comparable intervals Aw (=~ &,). This frequency
uncertainty in each interval conveniently enables us to approximate the
desired spectral function with an average over Aw around a typical
frequency, followed by a summation over the allowed frequency do-
main. In other words, the AFM response on the actual thermal noise in a
dissipative medium is virtually equivalent to a series of harmonic os-
cillations (i.e., Fourier expansion) with random amplitudes and fre-
quencies nAw (n =1, 2, ...,N, where N = 27/, Aw = 1,,/7.). As such, a
similar Fourier series treatment can also be used for Hy,;(t).

The underlying rationale of the discrete treatment described above
can be seen more clearly by considering the formal conversion of the
response to the white noise. Since the magnetic permeability y (w)
(treated here like a scalar for convenience in the notation) drives the
dynamical response m(w), the resulting stochastic motion is expressed
as (j=x,y,2)
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Aw .
=, ./0' ){[nAcu + cu)chJ (nAw + co)e’("A“’*“’)‘dcu.
n

4

If Awis small enough to keep y(nAw + w) almost constant as w
varies in the interval (0, Aw), Eq. (4) can be reduced to a discrete sum
DX (nAw)e ¥ H;, . where Hj, = j(;Aw Hyj(nAw + w)e™'dw. Following
the same theoretical underpinning, it can also be shown explicitly that
H;, corresponds to the nth Fourier component of Hy, ;(t) in the complex
space: i.e.,

. . A .
Hy,j(8) = f Hy j(w)e®'dw = Z einawt ‘/(: ¢ Hiy,j (nAw + w)e’“”dco

n
— Z I‘Ijnei"Awt.
n ()

As the field Hy,; is random, so is Hj,. With explicit imposition of the
upper and lower bounds in the noise spectrum discussed earlier, the
thermal field can finally be written as a series of harmonic perturba-
tions with random amplitudes aj, and bj, in the following form:

N N
Hy,j(t) = z ajnsin(nAwt) + Z bjncos(nAcot}

n=1 n=1

(6)

Note that this noise expression applies only for a duration up to
27/Awin the time domain due to the relaxation (i.e., ~ 7,). A time
period longer than this interval requires refreshing the selection of
amplitude for each component. Thus, Hy,;(t) (as well as the associated
quantities such as the correlation function) is not periodic in time.
Nonetheless, it is continuous in t ensured by a condition imposed on a;,
and bj,, which stems from the stationarity of the random process (see
the discussion below).

The approach based on Eq. (6) avoids unphysical features attributed
to the white noise treatment of Eq. (1) including the virtually constant
spectral density at arbitrary small frequencies and the excitation of very
high frequency perturbations (see Fig. 1). It also circumvents the sin-
gularities associated with the derivatives of the step-function re-
presentation of the random thermal field [13]. As discussed above, the
frequency interval Awcan be associated with the broadening 6, of AFM
resonance frequency (e.g., Aw ~ 6, = 27/1,), for which experimental
measurements are generally available in the literature. Similarly, the
estimation of the upper bound (i.e., 7, ') can be reliably achieved in
terms of the microscopic theory. An alternative is to treat 7. as a phe-
nomenological parameter following the earlier studies for the corre-
sponding problem in the FM particles [8]. Needless to say, both of them
(i.e., 7, and 7.) are also a function of temperature as with other relevant
parameters of the AFM material (including damping constant, re-
sonance frequency, etc.). This dependence can be accounted for by
simply adjusting the numerical values according to the ambient con-
ditions of interest.

On the other hand, the thermal field must satisfy a restriction on the
correlation function imposed by the stationarity of the fluctuations as
well; i.e.,

gt 1) = 8 (Hipy (¢') Hipy (D). o

where (...)is an average over the ensemble of identical magnetic parti-
cles. The function 8 J,(t’, t) that depends on t’ — ¢t can be calculated in
terms of Eq. (6) so long as the random parameters are statistically in-
dependent, ie, (bjnajw) = 0, (bjnbjyw) = &y 8nn (b2, (amayw) =
80w (a7)and the premise (bj,) = (a;,) = 0. Stationarity of the random
process Hy(t) also imposes equality (b?) = (a2)such that Eq. (7) re-
duces to

L X
glt, t]|== a2y + (b,f))cos[Acun(t’ - t” = g(t' - t}
( ) 2 21 ®)
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Fig. 1. Example of white noise simulation in the time domain in terms of (a) random steps and (c) harmonic oscillations with random amplitudes. While the
corresponding spectral density of the step functions is unrestricted in the frequency domain [(b)], the harmonics can be confined in a physically valid range [(d)]. The

frequency of each harmonic is assumed to diffuse due to a finite relaxation time.

