Journal of Magnetism and Magnetic Materials 324 (2012) 2082-2085

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

Contents lists available at SciVerse ScienceDirect m—

Bond operator theory for the frustrated anisotropic Heisenberg

antiferromagnet on a square lattice
AS.T. Pires*

Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Cp 702, 30123-970 MG, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 12 September 2011
Received in revised form

10 January 2012

Available online 20 February 2012

Keywords:

Heisenberg model

XY model
Antiferromagnet
Quantum phase transition

The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S=1 and
up to the next-next-nearest neighbor coupling (the J;—/,—J3 model) on a square lattice, is studied using
the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero
temperature are obtained. The model features a complex T=0 phase diagram, whose ordering vector is
subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum
paramagnetic phase situated among Neél, spiral and collinear states.
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1. Introduction

Low-dimensional frustrated quantum antiferromagnets can
display an intriguing interplay between order and disorder, and
understanding such magnetically disordered states is important
for the search of fractionalized excitations in two dimensions
[1,2]. The search for spin liquid phases is one of the main interests
in the study of magnetic systems with competing interactions
and, in this context, the S=1, isotropic Heisenberg antiferro-
magnet on a square lattice with the nearest neighbors interac-
tions J;, next to nearest neighbors interactions J, and third
neighbors interactions J5 has been studied extensively by various
analytical and numerical techniques [2-7].

Additional terms, as for instance single ion anisotropy, are
possible when S > 1 and can lead to new physical features, such as
a quantum phase transition to a large D phase [8-11]. Studies of
these models are not only of an academic interest since materials
with S=1 and single ion anisotropy have been synthesized
recently [12]. The system is more complex as there are now two
mechanisms by which we can vary the quantum fluctuations. One
mechanism is the introduction of anisotropy, another is by adding
competing interactions to the bare model and varying the relative
strengths of the competing exchange interactions, or the dimen-
sionality and lattice type of the system. The combined effect of
competing interactions Ji, J, and J3 and single ion anisotropy may
lead (or not lead) to frustrations, depending on their mutual
values. The frustration enhances the importance of quantum

*Tel.: +55 313409 6624.
E-mail address: antpires@fisica.ufmg.br

0304-8853/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/jjmmm.2012.02.008

effects because the classical order is suppressed. Motivated by
these considerations, we will study the S=1, anisotropic, fru-
strated antiferromagnet on a square lattice, given by the Hamil-
tonian

rr+
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where )~ ; sums over the nearest neighbors, ", 4 over the next-
nearest neighbors, which are along the diagonals, and ;s over
the next-next-nearest neighbors.

At infinite D, the ground state is a trivial product of states of
|S?’=0) on all sites. In this state the average spin vanishes,
<S> =0, and there is an excitation gap from the singlet to the
doublets. On decreasing D, the energy gap decreases and goes to
zero at a critical D, where a quantum phase transition takes
place. For D < D¢ and positive, the system is in a gapless phase,
which is ordered at T=0 in the non frustrated case. Previous study
on this model with J3=0 was performed in Ref. [8]. Here we will
be concerned mainly with the effect of the J5 term.

2. Bond operator mean field theory

An adequate approach that has given a reasonable description
of the low-temperature quantum critical properties of many
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different spin systems is the bond operator formalism [8-11,13-17].
The bond operator representation was proposed by Sachdev and
Bhatt [18] to understand the properties of dimerized phases in
quantum S =1 spin systems and was lately extended by Wang and
Wang [8] to treat the antiferromagnet with spin S=1. Following Ref.
[8] we introduce three boson operators to denote the three
eigenstates of S*:

[1>=uT|vy, [0y =tf|v)y, |-1>=d"|v), )
where |v) is the vacuum state. The spin operators are written as
St =V2(t;d+u*t), S =v2d' t,+tju), SF=utu-dd
3
Substituting (3) in the Hamiltonian (1) and supposing that the
t, bosons are condensed, i.e. <t,> = <t; > =t,we obtain:

H= %Z[tz(dﬁ dryotut sur+urde s +dfut s +Hc)
r,0

+R (u* ur_err d) (u;+5ur+5_dr++(5dr+5) ]
+similar terms for J, and J3
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r r

A temperature-dependent chemical potential y, is introduced to
impose the local constraint Sf =S (S+1) =2. We solve the Hamilto-
nian (4) by a mean-field approach. We replace the local parameter p,
by a single parameter y, and make a mean-field decoupling for the
remaining operator terms, ie, {d, uf s> =<drtlr 5> =p,
diut 55> = ditl 25> =pou<df Ut o> = drttyq) =P

After a Fourier transformation of operators u and d, we
diagonalize the Hamiltonian with a Bogoliubov transformation,
and obtain

