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a b s t r a c t

The spin-3/2 Blume–Emery–Griffiths model on a honeycomb lattice is studied by Monte Carlo
simulations with the goal to determine phase diagrams for a range of the model parameters and to
investigate the nature of the phase transitions between the respective phases. For positive values of the
biquadratic to bilinear interaction ratio α, we find two ferromagnetically ordered phases, F1 and F2, with
the sublattice magnetizations ð1=2;1=2Þ and ð3=2;3=2Þ, respectively, and our results confirm the
discontinuous character of the order-disorder critical line as a function of the single-ion anisotropy
strength, predicted by the effective-field theory (EFT). For negative values of α, there is another
ferrimagnetic (FRM) phase of the type ð1=2;3=2Þ, located between F1 and F2. However, the step-like
variation of the order-disorder critical frontier obtained from EFT for large negative α is not reproduced
and thus deemed artifact of the EFT approximation. Finite-size scaling analysis performed at various
points between the respective identified phases gave the ratio of critical exponents γ=ν consistent with
the 2D Ising universality class, except in the vicinity of the boundary intersection, where the results
deviated from the standard values beyond the measurement errors.

& 2013 Published by Elsevier B.V.

1. Introduction

The spin-S Blume–Emery–Griffiths (BEG) model is a spin-S
Ising model which besides bilinear exchange interactions also
include biquadratic interactions and a single-ion anisotropy. It
was introduced to understand behavior of some real physical
systems, such as helium mixtures [1] and metamagnets (S¼1) or
ternary mixtures and compound DyVO4 (S¼ 3=2). The spin-3/2
BEG model was studied by various approaches, including the mean
field theory (MFT) [2–5], the effective-field theory (EFT) [6–8], the
renormalization group (RG) [9,10], the two-spin cluster expansion
(CE) [11], the cluster variation method (CVM) [12,13], the
pair approximation (PA), Monte Carlo (MC) simulations [14] and
cellular automata (CA) [15].

Despite intensive investigations, the critical behavior of the
model is still not well understood. Even in the most studied case
with zero biquadratic interactions, i.e., the Blume–Capel (BC)
model [17–19], no consensus among various approaches has been
established. In particular, the MFT results, supported by some
preliminary Monte Carlo (MC) simulations [4], as well as the EFT
[8] and RG [9] calculations, identified at low temperatures the
presence of two ferromagnetic phases F1 and F2 with the ground-
state sublattice magnetization structures ð1=2;1=2Þ and ð3=2;3=2Þ,

respectively. The two phases were claimed to be separated by a
first-order phase boundary that extends all the way to the second-
order line which forms a phase boundary with the paramagnetic
phase at higher temperatures. This scenario was confronted by
conclusions from later MFT [5], two-spin cluster expansion [11],
MC [14,20], and CVM [12] investigations, which predicted that the
first-order line at low temperatures did not extend up to the
paramagnetic phase boundary line, but terminated at an isolated
point.

The spin-3/2 BEG model with finite biquadratic interactions
was much less investigated. Nevertheless, besides the two ferro-
magnetic phases F1 and F2 observed in the BC model, for a certain
range of the biquadratic interactions and the single-ion anisotropy
strength it is expected to display a ferrimagnetic (FRM) phase with
unequal sublattice magnetizations in the ground state, i.e.,
ð1=2;3=2Þ [4,7]. However, it is not clear what is the nature of the
phase transitions from the paramagnetic to the ferrimagnetic
phase and between the respective ordered phases. Another mys-
terious feature is a step-wise variation of the critical temperature
for larger negative values of the biquadratic interactions obtained
within the EFT approach on a honeycomb lattice [6]. To our best
knowledge, this peculiarity has not been explained neither verified
by any other alternative approach and, therefore, it is not known
whether it is real or just an artifact of the used approximation.
Furthermore, for the present model with finite biquadratic inter-
actions we can also define a ferriquadrupolar order parameter and
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study phase transitions to the ferriquadrupolar (FRQ) phase. The
MFA [2] and CA [15] studies predicted the existence of separate
magnetic and ferriquadrupolar phase transitions, leading to rich
phase diagrams.

Motivated by the above findings, we perform Monte Carlo
simulations of the spin-3/2 BEG model on a honeycomb lattice in
order to determine phase diagrams for a range of the model
parameters and to investigate the nature of the phase transitions
between the respective phases.

