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1. Introduction

Thermodynamics of solids with magnetoelastic couplings is a
subject of extensive interest of solid state physicists since many
years in its various aspects [1–41]. The magnetoelastic interactions
are responsible for such effects as the magnetostriction [33,34,36]
and piezomagnetism, which are important from the point of view
of application. As another direct consequence of the presence of
magnetoelastic coupling, one can mention the pressure influence
on the magnetic phase transition temperature, which has been dis-
cussed in numerous works [2,17,24–27,32,42,43]. The studies
involve both model systems and specific materials, among which
a particularly important class of magnetic semiconductors can be
mentioned [44–51]. Moreover, the contemporarily studied
magneto-caloric materials also essentially rely on the existence
of the coupling between the crystalline lattice and the magnetic
subsystem [28,30,42,43,52], which influences the vital parameters
of these materials.
In a common approach, the magnetoelastic coupling arises from
the fact that the magnetic exchange integral between magnetic
moments depends on their mutual distance [1,5–8,13,15,16,21,22
,27,46,31,40,41,53], which makes the magnetic energy volume-
dependent. On the other hand, the volume is an indispensable
parameter occurring in other, non-magnetic, parts of the total
energy, as for instance, the elastic potential energy, vibrational
energy, as well as the electronic one.

For the system in stable equilibrium, the total energy must take
the minimum value. This can be achieved when the volume and
magnetization of the system are treated as variational parameters,
whereas the external pressure, magnetic field and temperature are
independent and fixed variables. The variational approach leads to
the set of equations of state in which the volume and magnetiza-
tion are interrelated and determined by the rest of independent
variables. Thus, the influence of the external pressure on the mag-
netic variational parameter (magnetization) can be manifested, in
addition to the expected change of the volume. On the other hand,
the external magnetic field influences, via magnetic energy, the
volume of the system, in addition to the expected change of the
magnetization.

In our previous papers [40,41], the thermodynamic model for
the magnetoelastic couplings was presented, for the simplest case
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when the magnetic interaction between localized spins was of
Heisenberg type. The energy of itinerant electrons was not consid-
ered in that approach, thus restricting the model to magnetic insu-
lators. However, the energy of electron subsystem is important in
such systems as metals, being responsible for the metallic bonds
and contributing to the elastic properties. On the other hand, the
presence of electron gas enables the long-range Ruderman-Kittel-
Kasuya-Yosida (RKKY) indirect interaction between localized spins
[54–56]. The exchange interaction in RKKY model is oscillating vs.
distance, and its amplitude is volume-dependent. Thus, in a natural
way it is sensitive to the volume deformation.

Since up to now studies of magnetoelastic properties with RKKY
interaction included seem to be rather unexploited area, the aim of
the present paper is to fill the existing gap. We will make use of the
underlying methodology developed in our previous paper [40], and
extend the approach by taking into account the itinerant electron
energy in Hartree-Fock approximation. Then, the long-range RKKY
interaction will be included in addition to the nearest-neighbour
(NN) direct Heisenberg interaction. Thus, in the present model
the magnetoelastic couplings have two sources: the volume
dependence of the NN Heisenberg exchange integral, as well as
the long-range RKKY interaction. In addition, when the external
magnetic field is present, the effective gyromagnetic factor in the
RKKY Hamiltonian occurs to be volume-dependent [57]. In our
opinion, all these features make the present model interesting
enough and much more complete than in the previous approach
[40], since all essential energy contributions to the total Gibbs
energy are now taken into account.

The paper is organized as follows: in the next, theoretical, sec-
tion the formalism will be presented. It contains a self-consistent
thermodynamic methodology developed for the complex systems
with many variables, including derivation of the generalized Gibbs
potential and the equations of state. Some complementary formu-
las are placed in the Appendix. In the third section the exemplary
numerical results will be presented in figures and discussed. They
concern calculation of various thermodynamic parameters in the
presence of magnetoelastic coupling. The calculations are per-
formed for a model FCC lattice with NN and RKKY interaction. A
comparison of the results for different electron concentrations,
which correspond to the existence of ferromagnetic or antiferro-
magnetic phases, is made there. In the last section, the paper will
be summarized and the conclusions will be drawn.

2. Theoretical model

The Gibbs free energy of a system is assumed in the form of:

G ¼ Fe þ FD þ Fel þ pV þ Gm; ð1Þ

where Fe is the elastic (static) Helmholtz energy, FD is the vibra-
tional (thermal) Helmholtz energy in the Debye approximation,
Fel is the electronic Helmholtz energy in the Hartree-Fock approxi-
mation, p is the external pressure, V-volume of the system, and Gm

is the Gibbs energy of magnetic subsystem with RKKY interaction.
These energy components will be presented below.

2.1. The elastic (static) subsystem

The elastic energy Fe can be found on the basis of the Morse
potential [58–60]. Considering the atomic pairs, where one atom
stays in the centre of the system of coordinates and the second
atom is situated on the k-th coordination sphere of radius rk, the
potential energy is given by:

UðrkÞ ¼ D 1� e�a rk�r0ð Þ=r0� �2
: ð2Þ
The pair-potential contains three fitting parameters: potential
depth D, dimensionless asymmetry parameter a and the distance
r0 where the potential has its minimum.

We will assume that for the crystals with cubic symmetry the
radius of k-th coordination sphere, rk, can be expressed in terms
of the isotropic volume deformation e, namely:

rk ¼ rk;0 1þ eð Þ1=3; ð3Þ
where rk;0 is the radius of a non-deformed sphere and the isotropic
volume deformation e is defined by the equation:

V ¼ V0 1þ eð Þ ¼ N
z0

a30 1þ eð Þ: ð4Þ

In Eq. (4), V0 ¼ Vðp ¼ 0;Hz ¼ 0; T ¼ 0Þ is the volume of a non-
deformed system (NDS) for e ¼ 0, which is assumed at pressure
p ¼ 0, magnetic field Hz ¼ 0 and temperature T ¼ 0. In the same
formula, N is the number of atomic sites, z0 stands for the number
of atoms per elementary cell, and the lattice constant of a non-
deformed cubic cell is denoted by a0.

It is convenient to use the pair-potential energy after shifting it
by a constant value, Uðrk;0Þ, in order to set zero Helmholtz energy
Feðe ¼ 0Þ ¼ 0 for a non-deformed crystal. The total elastic energy
can be written as a sum over all the interacting pairs. For isotropic
system the sum can be conveniently performed over the coordina-
tion zones with radii rk;0 and the coordination numbers zk. Finally,
the elastic energy can be presented in the form of [40]

Fe ¼ N
2
D

�
X
k

zk 1� e
�a x

r1;0
r0

rk;0
a0

1þeð Þ1=3�1

� �" #2
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� �" #2
8<
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;;

ð5Þ
where the nearest neighbour normalized distance, r1;0=r0, can be
found from the minimum conditions for the total Gibbs energy of
a non-deformed crystal, whereas rk;0=a0 ratios and the coordination
numbers zk are characteristic of a given crystallographic structure
and can be found numerically. We have also introduced the coeffi-
cient x relating the lattice constant and NN distance of a non-
deformed lattice, namely a0 ¼ xr1;0. This coefficient is characteristic

of a given lattice. For instance, for FCC structure x ¼
ffiffiffi
2

p
, whereas

z0 ¼ 4. Thus, the expression (5) presents elastic energy for arbitrary
isotropic deformation e with the assumption that Feðe ¼ 0Þ ¼ 0.

