
~ journal of 
magnetism 

~ H  and 
magnetic 
materials 

ELSEVIER Journal of Magnetism and Magnetic Materials 159 (1996) 125-134 

Relaxation of thermoremanent magnetization in the spin-glass 
phase of itinerant magnetic FexTiS 2 

Y. Hara, H. Negishi, M. Sasaki, M. Inoue * 
Department of Materials Science, FaculO ~ of Science, Hiroshima University, Higashi-Hiroshima 739, Japan 

Received 29 August 1995; revised 1 November 1995 

Abstract 

Time decays of the thermoremanent magnetization (TRM) in the spin-glass phase of Fe~TiS 2 (x = 0.20, Tg = 41 K) have 
been measured using the anomalous Hall effect over the time range l0 2-104 S with waiting time t,~ = 180-18000 s at 
temperatures T below T/Tg ~ 0.7. After the cooling field HFc (0.01-0.14 T) is switched oft', the Hall resistivity (or TRM), 
within a short time span, follows a power law of the form p n ( t ) : A t  m ( A  is a constant), where the magnetic field and 
temperature-dependent exponent m are expressed in a universal form, m = D~ ~, with the parameter of 'relative relaxed 
magnetization' (RRM) ~. The decay profiles over the wide time range are analyzed using the existing 'domain theory' with 
some modifications of the theoretical expressions. With the evaluated parameters, the equilibrium relaxation spectra, overlap 
lengths, and time-dependent maximum relaxation times that characterize the domain growth and the dynamical properties in 
this material are discussed. 
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1. Introduct ion 

With regard to the dynamical treatment of spin- 
glass (SG) systems, there are two different view- 
points. One is the mean-field approach of  Sherring- 
ton-Kirkpatrick (SK) and its replica symmetry solu- 
tion by Parisi, giving an infinite number of quasi- 
equilibrium states which are hierarchically organized 
in phase space - 'hierarchical kinetic model'.  This 
model has been shown to be valid for relaxation of 
thermoremanent magnetization (TRM) in insulating 
SG of CdCrl.vIn0.3S 4 [1,2] and dilute Ag:Mn alloy 
(2.6 at% Mn) [3]; from numerical and theoretical 
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studies, Newman and Stein have pointed out that the 
Parisi solution to the SK model cannot apply to 
short-range spin glasses [4]. The other treatment is a 
phenomenological approach based on the existence 
of a distribution of droplets [5] or dynamical do- 
mains [6], which has been applied to the interpreta- 
tion of the aging and time decay of TRM for various 
SG systems, such as CdCrl.vIno.3S 4 [6] and Cu (10 
at% Mn) [7]. The former model is concerned with, in 
particular, the temperature cycle in the aging effect 
of TRM, while the latter deals with its time depen- 
dence, which shows the existence of a clear crossover 
from dynamical processes characterized by length 
scales smaller than the already achieved domain size 
(quasi-equilibrium regime) to processes on larger 
time scales dominated by the continuation of domain 
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growth through the movement of domain walls across 
the system (non-equilibrium regime). In the latter 
picture, aging is a manifestation of slow domain 
growth below glass temperature, where after a cer- 
tain waiting time t w a characteristic domain size is 
reached. However, the time dependence of the do- 
main size s(t) is treated differently; Fisher and Huse 
(FH) [5] suggest a logarithmic dependence s(t)c* 
(log t) 1/~ from an activated dynamics scenario, while 
Koper and Hilhorst (KH) [6] assume the power law 
s(t) oct t'. In the present study, we shall discuss our 
results within the framework of the realistic KH 
domain theory. 

In contrast to magnetic measurements for various 
localized systems, we have studied the dynamics of 
zero-field-cooled (ZFC) isothermal remanent magne- 
tization (IRM) and field-cooled TRM for SG and 
cluster-glass (CG) phases of itinerant magnetic sys- 
tems of the intercalation compound Fe,TiS 2 using 
the transport method [8,9], since this material shows 
an anomalous Hall effect, in which the Hall resistiv- 
ity Pn can be expressed in the well known form 
PH = R o H + 4 r r R ~ M ( H ) ,  where R 0 and R~ are the 
normal and extraordinary Hall coefficients, respec- 
tively, and M ( H )  the magnetization at magnetic 
field H. When the applied field H is turned off, the 
Hall resistivity On(t) is proportional to the remanent 
magnetization M(t)  at time t, as p~(t)  = 4rr R~ M( t). 
For the IRM case, it decays with time obeying a 
power law of the form 