2. Model and methods

The spin-3/2 Blume–Emery–Griffiths model on a honeycomb
lattice can be described by the Hamiltonian

H¼ � J1∑
〈i;j〉

SiSj� J2∑
〈i;j〉

S2i S
2
j �D∑

i
S2i ; ð1Þ

where Si ¼ 73=2; 71=2 is a spin on the ith lattice site, 〈i; j〉
denotes the sum over nearest neighbors, J140 is a ferromagnetic
bilinear exchange interaction parameter, J2 is a biquadratic
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Fig. 1. Temperature variation of (a) the direct magnetization md and (b) the direct magnetic susceptibility χd
M, for different values of Δ and L¼48.
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Fig. 2. Variations of md ; qd and e and the corresponding response functions χMd ; χQd and C, respectively, with the single-ion anisotropy parameter Δ, for different values of t and
L¼48.
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exchange interaction parameter and D is a single-ion anisotropy
parameter.

2.1. Ground state determination

The honeycomb lattice system is considered to consist of two
interpenetrating sublattices A and B. Then, assuming sublattice
uniformity we can focus on an elementary unit cell comprising the
central spin, let say from the sublattice A, i.e., SA, and its three
nearest neighbors from the sublattice B, i.e., SB, and express its

reduced ground-state (GS) energy per spin as follows:

e¼ �3
2
SASB�

3
2
αS2AS

2
B�

Δ

2
ðS2AþS2BÞ; ð2Þ

where α¼ J2=J1 and Δ¼D=J1. Then we can distinguish the follow-
ing states:

� F1 - ferromagnetic state with SA ¼ SB ¼ 71=2 and the energy
e1 ¼ �3=8�3=32α�Δ=4,

� F2 - ferromagnetic state with SA ¼ SB ¼ 73=2 and e2 ¼
�27=8�243=32α�9Δ=4, and
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Fig. 5. Δ�Dependence around P-F1-FRM transition at t¼0.75.
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Fig. 4. Δ�Dependence of the quantities around F1-FRM transition at t¼0.15.
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� FRM - ferrimagnetic state with SA ¼ 71=2, SB ¼ 73=2 or
SA ¼ 73=2, SA ¼ 71=2 and e3 ¼ �9=8�27=32α�5Δ=4.

GS in different regions of the parameter space ðα�ΔÞ can be
determined from the condition of the minimum energy given by
Eq. (2).

2.2. Monte Carlo simulation

In order to study behavior of various thermodynamic quantities in
the parameter space and to determine the phase diagrams, we
employ the Monte Carlo (MC) method with the Metropolis dynamics
and the periodic boundary conditions. For thermal averaging we
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consider N¼ L� 104 MCS (Monte Carlo sweeps or steps per spin),
where L¼ 24�96 is the linear lattice size, after discarding additional
20% of MCS for thermalization. To obtain dependencies on the
reduced temperature t � kBT=J1 at a fixed value of Δ, the simulations
start from the paramagnetic phase using random initial configura-
tions. Then the temperature is gradually lowered and the new
simulation starts from the final configuration obtained at the
previous temperature. To obtain variations of the quantities as
functions of Δ, we run simulations at a fixed temperature which
may start from other than paramagnetic phase. Thus an appropriate
initial state should be chosen, such as all spins in the state 1/2 (3/2) if
we start from F1ðF2) phase. Such an approach ensures that the
system is maintained close to the equilibrium in the entire range of

the changing parameter and considerably shortens thermalization
periods. For reliable estimation of statistical errors, we used the Γ-
method [16], which focuses on the explicit determination of the
relevant autocorrelation functions and times. It has been shown to
produce more certain error estimates than the binning techniques,
which handle autocorrelations only implicitly. We note that the
Γ�method allows assessing statistical errors for arbitrary in general
nonlinear functions of elementary observables in MC simulations. In
order to obtain critical exponents, we perform finite-size scaling
(FSS) analysis, using the linear sizes L ¼ 24, 48, 72 and 96, up to
N¼ 107 MCS and employing the reweighting techniques [21].

On the honeycomb lattice we calculate respective sublattice
dipolar and quadrupolar order parameters per site mX and qX
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(X¼A or B)

mX ¼ 2〈MX〉=L
2 ¼ 2 ∑

iAX
Si

* +
=L2; ð3Þ

qX ¼ 2〈QX〉=L
2 ¼ 2 ∑

iAX
S2i

* +
=L2; ð4Þ

and lattice order parameters md, qd (direct) and ms, qs (staggered)

md ¼ 〈Md〉=L
2 ¼ ∑

iAA
Siþ ∑

jAB
Sj

* +
=L2; ð5Þ

ms ¼ 〈Ms〉=L
2 ¼ ∑

iAA
Si� ∑

jAB
Sj

�����
�����

* +
=L2; ð6Þ

qd ¼ 〈Qd〉=L
2 ¼ ∑

iAA
S2i þ ∑

jAB
S2j

* +
=L2; ð7Þ

qs ¼ 〈Qs〉=L
2 ¼ ∑

iAA
S2i � ∑

jAB
S2j

�����
�����

* +
=L2; ð8Þ

where 〈⋯〉 denotes thermal average. Further, we calculate suscept-
ibilities pertaining to the respective lattice order parameters