The change of the elastic energy vs. volume is a source of elastic
pressure:

pe ¼ � @Fe
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� �
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: ð6Þ

This pressure should be taken into account together with other
pressure contributions keeping the system in equilibrium.

2.2. The vibrational (Debye) subsystem

The vibrational energy is taken in the Debye approximation and
for the arbitrary temperature T can be presented as [61]

FD ¼ N
9
8
kBTD þ 3kBT ln 1� e�yDð Þ � 3kBT

1
y3D

Z yD

0

y3

ey � 1
dy

	 

; ð7Þ

where yD ¼ TD=T and TD is the Debye temperature.
The Debye temperature is volume-dependent and can be

expressed in the approximate form [62]
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TD ¼ T0
De

c0D 1� 1þeð Þq½ �=q: ð8Þ
In Eq. (8) T0

D and c0D are the Debye temperature and Grüneisen
parameter [63], respectively, which are taken at T ¼ 0, p ¼ 0 and
Hz ¼ 0, i.e., for non-deformed system, whereas q is a constant. It
has been shown that in the case of Morse potential in 3D systems
the Grüneisen parameter c0D can be expressed as [64]:

c0D ¼ 3a� 2ð Þ=6; ð9Þ
which, via elastic potential parameter a, introduces anharmonicity
to the Debye model.

The Debye integral in Eq. (7) can be calculated from the exact
formula [65,66,40]:Z yD

0

y3

ey � 1
dy ¼ 1

15
p4 � 3!

X3
k¼0

Li4�k e�yDð Þ y
k
D

k!

¼ 1
15

p4 þ y3D ln 1� e�yDð Þ � 3y2DLi2 e�yDð Þ
� 6yDLi3 e�yDð Þ � 6Li4 e�yDð Þ; ð10Þ

where Lis zð Þ ¼ P1
k¼1z

k=ks is the polylogarithm of order s and with
argument z. Substitution of the above formula into Eq. (7) leads to
the final expression:

FD ¼ N
9
8
kBTD � 1

5
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The vibrational energy presented by Eq. (7) gives also rise to the
vibrational pressure:

pD ¼ � @FD
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Again, making use of identity (10) the Debye contribution to the
pressure can be expressed in the form of:

pD ¼ 3
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þ 1
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The formulas (11) and (13) describing the vibrational energy
and vibrational pressure, respectively, are exact for arbitrary tem-
perature including T ! 0 limit. The low-temperature approxima-
tion for the Debye model, known from the textbooks, can be
obtained with the help of the limiting relationship for polyloga-
rithms: limjzj!0Lis zð Þ ¼ z.

2.3. The electronic subsystem

The electronic free energy can be written in the following form
[67]

Fel ¼ Nel � 3
2p

e2

4pe0

ffiffiffiffiffiffiffiffiffiffi
2mel

p
�h

ffiffiffiffiffi
EF

p
þ 3
5
EF � p2

4
1
EF

kBTð Þ2
	 


; ð14Þ

where Nel is the total number of electrons and EF is the Fermi
energy. The first term in the formula (14) corresponds to the
exchange energy in the Hartree-Fock approximation [68]. The sec-
ond term is the kinetic energy for T ¼ 0, and the last term describes
thermal energy in the low-temperature region, i.e., when T � EF=kB.
The Fermi energy can be presented as a function of the volume:
EF ¼
�h2

2mel
3p2 Nel

V

	 
2=3
; ð15Þ

which, with the help of Eq. (4) can be written in the form of:

EF ¼ E0
r0
r1;0

� �2 1

1þ eð Þ2=3
; ð16Þ

where

E0 ¼ �h2

2melx2
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2=3 1
r20

: ð17Þ

E0 is an energy constant, whereas r1;0=r0 ratio (appearing also in
the elastic energy) should be found from minimization of the total
Gibbs potential at T ¼ 0; p ¼ 0 and Hz ¼ 0, i.e., for a non-deformed
system. With the help of Eq. (16) the electronic free energy can be
finally expressed in the form:

Fel ¼ Nel AE0
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; ð18Þ

where the dimensionless A-constant is defined as:

A ¼ �3
h

e2

4pe0

ffiffiffiffiffiffiffiffiffiffi
2mel

p 1ffiffiffiffiffi
E0

p : ð19Þ

From the expression (18) the electronic part of the pressure can
be found in the form of:
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which is valid for T � EF=kB.

2.4. The magnetic subsystem

We will consider the magnetic subsystem with the long-range
RKKY interaction, aswell aswithNNdirect interactionand theexter-
nal magnetic field Hz taken into account. We assume that the local-
ized spins have themagnitude S ¼ 1=2 and they are distributed over
a bipartite lattice which consists of two (a and b) inter-penetrating
sublattices. Having such a lattice we can take into account not only
ferromagnetic but also various antiferromagnetic phases [69]. We
assume that all lattice sites are occupied by the localized spins and
no magnetic dilution takes place. In a more general case, where the
site dilution and arbitrary spin value S are considered, the magnetic
theory in the molecular field approximation (MFA) has been devel-
oped in Ref. [70]. That theory can be easily adopted for the present
case. In MFA approximation the Gibbs energy of the magnetic sub-
system considered here can be presented in the form:

Gm ¼ N
4

X
k

Jkz
""
k mað Þ2 þ mbð Þ2
h i

þ N
2

X
k

Jkz
"#
k mamb

� N
2
kBTln 2cosh

1
2kBT

Ka þ Hð Þ
	 
� �

� N
2
kBTln 2cosh

1
2kBT

Kb þ Hð Þ
	 
� �

; ð21Þ

where Jk is the exchange integral between the central spin and any
spin situated on the k-th coordination zone. It is assumed that
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Jk ¼ JRKKYk (for k ¼ 2;3; . . .) and J1 ¼ Jd þ JRKKY1 , whereas Jd is the NN

direct exchange interaction and JRKKYk (for k ¼ 1;2; . . .) is the RKKY
interaction. Both these interactions are volume-dependent and
their explicit form are given in the Appendix (see Eqs. (A.9) and
(A.12)).

