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a b s t r a c t

The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S¼1 and

up to the next-next-nearest neighbor coupling (the J1–J2–J3 model) on a square lattice, is studied using

the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero

temperature are obtained. The model features a complex T¼0 phase diagram, whose ordering vector is

subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum

paramagnetic phase situated among Neél, spiral and collinear states.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Low-dimensional frustrated quantum antiferromagnets can
display an intriguing interplay between order and disorder, and
understanding such magnetically disordered states is important
for the search of fractionalized excitations in two dimensions
[1,2]. The search for spin liquid phases is one of the main interests
in the study of magnetic systems with competing interactions
and, in this context, the S¼ 1

2 , isotropic Heisenberg antiferro-
magnet on a square lattice with the nearest neighbors interac-
tions J1, next to nearest neighbors interactions J2 and third
neighbors interactions J3 has been studied extensively by various
analytical and numerical techniques [2–7].

Additional terms, as for instance single ion anisotropy, are
possible when S41

2 and can lead to new physical features, such as
a quantum phase transition to a large D phase [8–11]. Studies of
these models are not only of an academic interest since materials
with S¼1 and single ion anisotropy have been synthesized
recently [12]. The system is more complex as there are now two
mechanisms by which we can vary the quantum fluctuations. One
mechanism is the introduction of anisotropy, another is by adding
competing interactions to the bare model and varying the relative
strengths of the competing exchange interactions, or the dimen-
sionality and lattice type of the system. The combined effect of
competing interactions J1, J2, and J3 and single ion anisotropy may
lead (or not lead) to frustrations, depending on their mutual
values. The frustration enhances the importance of quantum
ll rights reserved.
effects because the classical order is suppressed. Motivated by
these considerations, we will study the S¼1, anisotropic, fru-
strated antiferromagnet on a square lattice, given by the Hamil-
tonian
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where
P

r,d sums over the nearest neighbors,
P

r,d over the next-
nearest neighbors, which are along the diagonals, and

P
r,2d over

the next-next-nearest neighbors.
At infinite D, the ground state is a trivial product of states of

9Sz
¼0S on all sites. In this state the average spin vanishes,

oS4¼0, and there is an excitation gap from the singlet to the
doublets. On decreasing D, the energy gap decreases and goes to
zero at a critical DC, where a quantum phase transition takes
place. For DrDC and positive, the system is in a gapless phase,
which is ordered at T¼0 in the non frustrated case. Previous study
on this model with J3¼0 was performed in Ref. [8]. Here we will
be concerned mainly with the effect of the J3 term.
2. Bond operator mean field theory

An adequate approach that has given a reasonable description
of the low-temperature quantum critical properties of many
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Fig. 1. Critical anisotropy parameter DC as a function of a, for Z¼0 and R¼0.
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Fig. 2. Critical anisotropy parameter DC as a function of a, for Z¼1 and R¼0.
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different spin systems is the bond operator formalism [8–11,13–17].
The bond operator representation was proposed by Sachdev and
Bhatt [18] to understand the properties of dimerized phases in
quantum S¼ 1

2 spin systems and was lately extended by Wang and
Wang [8] to treat the antiferromagnet with spin S¼1. Following Ref.
[8] we introduce three boson operators to denote the three
eigenstates of Sz:

91S¼ uþ 9vS, 90S¼ tþz 9vS, 9�1S¼ dþ 9vS, ð2Þ

where 9vS is the vacuum state. The spin operators are written as

Sþ ¼
ffiffiffi
2
p
ðtþz dþuþ tzÞ, S� ¼

ffiffiffi
2
p
ðdþ tzþtþz uÞ, Sz

¼ uþu�dþd

:ð3Þ

Substituting (3) in the Hamiltonian (1) and supposing that the
tz bosons are condensed, i.e. otz4 ¼ otþz 4 ¼ t,we obtain:
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A temperature-dependent chemical potential mr is introduced to
impose the local constraint S2

r ¼ S ðSþ1Þ ¼ 2. We solve the Hamilto-
nian (4) by a mean-field approach. We replace the local parameter mr

by a single parameter m, and make a mean-field decoupling for the
remaining operator terms, i.e, /dþr uþrþdS¼/drurþdS¼ p,
/dþr uþrþ2dS¼/drurþ2dS¼ p2,/dþr uþrþdS¼/drurþdS¼ ~p:

After a Fourier transformation of operators u and d, we
diagonalize the Hamiltonian with a Bogoliubov transformation,
and obtain
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where C is a constant and
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Lk ¼�mþDþ2R ð1þZþaÞ ð1�t2Þþ4t2g ðkÞ, ð7Þ

Dk ¼ 4t2g ðkÞ�4R ðpgkþZ ~p ~gkþap2g2kÞ, ð8Þ

gk ¼ ð1=2ÞðcoskxþcoskyÞ, ~gk ¼ coskx cosky, ð9Þ

g2k ¼ ð1=2Þðcos2kxþcos2kyÞ, g ðkÞ ¼ gkþZ ~gkþa g2k, ð10Þ

Here Z¼ J2/J1, a¼ J3/J1, and we have set J1¼1. The parameters
t2, m, p, and ~p,p2 are obtained by numerically solving the following
self-consistent equations:
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For a more detailed description of the formalism we refer the
reader to Ref. [8]. For the XY model, R¼0 and the terms with p do
not contribute to Eq. (8). Therefore we have to solve only the self-
consistent equations for t2 and m.