Here, subscript j is omitted for simplicity. In the limit of white noise
(i.e., Aw —» 0 and N — ), this equation obviously reproduces the
§-correlation as supposed in Eq. (1), provided that (b?) = (a?) is a
constant. Thus, the value %((af) + (b2)) determines the spectral density
of the correlation function in Eq. (8):

1 N
=% E (<a3> + <b3>).

The set of parameters (b )relates to magnetic susceptibility

9

x(w) = x'(w) + ixy" (w) via the fluctuation-dissipation theorem. In the
limit of high temperature, this theorem prescribes

kB T hy" (w)
(H}), = ).

hw Ly (w)! (10)

We apply the AFM permeability at zero external field in the form
[14]

x(w) = ——VyML (yHan + wcAw)

D(w) 1D

D(w) ~ w? — 2y?H Hy, — 2iapwy (Hy + Hgy), (12)

where M, denotes the saturation magnetization (= |LI| in equilibrium),
H,, and H,, (< H,) stand for the interlayer exchange field and the
anisotropy field, respectively, and a, is a damping constant which is
associated with each AFM sublattice (also related to the resonance
width 6, = apyH,,). The validity around the zero-field resonance fre-
quency w, = /2y’HexHqy is assumed for the permeability expression
given above.

A straightforward calculation with a sufficiently small oy provides
the power of the thermal field as

anB
yM V' (13)

(Hi), =

This expression formally resembles the thermal effect in a FM mono-
domain [see Eq. (2)] so long as the modified AFM damping parameter
1( = ap+/Hex/Hyy) corresponds to the FM Gilbert damping constant ag.
Comparison of Egs. (13) and (9) yields

b2 2y | = 5,288 2nkgT
(( 2 + {a >) YA a4

It is convenient to generate the Fourier amplitudes a,, b, of the
thermal field in terms of the random numbers «,, 5, of the Gaussian
distribution with variance of 1; i.e.,

1 N
— 52 + oc,f) =1
2N g (15)

Consequently, Eq. (14) imposes relations a, = Ba,, and b, = B,
with the scaling

_5 (2k T)“2
y \NKV (16)

yielding the thermal field in dimensionless units as

YHy () _ 5 (2kpT
Rik! AST AN E(NW) (Z a,sinnd, t + Z B,cosnd, t]

@r n=1

UJ\

a7

where K = M, H,, is an anisotropy constant. This expression clearly
gives the derivatives dHy, (¢)/dt in the form of smooth functions that can
be directly included in the AFM dynamic equation. Note also that the
spatial inhomogeneity in Hy, can be neglected conveniently when the
dimension of interest is smaller than the magnetic correlation length.
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3. Langevin equation

The thermal field effect on the Néel vector dynamics can now be
modeled in terms of the Lagrangian derived from the symmetry con-
sideration [14,15]. The alternative approach based on the LLG equa-
tions for the coupled sublattice magnetizations M; and M, in an ex-
ternal field H (including the contribution Hy, of thermal origin) as well
as the internal exchange and anisotropy fields (H,y, H,,) generates the
same result when the AFM exchange coupling dominates over the
others. The latter condition supposes the magnitude of the Néel vector
ILIto remain unaltered under its rotation such that the unit vector
n = L/ILlis sufficient to uniquely determine the AFM state. Since the
following analysis is limited to the magnets of nano-scale sizes which
are much smaller than the typical AFM correlation length, the spatial
variation of L can be safely omitted in the Lagrangian, which takes the
form

2 2 2
&flz - ﬁi[n X n]~yH + ZM—Lz[n X yHP — W (n),

£=—=
2004, Wex Wex 18)

where n = %n and w2 = y*H,M;. We consider the typical case of a
biaxial AFM with the density of anisotropy energy

W (n) = l(Kxn,ﬁ + Kznzz),
2 (19)

where the constants K, (<0) and K, (>0) determine the easy x- and the
hard z-axis, respectively. In addition, the magnetic anisotropy can be
engineered via the shape and the strain of the AFM sample [16]. The
cubic and higher-order terms are neglected in Eq. (19). Accordingly, the
anisotropy field H,, now corresponds to IK.|/M, [i.e., IK;l < K in Eq.
ani.