In Eq. (21) z""k (z"#k ) are the numbers of lattice sites on the k-th
coordination zone, whose spins are oriented parallel (antiparallel)
to the central spin, i.e., they belong to the same (another) sublat-
tice. These numbers satisfy the condition z""k þ z"#k ¼ zk, and their
distribution upon k depends on the lattice symmetry and the type
of magnetic ordering (ferromagnetic or various antiferromagnetic
ones). For each particular case these numbers can be found numer-
ically, by the computer analysis of the given magnetic structure.

In Eq. (21) mi (for i ¼ a; b) is the i-th sublattice magnetization,
defined as the thermodynamic mean value of the local spin:
mi ¼ hSz

i i. These magnetizations can be found from the set of equa-
tions of state (see next subsection). The molecular fields in Eq. (21),
Ki, acting on the i-th sublattice ði ¼ a; bÞ can be expressed by the
formulas:

Ka ¼
X
k

Jk z""k ma þ z"#k mb
� �

and Kb ¼
X
k

Jk z""k mb þ z"#k ma
� �

:

ð22Þ
The parameter H is connected with the external magnetic field

Hz oriented along z-direction and is defined by H ¼ �gefflBH
z,

where geff is the effective gyromagnetic factor which for the case
of RKKY interaction has been introduced in Ref. [57]. Its explicit
form is presented in the Appendix (see Eq. (A.16)). It should be
mentioned here that geff is volume-dependent (in addition to Jk),
and this fact has a straightforward consequence for the magnetic
pressure calculations.

The magnetic contribution to the pressure can be found from
differentiation of Eq. (21) over the volume:

pm ¼ � @Gm
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¼ � 1
V0

@Gm

@e
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¼ �1
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@e

� �
þ 1
2

� N
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X
k

1
2
z""k mað Þ2 þ mbð Þ2

h i
þ z"#k mamb

� �
@Jk
@e

� �
: ð23Þ

In derivation of Eq. (23) we already made use of the magnetic
equations of state (see next subsection). The explicit formulas for
the derivatives @Jk=@e and @geff=@e are too long to be presented
here and are placed in the Appendix (see Eqs. (A.11), (A.13) and
(A.17)).

2.5. The equations of state

Having the free energies for all subsystems, given by Eqs. (5),
(11), (18) and (21), the total Gibbs energy can be found from Eq.
(1). Then, the set of three equations of state can be obtained by
minimizing the total energy with respect to the volume deforma-
tion e and two magnetizations, ma and mb, treated as independent
variational parameters. Namely, from the condition

@G
@e

¼ 0; ð24Þ

we obtain the first equation of state:

pe þ pD þ pel þ pm ¼ p; ð25Þ
where p is the external pressure, and the subsystem pressures, pe,
pD, pel and pm, are given by Eqs. (6), (13), (20) and (23), respectively.
Two other equations of state are obtained from the requirements
that:

@G
@ma

¼ 0 and
@G
@mb

¼ 0: ð26Þ

From these conditions we obtain the following magnetic equa-
tions of state:

ma ¼ 1
2
tanh

1
2kBT

Ka þ Hð Þ
	 


; ð27Þ

and

mb ¼ 1
2
tanh

1
2kBT

Kb þ Hð Þ
	 


; ð28Þ

where Ka and Kb are given by Eq. (22). The set of three equations of
state (25), (27) and (28) should be solved simultaneously for given
model parameters, as well as for given temperature T and indepen-
dent external forces p and Hz. Among possible formal solutions
obtained for ma, mb and e, which may correspond to various mag-
netically ordered phases, we select that physical solution which
gives the minimum of the total Gibbs energy G. In particular, for a
non-deformed system (NDS), i.e., for e ¼ 0 at T ¼ 0; p ¼ 0 and
Hz ¼ 0, the magnetic equations of state are reduced to the limiting
values:ma ¼ 1=2 andmb ¼ �1=2, where ‘‘+” sign corresponds to the
ferromagnetic phase and ‘‘�” sign is valid for the antiferromagnetic
ones. Then, the first equation of state (22) can be written as:

pe þ pD þ pel þ pmð ÞNDS ¼ 0; ð29Þ
and describes the system in equilibrium for T ¼ 0, without external
forces. From this equation the equilibrium NN distance, r1;0=r0, can
be found for different magnetic phases. Then, the energy minimum
criterion, based on the Gibbs potential, helps to decide which phase
is physical in the ground state.

On the other hand, the phase transition temperature Tc can be
found from linearization of Eqs. (27) and (28), i.e., when Hz ¼ 0,
ma ! 0 and mb ! 0. This leads to the formula [70]

kBTc ¼ 1
4

X
k

Jk z""k � z"#k
� �

; ð30Þ

where the solution with ‘‘+” corresponds to the Curie temperature
and is applicable to the ferromagnetic phase transition, whereas
the solution with ‘‘�” corresponds to the Néel temperature for the
antiferromagnetic phases. Since Jk is volume-dependent, Eq. (30)
allows to study the phase transition (critical) temperature as a func-
tion of the external pressure, whereas the volume deformation,
eðTcÞ, can be found from the first equation of state (Eq. (25)).

3. Numerical results and discussion

The numerical results will be presented for a model lattice with
FCC structure and some exemplary, typical interaction parameters.
For FCC lattice we have x ¼

ffiffiffi
2

p
and z0 ¼ 4. The energy constants

will be expressed in kBT
0
D units, where T0

D is the Debye temperature
of a non-deformed system. For the Morse potential we assume the
asymmetry parameter mostly as a ¼ 4, whereas the normalized
potential depth, D

kBT
0
D
, is accepted with the value of 10. The q-

parameter, appearing in Eq. (8) for the Debye temperature, is equal
to q ¼ 1. Regarding the RKKY interaction (see Appendix), we
assume that C0

kBT
0
D
¼ 0:5, C0

J ¼ �0:005 and gel
gS

¼ 4
3. The damping effect

can be neglected here, k ! 1, since we deal with a pure crystal.
For the NN interactions, the exponent n, appearing in Eq. (A.12),
is assumed with the value n ¼ 6, analogously to Ref. [40]. As far
as the electron subsystem is concerned, the energy parameter E0



Fig. 1. The critical (Néel) temperature, Tc
T0D
, of phase transition between antiferro-

magnetic (AF1) and paramagnetic phase, for Nel
N ¼ 1 and Jd0

kBT
0
D
¼ 0, as a function of the

external pressure a30
kBT

0
D
p. Different curves correspond to various depth D

kBT
0
D
of the

Morse potential.

Fig. 2. The volume deformation, eðTcÞ, at the critical temperature as a function of
the dimensionless external pressure a30

kBT
0
D
p. All remaining parameters are the same

as in Fig. 1.