χOu ¼ 〈O2
u〉� 〈Ou〉

2

L2kBT
; ð9Þ

where O¼M or Q and u¼d or s, specific heat per site C

C ¼ 〈H2〉� 〈H〉2

L2kBT
2 ; ð10Þ

logarithmic derivatives of 〈Ou〉 and 〈O2
u〉 with respect to β¼ 1=kBT ,

DO
u1 ¼

∂
∂β

ln 〈Ou〉¼ 〈OuH〉
〈Ou〉

� 〈H〉; ð11Þ

DO
u2 ¼

∂
∂β

ln 〈O2
u〉¼

〈O2
uH〉

〈O2
u〉

� 〈H〉: ð12Þ

For the FSS analysis we use the following scaling relations:

χOu;maxðLÞpLγ
O
u =ν

O
u ; ð13Þ

DO
u1;maxðLÞpL1=ν

O
u ; ð14Þ

DO
u2;maxðLÞpL1=ν

O
u ; ð15Þ

where νOu and γu
O are the critical exponents of the correlation

length and susceptibility, respectively.

3. Results

Based on the ground-state considerations above, let us first
present the behavior of some relevant quantities in the parameters
space where the identified phases are expected to appear. In
particular, we choose the value of the biquadratic to bilinear
exchange interaction ratio α¼ �2 and investigate the thermo-
dynamic quantities as functions of the temperature and the single-
ion anisotropy. The former case is demonstrated in Fig. 1, in which
we show temperature dependencies of the direct dipolar order
parameter (magnetization) md and the corresponding susceptibil-
ity χd

M for selected values of the reduced single-ion anisotropy Δ
and L¼48. As expected from the minimum energy (2) condition
for α¼ �2, the ground states are F1 for Δ¼ 0, 0.5, FRM for Δ¼ 1, 9,
11, and F2 for Δ¼ 12, with the values of md approaching 1/2, 1 and
3/2, respectively, as T-0. As a result, for most values of Δ the
curves show anomalies in the low-temperature region. Namely,
thermal fluctuation can either markedly decrease (e.g., for Δ¼ 1)
or even increase (e.g., for Δ¼ 0:5 or 11) the magnetization. The
respective magnetic orderings disappear at higher temperatures,
which is manifested in the direct susceptibility peaks, presented in
Fig. 1(b).

Fig. 2 demonstrates variations of the same quantities but now
as functions of Δ for selected temperatures. In order to study
quadrupolar ordering, we also include the behavior of the direct
quadrupolar order parameter qd and the internal energy e along
with their respective response functions, the direct quadrupolar
susceptibility χd

Q and the specific heat C. Thus we can see that, for
example, for t¼1.5 there is no magnetic ordering for Δ≲10 but the
ferriquadrupolar ordering1 (FRQ) exists within 3≲Δ≲10. Moreover,
transitions between different phases do not occur instantly but
they seem to be spread within some Δ intervals. This is reflected in
broader peaks of the response functions which beside a typical
spike also feature a broader shoulder.

The phase diagram in ðt�ΔÞ parameter space determined from
the peak positions of the response functions pertaining to different
order parameters is presented in Fig. 3 for α¼ �2. It features five
different phases characterized by the following values of the order
parameters: P – paramagnetic with mA ¼mB ¼ 0, F1 – ferromag-
netic with mA ¼mBa0 ð ¼ 1=2 at T ¼ 0Þ, F2 – ferromagnetic
with mA ¼mBa0 ð ¼ 3=2 at T ¼ 0Þ, FRM – ferrimagnetic with
mAamBa0 ð ¼ ð1=2;3=2Þ or ð3=2;1=2Þ at T ¼ 0Þ, and FRQ – ferri-
quadrupolar with mA ¼mB ¼ 0 and qAaqB.

Next, we were interested in the character of the respective
phase transitions between different phases. For this purpose we
employed a FSS analysis, using the linear sizes L¼ 24;48;72 and
96. We selected several representative points on the phase
boundaries and in Figs. 4–7 plotted L-dependent variations of
some relevant quantities needed for FSS in the vicinity of those
points. In the top rows we plot the order parameters relevant for
the respective phases and the internal energy. We note that these
quantities are little dependent on the lattice size and therefore
only the curves for the largest size L¼96 are presented. The
lattice size dependence at criticality is best seen in the response
functions shown in the bottom rows. In some cases, such as at
the F1-FRM transition at t¼0.15 in Fig. 4, the order parameter
appears to change discontinuously and the corresponding stag-
gered susceptibility shows a very narrow spike-like peak, which
indicates possibility of a first-order phase transition.
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Fig. 10. Order-disorder phase diagrams for selected values of α. The areas below
and above the curves represent magnetically ordered and disordered phases,
respectively.