Then, the magnetic relaxation toward the local minimum of
W [n(t)] can be incorporated into the kinetic equation by way of a
dissipation function

5 M .
R = r anz’
Wex (20)

which can be given in terms of the homogeneous line width &, of the
AFM resonance mentioned earlier. Further, §, can be chosen to im-
plicitly account for the extrinsic factors such as the surface imperfec-
tions in the nano-particles. Note that Eq. (20) accounts for only the
relativistic Gilbert-like relaxation. The effect of the exchange relaxation
on n is expected to be relatively unimportant as it primarily affects the
net magnetization of the AFM (i.e., Mj + M,) rather than the actual
dynamics of the Néel vector (= M; — M,) [see Ref. [16] for a related
discussion].

The corresponding Lagrange equation augmented with Eq. (20)
describes the evolution of the AFM vector in the form of a Langevin
second-order differential equation. Since the variation dn of unit vector
n comes from its rotation around a vector d¢ by an infinitesimal angle
I8¢, the resulting expression takes the form

n X [ﬁ - 2(1'1 X h) - (n X li) + h(n~h) + iw(n) + 25’1'1] =0
on W,
@D

in dimensionless time w,t — t. Similarly, a normalized form is used for
the field H (i.e., h = yH/w,). Hereinafter, h corresponds to the nor-
malized thermal field hy, assuming no contribution of other origins.
The actual independent variables are polar ¢ and azimuthal 6 angles
of the unit vector n = (sinfcosg, sinbsing, cosb). Accordingly, Eq. (21)
establishes the set of two second-order differential equations

g = %[¢2 + K, — KO8 @]sin26 — 216
+ 2¢siné(n-h) + (h,sing — Piycosrp) + Fy(h) 22)
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and

$sin?6 = Fsin2psin? 6 — B¢sin26 — 2A¢sin? 0
— 26sin6(n-h) + cosé(n-h) — h; + E,(h), (23)

where x, = K,/IK,l, x; = K,/IK,l, and A = §,/w,. The quadratic-in-h
terms Fz(h) and F,(h) have often been neglected for relatively small
thermal fluctuations around the deterministic Néel vector traces [12].
In contrast, these two terms cannot be ignored when the problem
concerns spontaneous Néel vector switching through the barrier of
anisotropy energy. The detailed expressions necessary in the latter case
are given as

Fy(h) = %sinze(—hfcoszqa — hjsin’p + h?) 24)

and

E,(h) = lsin2 Gsin2¢(—hf + hyz)
2 (25)

Since (h}) = (h}) = (h}), the thermal field does not deviate the
equilibrium position away from the stationary states n|| + X on average
(which still permits flipping between them). The cross terms h;h;
(i # j) are dropped safely considering the uncorrelated nature of the
fluctuations h;and h;. Note that the stochastic equations given above
[e.g., Egs. (22) and (23)] can be readily applied to describe the Néel
vector dynamics in the presence of the driving field as well as the
thermal fluctuations. In such a case, the field h (thus, H) needs to be
expanded to include both contributions. An explicit Runge-Kutt method
can be used for the time integration of the differential equations. The
discretization step size for this numerical method depends on the cor-
relation time, for which a fraction of 7. is a convenient choice.

Compared to the evolution of FM nano-particle magnetization, the
AFM Né el vector dynamics is much more complex due to several
reasons. For instance, the relatively strong fluctuations may disturb the
trajectory in such a manner that does not nudge the Néel vector out of
the initial stable state. This phenomenon is related to the chiral dy-
namics of sublattice magnetizations. Similarly, the inertial behavior can
play a considerable role unlike in the FM counterparts [17]. With strong
damping (i.e., a lesser impact by inertia), one can expect that the N éel
vector would be drawn closer to the saddle point of the anisotropy
potential separating two energetically favorable regions. Under slow
relaxation, on the other hand, the nearly free movement with inertia
may migrate away from the saddle point, ultimately requiring a
stronger excitation to overcome the barrier. At the same time, the rate
of field variation (i.e., the slope %h) affects the outcome along with its
amplitude [see, for example, Egs. (22) and (23)].

Nevertheless, the outcome of the stochastic treatment is expected to
mimic the Boltzmann-type thermal distribution in equilibrium. As a
test, a comparison is made in Fig. 2 between the two for a range of z-
directional anisotropy values in a biaxial AFM at room temperature.
The result physically corresponds to reorientation of the Néel vector
along the z-direction (jn;| — 1) as the primary easy axis of the material
switches from x to z (i.e., K,/K, = 0 — 2). While Fig. 2(a) plots 100
independent solutions of stochastic equations at each K,/K, value (after
a long but fixed duration t), the data points in Fig. 2(b) represent the
same number of random selections for n from the Boltzmann dis-
tribution accounting for only the anisotropy energy; i.e.,
exp[—%(Kx n? + K;n?)/kgT]. The similarity between them is rather un-
canny despite the drastic difference in the theoretical approaches. The
observed small disparity in the variance may be attributed to the ne-
glect of the “kinetic” energy in the simple Boltzmann expression used in
Fig. 2(b) [see the first term on the right-hand side in Eq. (18)]. The non-
zero contribution of this (thermal) kinetic energy term tends to reduce
the deviation away from the mean value (i.e., a tighter distribution).
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1 p "
(a) | 355?