Fig. 3. The critical temperature, Tc
T0D
, between magnetically ordered and paramag-

netic phases, as a function of the external pressure a30
kBT

0
D
p. Different curves

correspond to various electron concentrations Nel
N and, in consequence, to various

magnetic phases. In this figure D
kBT

0
D
¼ 10 and Jd0

kBT
0
D
¼ 0.
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from Eq. (17) amounts to E0 ¼ E0
0

Nel
N

� �2=3
, and we adopt the value

E00
kBT

0
D
¼ 200 for the numerical calculations. By the same token,

A ¼ A0

Nel=Nð Þ1=3 in Eq. (19), and the assumed numerical value of A0 is:

A0 ¼ �1:6. In turn, the electron density, Nel
N , can be freely varied. It

determines both the electron gas properties and the magnetic
RKKY interaction characteristics as well. In the presentation of
numerical results we will use the dimensionless absolute temper-

ature, T
T0D
, the dimensionless external pressure, a30

kBT
0
D
p (where a0 is

the lattice constant of NDS), and the dimensionless external mag-
netic field h

kBT
0
D
, where h ¼ �gSlBH

z, oriented along z direction.

The RKKY interaction, supplemented with the NN direct
exchange, can lead to the spontaneous magnetic ordering which,
depending on the electron concentration, is either ferromagnetic
or antiferromagnetic. In case of FCC structure, three antiferromag-
netic phases are possible, and they have been classified in Ref.
[69] as: antiferromagnetic first kind (AF1), antiferromagnetic first
kind improved (AF1I) and antiferromagnetic second kind (AF2).
According to the atomic arrangements on a and b sublattices, as
presented in Ref. [69], for each magnetic phase the coordination
numbers z""k and z"#k (k ¼ 1;2; . . . ; kmax) have been found numeri-
cally. For the long-range RKKY interaction we found that a satisfac-
tory convergence of the magnetic energy was achieved when the
maximum number of coordination zones is kmax ¼ 41253, which
corresponds to 150 lattice constants. On the other hand, for the
Morse potential a satisfactory convergence was obtained when
kmax ¼ 265, which corresponds to 12 lattice constants. Having
found all the coordination numbers, z""k and z"#k , as well as the
exchange interactions calculated for each coordination zone k, we
solve the Eq. (29) for NN equilibrium distances for NDS (i.e.,
r1;0=r0) for eachmagnetic phase andwe calculate the corresponding
total Gibbs energies. From the minimum criterion for the total
energy, the physical ground state is obtained. It contains informa-
tion about the equilibrium distance, r1;0=r0, for T ¼ 0; p ¼ 0, and
Hz ¼ 0 (whereas e ¼ 0) and specifies the magnetic phase with the
lowest energy. On this basis, further numerical calculations can
be carried out by solving the set of three equations of state (25,
27 and 28) for arbitrary temperature, external pressure and mag-
netic field. The set of coupled equations of state yield solutions
for the equilibrium deformation e, as well as the magnetizations
ma and mb, under the influence of external conditions.

At first, we performed numerical calculations when the NN
direct exchange was set to zero in order to see the pure RKKY cou-
pling effect on the calculated properties. For some choice of the
electron density Nel=N the results are presented in Figs. 1–3. In
Fig. 1, for Nel=N ¼ 1, the critical (Néel) temperature of phase tran-
sition between AF1 and paramagnetic phase is presented as a func-
tion of the external pressure, for various depth of the Morse
potential D=ðkBT0

DÞ. For the values D=ðkBT0
DÞ ¼ 5, 10, 20 and 50,

the NN equilibrium distances are: r1;0=r0 ¼ 0:875378, 0.886628,
0.893457 and 0.898071, respectively. These values, being notice-
ably lower than 1, reflect a strong compression of the system,
which is due to the exchange interaction in the electron gas
described by the Hartree-Fock term. The compressive forces have
to be balanced by other pressure contributions, mainly by the
strong repulsive forces originating from the Morse potential. The
negative external pressure in Fig. 1 means the presence of stretch-
ing forces, whereas the positive pressure corresponds to isotropic,
hydrostatic compressive pressure. Let us mention that the stretch-
ing forces can also originate from the internal, molecular pressure,
as a result of crystal doping, with the atoms which are located in
interstitial positions. In general, the critical temperature of antifer-
romagnetic phase decreases when the pressure increases, and the
dependency is stronger if the potential becomes more shallow. At
some characteristic negative pressure the critical temperature
becomes only weakly sensitive to the potential depth.



Fig. 5. The temperature increase of isotropic volume deformation,
eðT;pÞ � eðT ¼ 0; pÞ, vs. temperature T

T0D
, for antiferromagnetic (AF1) phase, when

Nel
N ¼ 1. Different curves correspond to various external pressures a30

kBT
0
D
p. The

remaining parameters are: D
kBT

0
D
¼ 10 and Jd0

kBT
0
D
¼ 0:5. By the points the deformations

eðTc=T
0
DÞ at the critical temperatures are marked. The inset shows the isotherm for

T = 0.

Fig. 6. The temperature increase of isotropic volume deformation,
eðT;pÞ � eðT ¼ 0; pÞ, vs. temperature T

T0D
, for ferromagnetic phase, when Nel

N ¼ 0:5.
Different curves correspond to various external pressures a30

kBT
0
D
p. The remaining

parameters are the same as in Fig. 5. By the points the deformations eðTc=T
0
DÞ at the

critical temperatures are marked. The inset shows the isotherm for T = 0.
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In Fig. 2 the volume deformation eðTcÞ at the critical tempera-
ture is shown, for the same parameters as in Fig. 1. The negative
volume deformation corresponds to the compression of the sys-
tem. Pressure dependency of the curves in Fig. 2 is similar to the
corresponding curves from Fig. 1. In particular, it can be noticed
that in the vicinity of some small positive pressure the deformation
at critical temperature is reduced to zero and this characteristic
pressure is insensitive to the Morse potential depth D.

In Fig. 3 the potential depth is fixed at D=ðkBT0
DÞ ¼ 10, whereas

the electron density varies, taking the values Nel=N ¼ 1:5, 1, 0.5
and 0.25, which correspond to the existence of ferromagnetic,
AF1, AF1I and AF2 phases, respectively. Then, the appropriate NN
equilibrium distances are: r1;0=r0 ¼ 0:895425, 0.886628, 0.888981
and 0.894928, respectively. The critical temperatures, shown in
Fig. 3, diminish with an increase of pressure, and their values
strongly depend on the kind of magnetic phase. We note that the
case of Nel=N ¼ 1 corresponds to AF1 phase from Figs. 1 and 2.

We found that by introducing the NN direct exchange integral,
in addition to the long-range RKKY interaction, the magnetic prop-
erties can be markedly modified. In Fig. 4 the influence of NN inter-

action parameter, Jd0=ðkBT0
DÞ, on the phase transition temperature

dependencies vs. external pressure is presented. The electron den-
sity is fixed in this case at Nel=N ¼ 1 and the potential depth is

D=ðkBT0
DÞ ¼ 10. It is seen that depending on the Jd0=ðkBT0

DÞ value
the kind of magnetic ordering can be changed from AF1 phase to

the ferromagnetic one, whereas Jd0=ðkBT0
DÞ changes from 0 to 1.