1 Each sublattice is predominantly populated with spins of the same magni-
tude but not sign, having zero magnetization. However, one has 〈jSA j〉a 〈jSBj〉.
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However, in order to properly check the transition order we
need to perform a FSS analysis employing the scaling relations
(13)–(15). To obtain better quality data, we reran the simulations
at the (pseudo)critical points estimated from the susceptibility
peak locations, using up to N¼ 107 MCS and employed the
reweighting techniques [21]. Such a way we could obtain various
thermodynamic quantities used in the FSS analysis as continuous
functions of model parameters, which allowed us a precise
determination of the peaks maxima involved in the scaling
relations (13)–(15). The log–log plots of these relations should
give straight lines with the slopes corresponding to the respective
critical exponents' ratios γ=ν and 1=ν if the transition is second
order. For the present model we expect the ratios consistent with
the 2D Ising values γI=νI ¼ 7=4 and 1=νI ¼ 1. On the other hand, in
the case of a first-order transition the thermodynamic functions
are expected to scale with volume, i.e., the slopes should be equal
to d¼2. Despite some visual first-order transition signatures, as
described above, our analysis for the selected parameters did not
confirm such a scenario and all the transitions were reliably
evaluated as second order. Nevertheless, the critical exponents'
ratios were not consistent with the Ising universality class in all
the instances. In Fig. 8 we show the cases in which the ratio γ=ν did
not deviate from the Ising values beyond the error bars. However,
in most of these cases the values of 1=ν were not consistent with
the standard value of 1 and varied with the model parameters.
This finding would indicate that in fact these transitions comply
with only weakly universal behavior [22]. On the other hand, at
the points near the merging of the phases P, F1, FRM and FRQ (see
the red dots in Fig. 3) both the exponent ratios γ=ν and 1=ν deviate
from the Ising values and thus violate universality. The log–log
plots for these two cases are presented in Fig. 9. The values of γ=ν
are larger than γI=νI beyond the error bars. The deviations do not
seem to result from ignoring the correction-to-scaling terms in
the scaling relations (13)–(15). From the fitting results, the latter
appear to be unimportant for the present model and the con-
sidered lattice sizes. Otherwise, they would have been reflected in
deviations from the linear fit ansatz in the log–log plots in Fig. 9. In
such a case, to avoid troublesome nonlinear fitting, one typically
discards successively more and more small lattice sizes until the
goodness-of-fit has reached acceptable value and shows no further
trend. However, this was not necessary in our case. For example,
the value of the adjusted coefficient of determination R2 (a
goodness-of-fit measure) in the fitting of χd

M was 0.9997 in
Fig. 9(a) and 0.9994 in Fig. 9(b). These values are comparable to
those obtained in the remaining fits and do not improve upon
discarding smaller lattice sizes, which indicates that the asympto-
tic linear regime has already been reached. We note that even
clearer violation of Ising universality at the merging point of the P,
F1, FRM and FRQ phases was also observed in the tree-dimensional
spin-3/2 BEG model on a simple cubic lattice simulated by the
Creutz cellular automation [15].

Finally, in order to verify the EFT predictions [6] about the
discontinuous character of the order–disorder phase boundaries
for positive and step-wise variation for larger negative values of
the biquadratic to bilinear exchange interaction ratio α, we ran
simulations for several values of α and estimated the phase
boundaries between the paramagnetic and ordered phases.
The results for α¼ 2;0; �2 and �4 are presented in Fig. 10.
The discontinuous behavior for α¼ 2 is evident and thus in this

case our MC simulations corroborate the EFT results. Never-
theless, except for the step associated with the FRM phase there
are no signs of any other steps for any value of α. Therefore, the
step-like dependence observed in the EFT calculations is likely
just an artifact of the effective-field approximation.

4. Conclusions

In conclusion, we have studied the spin-3/2 Blume–Emery–
Griffiths model on a honeycomb lattice by Monte Carlo simula-
tions in order to verify some peculiar EFT predictions, as well as to
investigate the character of the phase transitions between differ-
ent phases. Our results confirmed discontinuous dependence of
the order-disorder phase boundary as a function of a single-ion
anisotropy for positive values of the exchange coupling ratio α.
However, the inexplicable multiple plateaus observed in the EFT
calculations for negative α were not reproduced and thus we think
they are merely artifacts of the used approximation.

Our finite-size scaling analysis, performed at several points of
the phase diagram for a selected value of the biquadratic to
bilinear exchange interaction ratio α¼ �2, indicated that the
phase transitions between different phases are of second order.
However, the estimated values of the critical exponents' ratios
pointed out to only weakly universal and in some points within
the area where different boundaries merge even nonuniversal
critical behavior. Similar universality violation was also recently
observed in the three-dimensional BEG model by cellular auto-
maton simulations [15].
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