H=>) ooy o+Bi B+ Y (0k—A0+C, (5)
k k

where C is a constant and

=\ AF-AL, ©6)
Ag = —p+D+2R(1+n+a)(1-t2)+4t%g k), (7)

Ay = 4t2g (k) —4R (DY + NPT +0P2 Y20, (8)

Y =(1/2)(coskyx+cosky), 7, =coskycosk,, 9)

Yok = (1/2)(cos 2Ky +C0S2ky),  g(K) =P +1 i+ Yops (10)

Here n=J,/J1, «=J3/J1, and we have set J;=1. The parameters
t2, i, p, and p,p, are obtained by numerically solving the following
self-consistent equations:
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For a more detailed description of the formalism we refer the
reader to Ref. [8]. For the XY model, R=0 and the terms with p do
not contribute to Eq. (8). Therefore we have to solve only the self-
consistent equations for 2 and .

Once the self-consistent equations are solved, we can compute
any kind of thermodynamical observable. The gap is obtained

through the value of the minima of the dispersion relation (6) on
the reciprocal lattice.

3. Results

In Fig. 1 we show the critical parameter D¢ as a function of «,
for n=0 and R=0. As we can see, the Neél order persists up to
o1.=0.226 (quantum fluctuations stabilize the Neél order against
spiral order). A different type of long range order arises at
o»=0.387, with ordering vector Q=(q,q) and q varying continu-
ously. In Fig. 2 we show Dc as a function of «, for #=1.0 and R=0.
The system shows columnar antiferromagnetic order for
o <0.241 and a spiral phase for « > 0.545. In the intermediate
region the system is disordered. The behavior of D) for «=0,
was presented in Ref.[13]. In Figs. 1 and 2 we have considered
only the case R=0 since the self-consistent Egs. (11)-(13) are
more easily calculated in this limit. The behavior, however, is the
same as the one for R=1.

For D larger than D¢ the system is in a disordered phase with
an energy gap. The gap vanishes at the critical point D¢, where a
quantum phase transition from the large D phase to other phases
occurs, with the minimum gap appearing at a wave vector Q, that
depends on the parameters « and 7.
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Fig. 1. Critical anisotropy parameter D as a function of o, for #=0 and R=0.
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Fig. 2. Critical anisotropy parameter D¢ as a function of «, for =1 and R=0.
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Fig. 3. Phase diagram at T=0 for R=1. Phase I is characterized by Néel order.
Phase II is a collinear antiferromagnetic phase. In phase Il the spins are
disordered. Phase IV is spirally ordered.
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Fig. 4. Phase diagram at T=0 for R=0. The phases are the same as in Fig. 3.

The phase diagrams of the J;-J,-J3 model are shown in
Figs. 3 and 4, for R=1 and R=0, respectively, and are composed
of four different phases:

(I) An antiferromagnetic Neél phase with Q=(=,7), just as in the
unfrustrated square lattice.

(I1) A columnar antiferromagnetic phase showing antiferromag-
netic order in one direction of the lattice and ferromagnetic
order in the other one. Here Q=(0,7) or (7,0).

(1) A disordered phase. The combined effect of quantum fluctua-
tions and competing interactions was strong enough to
destroy the long-range order.

(IV) A spiral phase with ordering vector Q=(q,q), and g varying
continuously.

Increasing D in the phases (in the «-# plane) where long range
order occurs, we reach a disordered state. We have, thus, two
mechanisms that may lead to disorder: the single ion anisotropy,
whose strength is measured by D, and the competing interactions
J1, J2 and Js.

When the dispersion relation shows a zero mode, Bose con-
densation indicates an ordered phase. For illustration purpose, in
Fig. 5 we show the dispersion relation at coupling values
a=#n=0.1, well inside the Neél phase.
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Fig. 5. Dispersion relation, wg/(—u+D), for «=n=0.1.
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Fig. 6. Gap versus 7, for D=8, R=1 and «=0, at temperature 0.1.

In the classical case (and with D=0, #=0) there is a conven-
tional Neél order for <0.25 and a state with long range
incommensurate antiferromagnetic order for o > 0.25. However,
for the quantum S=1 model, a modified spin-wave theory [2]
shows that the Neél order persists up to o;.=0.39, and the long
range spiral order arises at op.=0.52. In the model studied here
(for R=1), o,=0.226 and o,.=0.387. The J;—J, model with first
and second-neighbor couplings has only collinear, commensurate
spin correlations, and this makes both the classical and quantum
theories quite different from that of the J;-/; model.

Since the competing interactions increase the magnitude of
quantum fluctuations, it is interesting to examine how the gap
varies with these interactions at a fixed temperature. In Fig. 6 we
plot the gap at («,m) versus the coupling #, at D=8, R=1, T=0.1
and «=0. The curve is almost a straight line. For D=8, R=1,
T=0.1 and n=0, the gap increases linearly with o and could be
fitted by m=2.92+0.870.