Moreover, in the ferromagnetic phase the critical (Curie) tempera-
ture is now an increasing function vs. external pressure, in contrast

to previous results for Jd0 ¼ 0. Such an increasing character of Tc vs.
p has already been found in our previous paper [40], where only
NN ferromagnetic interaction was present.

In further presentation of the numerical results we will restrict

ourselves to the NN interaction value Jd0=ðkBT0
DÞ ¼ 0:5 and

D=ðkBT0
DÞ ¼ 10, whereas the electron density will be selected as

either Nel=N ¼ 1 or Nel=N ¼ 0:5. For Nel=N ¼ 1 the antiferromag-
netic (AF1) phase is present, and the NN equilibrium distance is
r1;0=r0 ¼ 0:887019. On the other hand, for Nel=N ¼ 0:5, we deal
with the ferromagnetic phase where r1;0=r0 ¼ 0.887201.

The temperature dependencies of the volume deformation, e,
for Nel=N ¼ 1 (AF1 phase) and for Nel=N ¼ 0:5 (ferromagnetic F
phase) are illustrated in Figs. 5 and 6, respectively. In these plots
a few values of normalized external pressure are accepted. In both
figures, the main plot shows the volume deformation e with its
value at T ¼ 0 subtracted, i.e. eðT; pÞ � eðT ¼ 0; pÞ is plotted. This
Fig. 4. The critical temperature, Tc
T0D
, as a function of the external pressure a30

kBT
0
D
p, for

various NN exchange interaction parameters Jd0
kBT

0
D
. The electron concentration is

Nel
N ¼ 1, and the Morse potential depth amounts to D

kBT
0
D
¼ 10.
is done in order to separate the sole influence of the temperature
from the (larger) effect of external pressure. The sensitivity of e
to p can be assessed on the basis of insets, which present isotherms
corresponding to the dependence of e on p at T ¼ 0. It can be seen
that the external pressure (in the studied range) exerts an order of
magnitude larger effect on the relative deformation that the tem-
perature. Therefore, plotting eðT; pÞ � eðT ¼ 0; pÞ was necessary to
emphasize the effect of T at various pressures. Both for
Ne=N ¼ 0:5 and Ne=N ¼ 1:0, the relative deformation at T ¼ 0
decreases with the pressure and both isotherms are rather similar.

In both figures the volume deformations at the phase transition
temperatures, i.e., for T ¼ Tc , are marked by bold points and con-
nected with the dashed line.

The fact that the temperature dependence of the volume defor-
mation is relatively weak compared to pressure dependence, can
be explained by the strong compressive forces originating from
the electron gas subsystem, as discussed previously. The resulting
electron pressure pushes the NN equilibrium distance well below
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r0, where r0 corresponds to a minimum of the Morse potential. It
means that the NN distance is moved to the region where this
potential strongly depends on r. In that region the overall balance
of the external pressure with the internal pressure contributions,
imposed by the equation of state (25), can be achieved by only
the small changes of interatomic distance.

For both considered concentrations of electrons, above the crit-
ical temperature the behaviour of e as a function of T is linear,
while for T < Tc a significant nonlinearity is observed. For AF1
ordered phase and zero pressure, the relative volume deformation
increases with the temperature faster than linearly, then the
dependence flattens in the vicinity of Tc . If the stretching pressure
is applied, the increase of ewith T is faster at low temperatures and
the flattening is less pronounced. On the contrary, the compressive
pressure reduces the thermal expansion, and even in some range of
T < Tc the relative deformation decreases. At T ¼ Tc a kink is
observed in the dependencies and it is seen how the positive exter-
nal pressure reduces the critical temperature, while the stretching
pressure acts in the opposite way (see Fig. 1).

When the F ordered phase is considered, the volume deforma-
tion is always an increasing function of the temperature and it var-
ies faster than linearly for T < Tc. The external pressure only shifts
the critical temperature (which rises under the action of the com-
pressive pressure, contrary to the AF1 phase case). It is also evident
that the change in e between T ¼ 0 and T ¼ Tc is very weakly
dependent on the pressure, which also contrasts with the beha-
viour seen for AF1 ordered phase.

In order to examine the thermal behaviour of the volume, the
thermal expansion coefficient can be analysed. We define the vol-
ume thermal expansion coefficient, ap;h, at constant pressure p and
constant magnetic field h ¼ �gSlBH

z, as ap;h ¼ 1=V @V=@Tð Þp;h,
where V ¼ V0 1þ eð Þ. In order to obtain ap;h, the thermal derivatives
of the volume deformation curves e from Figs. 5 and 6 are calcu-
lated. The thermal expansion coefficient in dimensionless units is
presented in Fig. 7, simultaneously for AF1 and ferromagnetic (F)

phases, and for two selected pressures: p ¼ 0 and a30
kBT

0
D
p ¼ 50. The

jumps of ap;h at the critical temperatures are clearly seen for both
phases, which is a consequence of magnetoelastic coupling [34]. It
can be noted that behaviour of ap;h for the AF1 and F phases is very
different. In particular, the directions of the jumps at Tc are oppo-
site for the Néel and Curie temperatures. Moreover, it is seen that
in some region just below the Néel temperature the thermal
expansion coefficient becomes negative.
Fig. 7. The thermal volume expansion coefficient, ap;h , in dimensionless units, vs.

temperature T
T0D
, for D

kBT
0
D
¼ 10 and Jd0

kBT
0
D
¼ 0:5. Different curves correspond to two

electron concentrations: Nel
N ¼ 1 and Nel

N ¼ 0:5, as well as to two different pressures:

p ¼ 0 and a30
kBT

0
D
p ¼ 50.
The negative ap;h coefficient may be considered as a surprising
result, but can be explained after analysis of the individual pres-
sure contributions to the equation of state (25). Namely, it can be
shown that in this range of parameters the magnetic contribution
to the pressure is negative (i.e., compressive) for F phase, but is
positive (i.e., expansive) for AF1 phase. Moreover, the magnetic
pressure vanishes at T ¼ Tc , and is zero for the paramagnetic phase
(see Eq. (23)). It means that when the system approaches the Néel
temperature from AF1 phase, the magnetic pressure quickly
decreases with temperature. For constant external pressure, this
decrease must be compensated by an increase of other pressure
contributions, in particular by the positive change of the elastic
pressure. In fact, an increase of the elastic positive pressure, result-
ing from the Morse potential, is obtained when the NN distances
become shorter, which means the volume compression. On the
other hand, for the ferromagnetic phase an analogous effect of
compensation is acting in the opposite direction, leading to an
increase of ap;h coefficient when the Curie temperature is
approached from ferromagnetic phase.