5

0 1 2
Kz/Kx

Fig. 2. Thermal distribution of Néel vector equilibrium states (a) calculated in
terms of the stochastic equations and (b) via random selections according to the
Boltzmann probability function. The solid lines indicate the mean values of n,.
Parameters of AFM nano-particle are as discussed in the main text (see Section
4). While the easy x-axis anisotropy (K,) is set at — 4.4 x 10° erg/cm?, the ani-
sotropy in the z direction varies from K, = 0 to K, = —8.8 X 10° erg/cm® making
it the primary easy axis.

Kz/Kx

4. Retention time evaluation

As an illustration of the ability to describe beyond the small fluc-
tuations around the deterministic trajectory (e.g., Fig. 2), the dynamical
model discussed above is adopted to study the problem of spontaneous
Néel vector switching in AFM nanostructures. Evidently, the stability of
a magnetic state against the thermal excitation is an issue of major
significance in numerous applications of magnetic devices such as
nonvolatile logic and memory. However, a corresponding analysis of
the functional dependence in a parametrically closed form is difficult to
achieve as in the theory of bistable dynamics that is quite sophisticated
even for one-dimensional (1D) classical particles [18] or FM mono-
domains [19]. Thus, the results of the Langevin dynamics may be more
conveniently interpreted from an empirical standpoint of a particle
escaping from a local minimum through thermal fluctuations in an open
system. A key feature commonly adopted in this context is the activa-
tion law for escape, or inversely, the retention time ¢, ~ exp(Ay/kpT).
Parameter A, represents the effective activation energy that depends on
the particular energetic profile, the spectral density of noise, and the
correlation time as it was shown for a 1D classical system with a double-
well potential [20].

To evaluate the escape rate, the numerical solutions are obtained in
a sequence of N; iterations, each with the time interval 7,. As discussed
above in Section 2, random selection of the Fourier amplitudes is re-
freshed for each iteration by following the thermal noise model, while

1 2
KV/kgT

Fig. 3. (a) Stochastic simulations of spontaneous Néel vector reversal [In(N;/Ny,)] as a function of the inverse temperature for different values of the damping
constants 1. The data points (dots) show the results of the calculation, while their exponential approximations are given by the fitted lines. For sufficient statistics, the
iterative process based on random Monte Carlo selection continues until the number of observed switching events N, reaches 150 or more. (b) Effective barrier A;
and prefactor A determined from the slopes and the intercepts of the fitted lines shown in (a). Note that kg T and A, are normalized to the anisotropy energy KV at the
saddle point (where K = IK,land V denotes the AFM nano-particle volume).
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the initial state is set by the solution of the preceding time interval. This
sequence is repeated until the number (N,) of observed switching
events between the n, ~ +1 states reach a sufficiently high value (e.g., a
few hundred) to limit the statistical error. Then the retention time (i.e.,
the inverse of the escape rate) can be estimated as

TndN;
=

Now (26)

The expression for 7, can also be given as 27/8, in terms of AFM
parameter. In the actual calculation, the values typical for mono-do-
main dielectric AFMs such as NiO are used as summarized below [21]:
K, = —2.2 X 10° erg/cm?®, K, = 4.4 X 10° erg/cm?, H,, = 630 Oe,
H, =93x10°0e, 27M;=7000e, y=1.76x10"0e's™!, and
ax = 6 x 107, The corresponding zero-field AFM resonance frequency
w, is 27t X 220 GHz, while the effective line width 1 (= §,/w,) is treated
as a variable in the initial analysis. Clearly 7, (thus, &,) varies from
sample to sample as it depends on external factors such as the quality of
the materials. Likewise the magnitude of the auto-correlation time 7. is
treated empirically. Our analysis indicates that the quantity of interest
(i.e., the escape rate) is not significantly affected by the exact value of 7.
so long as it is sufficiently shorter than 7,. As such, a small constant
fraction (7, = 0.01%,) is assumed in the current calculation for simpli-
city. Note also that the temperature dependence of the AFM material
properties listed above is not considered to limit the parameter space
for a clear physical picture.