An interesting result of our theory is the existence of a gap in
the nonmagnetic region o, <o <dy. even for D=0. The gap,
however, vanishes at o and .. In Fig. 7 we show the gap as a
function of D, for «=0.3 and #=0. As we can see, m=0.46 at D=0.

We have found that the behavior of the gap with temperature,
in any region, has the behavior expected from scaling theories
[19]. In order to illustrate, in Fig. 8 we show the gap as a function
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Fig. 7. Gap in the paramagnetic phase as a function of the anisotropy parameter D,
for =0 and «=0.3.

114

10

Fig. 8. Gap as a function of temperature for D=8, R=1, =0 and #=0.3.

of temperature for D=8, R=1, =0 and #=0.3. The curve can be
fitted to the following expression:

m=mg+c,;T"?exp(—c,/T), (14

where c¢; and ¢, are constants which depend on D, o and #.

4. Conclusions

In this paper we have used the bond operator technique to
study the low temperature critical properties of the anisotropic,
frustrated S=1 Heisenberg antiferromagnet on a square lattice. A
very dramatic effect of quantum fluctuations seems to be the
disappearance of an ordered state in phase Il in the classical
phase diagram, characterized by magnetic order at a pitch vector
[2] Q=(q,m) with continuously varying q.

Isaev et al. [20] have shown that for the isotropic S=1
Heisenberg antiferromagnet with J3=0, the intermediate quan-
tum paramagnetic phase, 11c<n <93, is a (singlet) plaquette
crystal, and the ground and first excited states are separated by
a finite gap. It should be interesting to calculate the ground state
in this interval in our model and see the effect of the single ion
anisotropy in this ground state.

Acknowledgments

This work was partially supported by Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and Fundacdo de
Amparo a Pesquisa do Estado de Minas Gerais.

References

[1] G. Misguich, C. Lhuillier, Frustrated Spin Systems, (Ed.) H.T. Diep, World-
Scientific, (2005) and references therein.
[2] P. Hauke, T. Roscilde, V. Murg, ].I. Cirac, R. Schmied, New Journal of Physics 12
(2010) 053036.
[3] T. Einarsson, P. Frojdh, H. Johannesson, Physical Review B 45 (1992) 13121.
[4] ]. Ferrer, Physical Review B 47 (1993) 8769.
[5] N. Read, S. Sachdev, Physical Review Letters 66 (1991) 1773.
[6] M. Mambrini, A. Lauchli, D. Poilblanc, F. Mila, Physical Review B 74 (2006)
144422.
[7] J. Reuther, P. Wolfle, R. Darradi, W. Brenig, M. Arlego, J. Richter, Physical
Review B 83 (2011) 064416.
[8] H.T. Wang, Y. Wang, Physical Review B 71 (2005) 104429.
[9] A.S.T. Pires, M. Gouvea, European Physical Journal B 44 (2005) 169;
AS.T. Pires, LS. Lima, M.E. Gouvea, Journal of Physics: Condensed Matter 20
(2008) 015208;
A.S.T. Pires, M.E. Gouvea, Physica A 388 (2009) 21;
A.S.T. Pires, Physica A 373 (2007) 387;
A.S.T. Pires, Journal of Magnetism and Magnetic Materials 323 (2011) 1977.
[10] H.F. Lu, Z.F. Xu, Physics Letters A 360 (2006) 169.
[11] H.T. Wang, Y. Wang, Journal of Physics: Condensed Matter 19 (2007) 386227.
[12] M. Serbyn, T. Senthil, P.A. Lee, < arxiv:1108.3070), (2011).
[13] A.S.T. Pires, Physica A 390 (2011) 2787.
[14] D. Ke.Yu, Q. Gu, H.T. Wang, ].L. Shen, Physical Review B 59 (1999) 111.
[15] H.T. Wang, H.Q. Lin, ].L. Shen, Physical Review B 61 (2000) 4019.
[16] B. Kumar, Physical Review B 82 (2010) 054404.
[17] H.T. Wang, Y. Wang, Journal of Physics: Condensed Matter 19 (2007) 386227.
[18] S. Sachdev, R.N. Bhatt, Physical Review B 41 (1990) 9323.
[19] S. Sachdev, Quantum Phase Transitions, Cambridge University Press,
Cambridge, 1999.
[20] L. Isaev, G. Ortiz, ]J. Dukelsky, Physical Review B 79 (2009) 024409.


arxiv:1108.3070

	Bond operator theory for the frustrated anisotropic Heisenberg antiferromagnet on a square lattice
	Introduction
	Bond operator mean field theory
	Results
	Conclusions
	Acknowledgments
	References