The effect of negative thermal expansion depends on the
parameters of the Morse potential. We found that the asymmetry
parameter a appearing in Eq. (2) plays an important role. This is
illustrated in Fig. 8 for AF1 phase, when the external pressure is
p ¼ 0. Different curves correspond to various a asymmetry param-
eters. The shift of the Néel temperature (where the jump occurs)
towards lower values is seen when a decreases. The curve labelled
by a ¼ 4 is the same as the corresponding curve from Fig. 5. For
a ¼ 4 and 3.5 the negative thermal expansion coefficient is
obtained, and the effect is even much stronger for a ¼ 3:5, i.e.,
when the Morse potential is more symmetric. This fact is in agree-
ment with our explanation of the effect given above. First of all,
when the elastic potential is more symmetric the thermal expan-
sion diminishes. At the same time, the potential is less steep for
r < r0, which means that the necessary increase of the elastic pres-
sure, compensating a simultaneous decrease of the magnetic (pos-
itive) pressure, can be achieved by some larger shift of NN distance
towards lower values. This means a further decrease of the resul-
tant thermal expansion coefficient, which may even enter the neg-
ative values if a is small enough.

In order to complement the above discussion, in Fig. 9 the vol-
ume deformation e is presented vs. temperature for all parameters
being the same as in Fig. 8. It is seen that the curves markedly differ
for various a, and the kinks which occur at the Néel temperature
are signalling the jumps of the thermal expansion coefficient. For
Fig. 8. The thermal volume expansion coefficient, ap;h , in dimensionless units, vs.
temperature T

T0D
, for antiferromagnetic (AF1) phase, when D

kBT
0
D
¼ 10; Jd0

kBT
0
D
¼ 0:5; Nel

N ¼ 1
and p ¼ 0. Different curves illustrate the influence of the asymmetry parameter a of
the Morse potential.



Fig. 9. The isotropic volume deformation, e, vs. temperature T
T0D
, for antiferromag-

netic (AF1) phase, when the rest of parameters are the same as in Fig. 8. Different
curves illustrate the influence of the asymmetry parameter a of the Morse potential.
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the asymmetry parameter a ¼ 3:5, the volume deformation is very
small in antiferromagnetic phase and almost constant in a wide
range of low temperatures. This can be interpreted as the invar-
like effect. Interestingly, when T approaches the Néel temperature,
the volume deformation changes more rapidly and it may even
become negative.

In order to study the influence of external magnetic field on the
thermodynamic properties, we started with its effect on the mag-
netization. In Fig. 10 the sublattice magnetizations of antiferro-
magnetic phase AF1 is plotted vs. external field at constant
temperature T=T0

D ¼ 0:25, together with the total magnetization,
m ¼ mA þmBð Þ=2. Three values of the external pressure are chosen:
a30

kBT
0
D
p ¼ 0, 50 and 100. We see that with an increase of the magnetic

field, the spin-flip re-orientation of one sublattice takes place, and
eventually both sublattices become ordered parallelly, with the
same magnitude. The existence of the critical field, at which the
magnitudes of both sublattices become the same and the phase
transition to the ferromagnetically ordered state takes place, is evi-
dent. This critical field depends on the pressure, and decreases

when the pressure increases. Interestingly, for a30
kBT

0
D
p ¼ 100 such

phase transition is found to be of the 1st order. After spin-flip to
the ferromagnetic phase, when the external field further increases,
Fig. 10. The sublattice magnetizations, ma and mb , as well as the total magneti-
zation m of antiferromagnetic (AF1) phase vs. dimensionless external magnetic
field, h

kBT
0
D
, for T

T0D
¼ 0:25. Different curves correspond to various external pressures

a30
kBT

0
D
p. The remaining parameters are: D

kBT
0
D
¼ 10; Jd0

kBT
0
D
¼ 0:5 and Nel

N ¼ 1.
magnetizations of both sublattices tend towards the saturation
value 1/2.

In Fig. 11, one of the magnetic response functions, i.e., the sus-
ceptibility vT;p, defined as vT;p ¼ @m

@h

� �
T;p

is presented for AF1 phase,

when Nel=N ¼ 1. In the case of antiferromagnetic ordering, bymwe
mean the average magnetization: m ¼ ðma þmbÞ=2, whereas the
external magnetic field is parametrized by h ¼ �gSlBH

z. Different
curves in Fig. 11 correspond to various external pressures. The sus-
ceptibility behaves typically for antiferromagnets, with a finite
maximum at the Néel temperature. As discussed before, the posi-
tion of the phase transition temperature decreases with an
increase of the pressure. Moreover, it is seen that the peak of vT;p

becomes sharper when p increases.
In turn, the inverse of the magnetic susceptibility is presented

in Fig. 12, for Nel=N ¼ 0:5 and Nel=N ¼ 1:0, and various pressures.
The curves present the ferromagnetic susceptibility (for
Nel=N ¼ 0:5) together with the data for the previous case of AF1
phase. In the ferromagnetic case, the susceptibility has a pole at
the Curie temperature (the inverse takes the value of zero), as
expected. It is also seen that increasing pressure shifts the phase
transition point towards higher temperatures, in contrast to the
antiferromagnetic phase (compare with Fig. 11).

One of the important magnetoelastic phenomena is magne-
tostriction. The volume magnetostriction coefficient kT;p is defined
as kT;p ¼ 1

V
@V
@h

� �
T;p. It is presented as a function of temperature in

Fig. 13 for AF1 phase, when Nel=N ¼ 1, and in Fig. 14 for ferromag-
netic phase, when Nel=N ¼ 0:5. Several curves correspond to vari-
ous constant pressures. It is seen that the magnetostriction
coefficient is negative for both AF1 and F phases and reveals the
sharp minima at the phase transition temperatures. However, the
shapes of these minima in both phases are different. For instance,
in AF1 phase the negative peaks are relatively broad, finite, and
their magnitudes increase with an increase of the pressure. On
the other hand, in F phase the peaks are very narrow, going to
infinity, and, as the pressure increases, they become numerically
less pronounced.

The piezomagnetic effect, defined by the derivative @m
@p

� �
T;h

is

presented in Fig. 15 for the ferromagnetic phase. Different curves
correspond to some selected values of the external magnetic field.
For h = 0, when the phase transition takes place, the piezomagnetic
coefficient becomes divergent at the Curie temperature. In the
presence of the magnetic field the maximum of that coefficient is
Fig. 11. The magnetic susceptibility, vT;p , in dimensionless units, vs. temperature T
T0D
,

for antiferromagnetic (AF1) phase, when Nel
N ¼ 1. Different curves correspond to

various external pressures a30
kBT

0
D
p. The remaining parameters are: D

kBT
0
D
¼ 10 and

Jd0
kBT

0
D
¼ 0:5.



Fig. 12. The inverse of magnetic susceptibility, vT;p , in dimensionless units, vs.
temperature T

T0D
, for ferromagnetic phase, when Nel

N ¼ 0:5, and for antiferromagnetic
phase, when Nel

N ¼ 1:0. Different curves correspond to various external pressures
a30

kBT
0
D
p. The remaining parameters are the same as in Fig. 11.

