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a b s t r a c t

In this paper we study the one-dimensional XY model with single ion anisotropy and long-range

interaction that decay as a power law. The model has a quantum phase transition, at zero temperature,

at a critical value Dc of the anisotropy parameter D. For values of D below Dc we use a self-consistent

harmonic approximation. We have found that the critical temperature increases with D for small values

of this parameter. For values of D above Dc we use the bond operator technique and calculate the gap as

a function of D, at zero temperature.

& 2010 Elsevier B.V. All rights reserved.
It is very convenient to study quantum phase transition (QPT)
in low-dimensional systems because by changing the interactions
in the system one changes the amount of quantum fluctuations
[1]. One interesting model to study QPT is the anisotropic XY
model. The ground state of this model is not trivial; it shares
many properties with the antiferromagnetic Heisenberg model.
The model with short-range interaction has been well studied [2].
Here we will be interested in interactions that decay as power
law. The phase diagrams for the two models are different. In the
first case, the singularity in the free energy is present only at T=0
at a quantum critical point D=Dc. In the latter case there is a line
of T40 phase transition that terminates at Dc.

Long range interactions can be studied either for experimental
reasons like dipolar or Ruderman–Kitell–Kasuya–Yosida interac-
tions or simply because of theoretical interest. As pointed out by
Laflorence [3], a theoretical interest comes from the possibility to
interpolate between discrete dimensions by turning continuously
the exponent that governs the decay of interactions with the
distance. Long range interactions tend to suppress quantum as
well as thermal fluctuations, thus increasing the range of
interaction having an effect that is somewhat similar to increasing
the dimensionality of the system.

For the one-dimensional Heisenberg and XY model with
ferromagnetic interactions decaying as r p, it has been shown
[4–6] that an ordinary transition, at finite temperature, to a
ferromagnetically ordered phase exists when 1opo2. The
condition p41 is needed in order to avoid a ground state with
an infinite energy per spin. Thermal fluctuations destroy the order
for pZ2 at any finite temperature.
ll rights reserved.
We will start with the Hamiltonian:

H¼�
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ðSz
nÞ

2
ð1Þ

with Jnm= J9n�m9�p. Due to the form of the single ion anisotropy
we will take S=1. The spectrum of Hamiltonian (1) changes
drastically as D varies from very small to very large values. The
phase D4Dc consists of a unique ground state with total
magnetization S z

total ¼ 0 separated by a gap from the first excited
states, which lie in the sectors S z

total ¼ 71. The excitations in this
phase is a gaped S=1 exciton with an infinite lifetime at zero
temperature. For small D, Hamiltonian (1) is in a gapless phase
described by the spin wave theory.

The characteristic energy scale D of fluctuations above the
ground state vanishes as D approaches Dc. In the large D phase, D
is the energy of the lowest excitation above the ground state, this
is, the energy gap. In the small D phase, D is the scale at which
there is a qualitative change in the nature of the frequency
spectrum from its lowest frequency to its higher frequency
behavior. Here, Dpr, where r is the stiffness (to be introduced
later) [1].

The small D phase can be studied using the self-consistent
harmonic approximation (SCHA). The details are given in Ref. [7].
Introducing the Villain’s representation:
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and following Ref. [7] we obtain
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X

q
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qSz
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where

a¼ Jð0ÞþD; bðqÞ ¼ r½ Jð0Þ�JðqÞ�; ð4Þ

JðqÞ ¼
X
n;m

Jnme�iqðn�mÞ; ð5Þ

and the stiffness r, which takes into account quantum and
thermal fluctuations, is given by [7]
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From Eq. (3) we obtain
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with the dispersion relation

oðqÞ ¼ 2 ~S
ffiffiffiffiffiffiffiffiffiffiffi
abðqÞ

p
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where ~S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
.