Fig. 3(a) shows the simulation results (data points) obtained for
different values of the AFM damping parameter 1and the temperature
T. Eq. (26) in combination with the supposed exponential dependence
of t, suggests that In(N;/Ny,) may be a linear function of 1/T. This ap-
pears to be clearly the case as the linear fit matches well with the
calculations over a sizable range, leading to an approximate expression

ﬂ = Aelv/kBT
Now 27)

The fact that the stochastic calculations reproduce the simple
Arrhenius activation law provides an additional validation of the in-
vestigated formalism. The effective barrier energy A, and the prefactor
A can be readily determined from the slope and the intercept. The ex-
tracted A, are provided in Fig. 3(b) as a function of 1. For the specific T
and 4, the retention time in an AFM nano-particle of volume V can be
calculated by multiplying the corresponding 7, (= 27/Aw,) to the ob-
tained N;/N;,. The result is shown in Fig. 4 (dashed line) as a function of
V for the case of A = 0.01 and T = 300 K. The lateral dimension (with a
square cross-section [ X 1) is varied whereas the vertical thickness is
fixed at 5nm.

4 ™ -4
. ©
2 - ] F2
> [
X 0 0 <
o £
<2 L2
e — 0
-4 4 [} ) [ J F-4

0.00 0.02 0.04 0.06 0.08 0.10
A
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10 years

Retention time

30 ns
10 20 30
Lateral dimension (nm)

Fig. 4. Retention times of AFM and FM nano-particles at room temperature as a
function of the lateral dimension. The solid lines represent the cases of uniaxial
symmetry (both AFM and FM), while the dashed line is for the biaxial AFM
nano-particle (K, < 0, K, > 0). A square cross-section is assumed whereas the
vertical thickness is fixed at 5nm.

It is instructive to compare the results with the corresponding values
in FM nano-particles. The retention time in an uniaxial FM has been a
subject of investigation in numerous works in the literature that can be
summed up as [22]

~

fong = 1 | 27k T oKV /KT

aoyHu \ KV (28)

Estimated values of tzy are plotted in Fig. 4 as well by adopting the
same parameters used for the AFMs above and ag = 0.01. In addition,
the result for the AFM with uniaxial symmetry (blue solid line) is also
calculated by setting K, = 0 for a more direct correspondence with the
FM case. While the general shapes are very similar in both AFM and FM
cases, the slopes (thus, the dependence on the volume) are substantially
steeper for the AFMs. Due to the strong exchange field, the AFM states
appear to be more robust than the FMs against the thermal fluctuations
except in the very small sizes (e.g., | < 10 nm and 17 nm for the biaxial
and uniaxial cases, respectively), where the desirable non-volatility
cannot be achieved. For instance, a retention time of over (or nearly)
10 years may be realized with an AFM of 30 x 30 x 5nm® while the
same structure in the FM phase is expected to be reliable only for a few
minutes. As for the comparison in the ultra-small dimensions, the re-
lative advantage or disadvantage between the AFM and FM structures
cannot be determined reliably due to the limitation of Eq. (28). The
validity of this analytical expression is in question as the estimated try
becomes comparable to the short magnetization relaxation time (i.e.,
small V). Between the uniaxial and biaxial AFMs, the latter (i.e., biaxial)
structure appears to be more favorable (or robust). It is not surprising
that lifting of the hard anisotropy axis results in the acceleration of the
escaping rate.

5. Summary

A theoretical model is developed to analyze the effects of thermal
fluctuations in the AFM dynamics. The formalism avoids a number of
complications attributed to the conventional treatment of mimicking an
actual AFM with antiferromagnetically coupled FM cells [23]. For ex-
ample, the latter approach treats the virtual cells as the real FM parti-
cles with intrinsic Gilbert damping parameter, anisotropy constants,
frequency of FM resonance, etc. The lack of any practical ways to define
these parameters in terms of available experimental methods renders
the conventional approach unrealistic. In contrast, the formalism de-
veloped in the present study takes advantage of the AFM macroscopic
parameters and makes it possible to systematically account for the key
characteristics including the correlation time. Further, the validity of
the approach is not limited to the weak, perturbative effect around the
equilibrium point for it can accurately describe rare events such as
spontaneous switching between quasistable states. Subsequent appli-
cation to the thermal stability analysis shows that the AFM states are
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substantially less prone to the temperature induced accidental flips than
the FM counterparts, highlighting a potential advantage of AFM spin-
tronics [24,25].
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