Fig. 13. The magnetostriction coefficient, kT;p , in dimensionless units, as a function
of temperature T

T0D
, for antiferromagnetic (AF1) phase, when Nel

N ¼ 1. Different curves
correspond to various external pressures a30

kBT
0
D
p. The remaining parameters are:

D
kBT

0
D
¼ 10 and Jd0

kBT
0
D
¼ 0:5.

Fig. 14. The magnetostriction coefficient, kT;p , in dimensionless units, as a function
of temperature T

T0D
, for ferromagnetic phase, when Nel

N ¼ 0:5. Different curves
correspond to various external pressures a30

kBT
0
D
p. The remaining parameters are the

same as in Fig. 13.

Fig. 15. The pressure derivative of magnetization, @m
@p

� �
T;h

, in dimensionless units,
for ferromagnetic phase, when Nel

N ¼ 0:5 and p ¼ 0. Different curves correspond to
various values of the external field � gSlBH

z

kBT
0
D
. The remaining parameters are the same

as in the preceding figure.
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finite and it tends to be reduced when h increases. At the same
time, the maximum broadens and shifts to higher temperatures.
It is also seen that in the low temperature region the external pres-
sure p has practically no effect on the magnetization m. It should

also be mentioned that the piezomagnetic coefficient @m
@p

� �
T;h

can

be related to the magnetostriction coefficient kT;p. Namely, using

the general relationship @2G
@h@p ¼ @2G

@p@h one obtains @m
@p

� �
T;h

¼

� a30
z0

1þ eð ÞkT;p. In this way, one can relate the curve for Hz ¼ 0 to

the curve labelled with ‘‘0” in Fig. 14.
In the last figure (Fig. 16), the isothermal compressibility, jT;h, is

plotted vs. temperature, both for AF1 phase ðNel=N ¼ 1Þ and for F
phase ðNel=N ¼ 0:5Þ. The isothermal compressibility is defined as

jT;h ¼ � 1
V

@V
@p

� �
T;h
, and is calculated for h ¼ 0. Different curves in

Fig. 16 correspond to three values of the external pressure. At the
critical temperature a rapid decrease of the isothermal compress-
ibility is observed when the system goes from magnetically
ordered to paramagnetic phase. A size of this jump is greater for
the ferromagnetic phase than for AF1, and weakly depends on
the pressure. However, the pressure influences the phase transition
Fig. 16. The isothermal compressibility, jT;h , in dimensionless units, vs. tempera-
ture T

T0D
. Different curves correspond to two electron concentrations: Nel

N ¼ 1 (AF1

phase) and Nel
N ¼ 0:5 (ferromagnetic phase), as well as to three different pressures:

a30
kBT

0
D
p ¼ 0, 10 and 20. The rest of parameters are the same as in the preceding figures.



T. Balcerzak et al. / Journal of Magnetism and Magnetic Materials 452 (2018) 360–372 369
temperature where the jump takes place, and shifts the position of
the curves on the vertical scale.
4. Final remarks

In the paper a self-consistent thermodynamic model of the solid
crystal with RKKY interaction and magnetoelastic coupling is pre-
sented. The generalized Gibbs potential and the set of equations of
state is derived, from which all thermodynamic properties are
obtained. For a two sublattice system the equations of state con-
tain 6 variables: isotropic volume deformation e, sublattice magne-
tizations ma and mb, temperature T, external pressure p and
magnetic field Hz. These equations have been solved numerically
for a model crystal with FCC structure, treating T , p and Hz as inde-
pendent variables. Because the model possesses very rich possibil-
ities concerning the choice of its parameters, and a variety of
properties can be calculated, in presentation of the numerical
results only the most characteristic phenomena have been
illustrated.

In the paper we studied only solutions for several most com-
mon magnetic phases: ferromagnetic, three antiferromagnetic
(AF1, AF1I and AF2) as well as the paramagnetic phase. For each
phase the Gibbs energy has been constructed and the numerical
unique solution has been found using the lowest total energy cri-
terion. Other, more complicated magnetic phases like, for instance,
spin-glass phase, have not been studied since it would exceed the
frame of the paper.

Since the total energy has been constructed as a sum of the sub-
system energies, it can be predicted that the absence of a given
energy term in Eq. (1) would result in the absence of the corre-
sponding partial pressure in the equation of state (Eq. (25)). In par-
ticular, by reduction of the long-range RKKY interaction and by
leaving only NN magnetic interaction, as well as without energy
of electronic subsystem the formalism will be equivalent to that
developed in our previous papers (Refs. [40,41]). Such a method
could be applicable to magnetic insulators. However, in order to
extend the previous formalism to magnetic metals, which has been
the purpose of the present paper, the long-range RKKY interaction
together with the energy of the electron subsystem have to be
taken into account. It should be noted that the remaining energy
terms are also important for the full thermodynamic description
of the system and cannot be omitted. For instance, the vibrational
(Debye) energy is responsible for the correct description of the
specific heat. In turn, when the elastic (static) energy is omitted
the isothermal compressibility cannot be properly taken into
account.

Thus, as pointed out in the paragraph above, for the full thermo-
dynamic description of the magnetic metals all the energy terms in
Eq. (1) must exist as a minimum set. Moreover, from the numerical
calculations it can be concluded that the electronic subsystem has
a great influence on the mechanical and magnetic properties. From
one side it is manifested by a weak dependency of the volume
deformation on the external pressure, since the Hartree-Fock term
leads to a strong compression of the system. On the other hand, the
electron concentration, via RKKY interaction, strongly influences
the type and properties of magnetic ordering.

When the magnetic ordering is changed from antiferromagnetic
to the ferromagnetic one, as a result of including the NN direct

interaction Jd0 > 0, the phase transition temperature vs. pressure
changes its character from the decreasing to increasing type,
respectively (see Fig. 4).

One of the most interesting findings is a decrease of the volume
thermal expansion coefficient in antiferromagnetic phase, when
the Néel temperature is approached. This invar-like effect may
even lead to the negative values of ap;h (see Figs. 7 and 8). An expla-
nation of this fact has been given on the basis of the equations of
state analysis. We have also checked that such a behaviour repre-
sents stable solution, since the total entropy of the system (not
shown here) is a monotonically increasing function of temperature.
It means that the total specific heat, being a quantity proportional
to the entropy derivative over temperature, is positive everywhere,
which proves the thermal stability of the system. It should be men-
tioned here that negative thermal expansion coefficient has been
found experimentally in several materials [32,71,72], including
frustrated magnets with magnetoelastic couplings [73]. A decrease
of the thermal expansion, leading to the invar effect, is important
from the point of view of materials applications and is worth a fur-
ther study.