Let

ZðqÞ ¼ ½ Jð0Þ�JðqÞ�: ð10Þ

From Eq. (5) we obtain

Jð0Þ ¼ J
X1
p ¼ 1

1

np
¼ JBðpÞ; ð11Þ

where z(p) is the Riemann zeta function. The limiting form of Z(q)
as q-0 is given by [8]

ZðqÞpqmin½ðp�1Þ;2�; ð12Þ

and so the long-wavelength spin wave spectrum, for po2, takes
the form oqpqz, where the dynamical critical exponent z is given
by z=(p�1)/2. For pZ3 the spin wave spectrum is linear in q and
the behavior is essentially the same as the spin wave calculations
for nearest-neighbor interactions only.

The critical temperature Tc, for po2, is given as the
temperature where r vanishes [7]. In Fig. 1 we show Tc as a
function of the anisotropy parameter D, for p=3/2, and we have
taken J=1. We can estimate the critical anisotropy parameter as
Dc=10.65. An interesting result of our calculation is the increase of
Tc with D, for small values of D. This feature was also found in the
3D model [9].
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Fig. 1. The critical temperature Tc as a function of the anisotropy parameter D, for

DrDc and p=3/2.
The in-plane magnetization M is given by

M¼ exp �1
2 ðfnÞ

2
D Eh i

: ð13Þ

In Fig. 2, we show M as a function of D at zero temperature. As
it is well known, the SCHA gives interesting information about the
existence and location of critical points and reasonable values for
critical temperatures, but one of its drawbacks is that it is not
good for the evaluation of critical exponents. For instance, M

drops discontinuously to zero at Dc.
An adequate method to treat the large D phase is the bond

operator formalism, proposed by Wang and Wang [9] for S=1 and
extended to finite temperatures by Pires and Gouvea [10].
The method has been used in two and three dimensions, but it
can be extended to one dimension when we have long range
order. In this formalism, three boson operators are introduced to
denote the three eigenstates of Sz:

91S¼ uþ 9vS; 90S¼ tþz 9vS; 9�1S¼ dþ 9vS; ð14Þ

where 9vS is the vacuum state. The spin operators are written as

Sþ ¼
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2
p
ðtþz dþuþ tzÞ; S� ¼

ffiffiffi
2
p
ðdþ tzþtþz uÞ; Sz ¼ uþu�dþd;
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with the constraint u+u+d+d+tz
+tz=1. In the large D phase we can

assume that the tz bosons are condensed and write /tz
+S=/tzS=t.

In this approximation we obtain:
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where we have introduced a temperature dependent constraint
parameter m to enforce the condition of single occupancy.

Taking the Fourier transform, performing a Bogoliubov
transformation and minimizing the free energy we obtain,
following Refs. [9–11] where all the details of the calculation
are presented, the following expression for the exciton energy:
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Fig. 2. The magnetization M as a function of D, for DrDc.
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Fig. 3. The gap m, at T=0, as a function of D, for DZDc, and p=3/2.
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and

f ðqÞ ¼
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n ¼ 1
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The energy gap, with J=1, is given by

m¼ ð�mþDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�yf ð0Þ

p
: ð21Þ

When yf(0)-1, the energy gap goes to 0, indicating a
transition from the large D phase to the ordered phase. For
p=3/2, we have obtained DcE10.11. This value is smaller than the
one obtained using the SCHA. We believe this value is more
reliable, since the bond operator technique is more suitable to
treat the large D phase. In Fig. 3 we show the gap m as a function
of the anisotropy parameter D. As D approaches Dc from above,
the energy gap vanishes as mp(D�Dc)a, with aE1.9

In conclusion, we have studied the one-dimensional XY model
with single ion anisotropy D and long range interaction decaying
as a power law. In the small D phase we have used a self-
consistent harmonic approximation and in the large D phase a
bond operator technique. The phase diagram of the model for
p=3/2 was obtained. Of course the SCHA is not very adequate, in
one dimension, for short-range interaction. However, it is
believed that it becomes asymptotically exact at large distance
for long-range interaction. We remark that in the classical limit
and D=0 the calculations using the SCHA are in good agreement
with Monte Carlo simulations [12]. Since the quantum case at
zero temperature and dimension d can be mapped to a classical
model with dimension d+1 and finite temperature, the result
should be even better for the quantum model. It is interesting to
mention that in three dimensions, for the nearest-neighbor
model, one has [9] DcE10.48, near the value obtained for the
model studied in the present paper.
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