Once the self-consistent equations are solved, we can compute
any kind of thermodynamical observable. The gap is obtained
through the value of the minima of the dispersion relation (6) on
the reciprocal lattice.
3. Results

In Fig. 1 we show the critical parameter DC as a function of a,
for Z¼0 and R¼0. As we can see, the Neél order persists up to
a1c¼0.226 (quantum fluctuations stabilize the Neél order against
spiral order). A different type of long range order arises at
a2c¼0.387, with ordering vector Q¼(q,q) and q varying continu-
ously. In Fig. 2 we show DC as a function of a, for Z¼1.0 and R¼0.
The system shows columnar antiferromagnetic order for
ao0.241 and a spiral phase for a40.545. In the intermediate
region the system is disordered. The behavior of DC(Z) for a¼0,
was presented in Ref.[13]. In Figs. 1 and 2 we have considered
only the case R¼0 since the self-consistent Eqs. (11)–(13) are
more easily calculated in this limit. The behavior, however, is the
same as the one for R¼1.

For D larger than DC the system is in a disordered phase with
an energy gap. The gap vanishes at the critical point DC, where a
quantum phase transition from the large D phase to other phases
occurs, with the minimum gap appearing at a wave vector Q, that
depends on the parameters a and Z.
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Fig. 3. Phase diagram at T¼0 for R¼1. Phase I is characterized by Néel order.

Phase II is a collinear antiferromagnetic phase. In phase III the spins are

disordered. Phase IV is spirally ordered.
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Fig. 4. Phase diagram at T¼0 for R¼0. The phases are the same as in Fig. 3.

Fig. 5. Dispersion relation, oq/(�mþD), for a¼Z¼0.1.
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Fig. 6. Gap versus Z, for D¼8, R¼1 and a¼0, at temperature 0.1.
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The phase diagrams of the J1–J2–J3 model are shown in
Figs. 3 and 4, for R¼1 and R¼0, respectively, and are composed
of four different phases:
(I)
 An antiferromagnetic Neél phase with Q¼(p,p), just as in the
unfrustrated square lattice.
(II)
 A columnar antiferromagnetic phase showing antiferromag-
netic order in one direction of the lattice and ferromagnetic
order in the other one. Here Q¼(0,p) or (p,0).
(III)
 A disordered phase. The combined effect of quantum fluctua-
tions and competing interactions was strong enough to
destroy the long-range order.
(IV)
 A spiral phase with ordering vector Q¼(q,q), and q varying
continuously.
Increasing D in the phases (in the a–Z plane) where long range
order occurs, we reach a disordered state. We have, thus, two
mechanisms that may lead to disorder: the single ion anisotropy,
whose strength is measured by D, and the competing interactions
J1, J2 and J3.

When the dispersion relation shows a zero mode, Bose con-
densation indicates an ordered phase. For illustration purpose, in
Fig. 5 we show the dispersion relation at coupling values
a¼Z¼0.1, well inside the Neél phase.
In the classical case (and with D¼0, Z¼0) there is a conven-
tional Neél order for ar0.25 and a state with long range
incommensurate antiferromagnetic order for a40.25. However,
for the quantum S¼ 1

2 model, a modified spin-wave theory [2]
shows that the Neél order persists up to a1c¼0.39, and the long
range spiral order arises at a2c¼0.52. In the model studied here
(for R¼1), a1c¼0.226 and a2c¼0.387. The J1–J2 model with first
and second-neighbor couplings has only collinear, commensurate
spin correlations, and this makes both the classical and quantum
theories quite different from that of the J1–J3 model.

Since the competing interactions increase the magnitude of
quantum fluctuations, it is interesting to examine how the gap
varies with these interactions at a fixed temperature. In Fig. 6 we
plot the gap at (p,p) versus the coupling Z, at D¼8, R¼1, T¼0.1
and a¼0. The curve is almost a straight line. For D¼8, R¼1,
T¼0.1 and Z¼0, the gap increases linearly with a and could be
fitted by m¼2.92þ0.87a.

An interesting result of our theory is the existence of a gap in
the nonmagnetic region a1coaoa2c, even for D¼0. The gap,
however, vanishes at a1c and a2c. In Fig. 7 we show the gap as a
function of D, for a¼0.3 and Z¼0. As we can see, m¼0.46 at D¼0.

We have found that the behavior of the gap with temperature,
in any region, has the behavior expected from scaling theories
[19]. In order to illustrate, in Fig. 8 we show the gap as a function
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Fig. 7. Gap in the paramagnetic phase as a function of the anisotropy parameter D,

for Z¼0 and a¼0.3.
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Fig. 8. Gap as a function of temperature for D¼8, R¼1, a¼0 and Z¼0.3.
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of temperature for D¼8, R¼1, a¼0 and Z¼0.3. The curve can be
fitted to the following expression:

m¼m0þc1T1=2 expð�c2=TÞ, ð14Þ

where c1 and c2 are constants which depend on D, a and Z.
4. Conclusions

In this paper we have used the bond operator technique to
study the low temperature critical properties of the anisotropic,
frustrated S¼1 Heisenberg antiferromagnet on a square lattice. A
very dramatic effect of quantum fluctuations seems to be the
disappearance of an ordered state in phase III in the classical
phase diagram, characterized by magnetic order at a pitch vector
[2] Q¼(q,p) with continuously varying q.

Isaev et al. [20] have shown that for the isotropic S¼ 1
2

Heisenberg antiferromagnet with J3¼0, the intermediate quan-
tum paramagnetic phase, Z1coZoZ2c, is a (singlet) plaquette

crystal, and the ground and first excited states are separated by
a finite gap. It should be interesting to calculate the ground state
in this interval in our model and see the effect of the single ion
anisotropy in this ground state.
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