The phase transition from antiferromagnetic to the ferromag-
netic state, induced by the external field and illustrated in
Fig. 10, is also worth further study. In particular, the 1st order
phase transition occurring in the strong external pressure is an
interesting phenomenon. Exact location of the critical field, corre-
sponding to the 1st order transition, can be done on the basis of the
Gibbs potential calculations for both ordered phases coexisting in
the phase transition point with the same energy.

After analysis of the numerical results it can be stated that, in
the presence of RKKY interaction, the influence of magnetoelastic
coupling on the thermodynamic properties is significant. The most
distinct changes are observed at the phase transition temperature
(see, for example, Figs. 12–14). All kinds of thermodynamic
response functions can be influenced by this coupling, including
pure mechanical response, like magnetic susceptibility (Figs. 11
and 12) and isothermal compressibility (Fig. 16). Examples of a
pure thermal response, like specific heat, have been analysed in
Ref. [41] for NN magnetic interactions, and confirm the present
conclusion.

The obtained results prove the usefulness of the method, which
incorporates energies of various subsystems into a self-consistent
thermodynamic description. The method can be further developed
for the isotropically deformed systems with higher spins and dilute
alloys, both metals and semiconductors as well. In further perspec-
tive, an extension of the approach for the crystals with anisotropic
volume deformations would be highly desirable.
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Appendix A. Exchange integral Jk, effective gyromagnetic factor
geff , and their derivatives over deformation e

A.1. RKKY indirect exchange integral

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in bulk
systems is given by the well known formula [54–56]

JRKKYk ¼ C kFað Þ4 sin 2kFrkð Þ � 2kFrk cos 2kFrkð Þ
2kFrkð Þ4

e�rk=k ðA:1Þ

In Eq. (A.1) a is the lattice constant, rk stands for the radius of
the k-th co-ordination zone and kF denotes the Fermi wavevector.
C is the energy coefficient and the damping parameter k has been
introduced by Mattis [74] in order to account for the charge carrier
localization in disordered systems. The Fermi wavevector kF in Eq.
(A.1) is given in the form:

kF ¼ 3p2 Nel

V

� �1=3

¼ 3p2z0
Nel

N

� �1=3 1
a
¼ k0F

1

1þ eð Þ1=3
; ðA:2Þ
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in which we made use of the Eq. (4), whereas k0F is defined as:

k0F ¼ 3p2z0
Nel

N

� �1=3 1
a0

: ðA:3Þ

From the above formulas it is seen that

kFa ¼ k0Fa0 ¼ 3p2z0
Nel

N

� �1=3

; ðA:4Þ

and such a product is volume-independent. By the same token, the
kFrk product can be presented as:

kFrk ¼ k0Frk;0 ¼ 3p2z0
Nel

N

� �1=3 rk;0
a0

� �
: ðA:5Þ

The energy coefficient C in Eq. (A.1) is given by the expression

C ¼ 2J2 V
N

� �2mel

p3�h2a4
; ðA:6Þ

in which the energy constant J is the so-called exchange contact
potential and mel is the electron mass. It is seen that C is volume-
dependent and it can be conveniently presented in the form of:

C ¼ C0
r1;0
r0

� �2

1þ eð Þ2=3; ðA:7Þ

where C0 is a constant:

C0 ¼ 8J2mel

ph2

xr0
z0

� �2

; ðA:8Þ

whereas r1;0=r0 ratio can be determined from the minimum condi-
tions of the total Gibbs energy for non-deformed structure. Finally,
the volume-dependent RKKY interaction can be presented in the
form of:

JRKKYk ¼ JRKKYk;0 e�x
r0
k

r1;0
r0

rk;0
a0

1þeð Þ1=3 1þ eð Þ2=3; ðA:9Þ

where the volume-independent factor, J RKKYk;0 , is defined as:

JRKKYk;0 ¼ C0
r1;0
r0

� �2

k0Fa0
� �4

�
sin 2k0Frk;0

� �
� 2k0Frk;0 cos 2k0Frk;0

� �
2k0Frk;0

� �4 : ðA:10Þ

The derivative of the RKKY exchange integral over e, which
enters the Eq. (23), can be now easily found from Eq. (A.9), namely

@JRKKYk

@e
¼ JRKKYk;0 e�x

r0
k

r1;0
r0

rk;0
a0

1þeð Þ1=3 � x
3
r0
k

r1;0
r0

rk;0
a0

þ 2
3

1

1þ eð Þ1=3
" #

ðA:11Þ

(for k ¼ 1;2; . . .).

A.2. NN direct exchange integral

As far as the NN direct exchange integral, Jd, is concerned, it is
assumed in the power-law form, analogously to Ref. [40]:

Jd ¼ Jd0
r1
r1;0

� ��n

¼ Jd0 1þ eð Þ�n=3
; ðA:12Þ

where Jd0 is the NN direct exchange integral of a non-deformed sys-
tem (when T ¼ 0, p ¼ 0, and Hz ¼ 0), with n being a constant.

The derivative of Jd over e, which also enters the Eq. (23) for the
magnetic pressure, in addition to @JRKKY1 =@e, can now be calculated
from Eq. (A.12) as:
@Jd

@e
¼ � n

3
Jd

1
1þ e

: ðA:13Þ
A.3. Effective gyromagnetic factor

The effective gyromagnetic factor, geff , for the RKKY interaction
in the presence of the external magnetic field, has been introduced
in Ref. [57]. It is given in the form of:

geff ¼ gS 1þ gel

gS
melJ

V
N kF

2p2�h2

� �
; ðA:14Þ

where gS is the gyromagnetic factor associated with localized spin,
and gel � 2 denotes the gyromagnetic factor of itinerant electron. By
substituting kF from Eq. (A.2) and V from Eq. (4), the formula (A.14)
can be presented as:

geff ¼ gS 1þ gel

gS

p
4
z0

C
J
k0Fa0

� �
; ðA:15Þ

or, equivalently:

geff ¼ gS 1þ gel

gS

p
4
z0

C0

J
3p2z0

Nel

N

� �1=3 r1;0
r0

� �2

1þ eð Þ2=3
" #

; ðA:16Þ

where C and C0 are given by Eqs. (A.7) and (A.8), respectively, and

k0Fa0 is expressed by Eq. (A.4). The last formula is convenient for cal-
culation of the derivative @geff=@e, which appears in Eq. (23). Then,
one obtains:

@geff

@e
¼ gel

p
6
z0

C0

J
3p2z0

Nel

N

� �1=3 r1;0
r0

� �2 1

1þ eð Þ1=3
: ðA:17Þ
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