pH(t)  =At- '" ,  (1) 

while for TRM this is valid only in a short time span. 
In addition, the exponent m, which depends on both 
magnetic field and temperature, is expressed by the 
universal relationship 

mT ~= CO l~ ( ce and /3 are constants), (2) 

with the parameter of 'relative relaxed magnetiza- 
tion' (RRM) 4,, defined as 4' = 1 - M(O)/M(Hp) = 
1 - Pu (0 ) / [pn (Hp)  - RoHp], where m(0) and 
M(Hp) are the magnetization at t = 0 and H = H p  
(external pulsed field intensity), respectively. This 
relation is satisfied for both SG and CG phases [8]. 
For TRM, a similar universal relation is found to 
hold for the case of the CG phase 

m = DE, (3) 

where D is a dimensionless constant and ~ another 
RRM parameter, defined by ~ =  1 - M ( O ) / M F C ( T  
--+ 0) [9]. Here, M(0) is the magnetization at time 
t = 0 when the cooling field Hvc is switched off and 
MFc(T--+0) is the value extrapolated to absolute 
zero of the magnetization at temperature T and 
cooling-field intensity Hvc. 

The present purpose is two-fold; firstly, an analy- 
sis of the time decay profiles of TRM (including the 
effect of the waiting time on aging) to obtain some 
dynamical parameters for the SG phase of Fe,TiS 2 
(x = 0.20) according to the realistic 'domain theory' 
developed by Koper and Hilhorst [6], and secondly 
the examination of the validity of the universal rela- 
tion such as in Eq. (3) for TRM. 

2. Experimental 

Single crystals of Fe020TiS 2 (SG phase, glass 
temperature T,; = 41 K) were grown by a chemical 
vapor transport method using 12 as transport gas, as 
done previously. Ohmic contacts to the sample with 
a six-probe for Hall effect measurements were made 
by soldering indium metal. The transport measure- 
ments were performed using a conventional dc 
potentiometric method in the same experimental setup 
as employed in earlier work [9]. For TRM measure- 
ments, a magnetic field with intensity Hvc = 0.01- 
0.14 T for field cooling was applied to the sample at 
about 60 K (T/Tg ~ 1.5) and then the temperature 
was lowered at a constant rate (1 K/rain)  to the 
working temperature T. After a waiting time of 
t w = 180, 1800 or 18 000 s the field was switched off 
and the time decay of the Hall voltage was subse- 
quently recorded using a digital storage oscilloscope 
(in the time span 0-50 ms) or a nanovoltmeter 
( 1 0 - I - 1 0  4 S). After the measurements the sample 
was warmed to 60 K in zero field and then the 
reversed magnetic field was applied, followed by the 
above procedure to exclude any spurious contribu- 
tions from misaligned contacts and thermoelectromo- 
tive force generated at the In/Fe,TiS 2 interface 
against the Hall voltages. 

3. Results 

Fig. 1 shows typical time variations at 16.8 K of 
(a) the cooling field HFc =0 .14  T and (b) Hall 
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Fig. 1. Typical time variation at 16.8 K of (a) the external 
magnetic field from cooling field Hvc (initially at 0.14 T) and (b) 
the Hall resistivity (OH - R 0  H) corresponding to magnetization 
M(t). The solid curve in (b) was calculated using Eq. (13) and Eq. 
(14) with the best-fit parameters m =  0.027, t~)= 7×  10 6 s, 
pz=0.9,  t~'~/tl =0.0075 s p: I and t±n =40 s (see text). 

resistivity, Pn - R 0  H, where the time is set to zero 
when the cooling field begins to decrease; the nor- 
mal Hall coefficient was determined to be R 0 = 
- 7 . 4  × 10 9 m3/C,  which is independent of tem- 
perature. The applied magnetic field H is decreased 
from the cooling field Hvc = 0.14 T at a constant 
rate ¢5H= 10 T / s  and vanishes at time t_= 
HFc/6H = 14 ms, as indicated by the arrows. We 
should note that t_ is very short compared with the 
waiting time tw = 180-18 000 s and the time span of  
relaxation measurements (104 s). As the magnetic 
field is decreased to zero, the Hall resistivity decays 

1.6 

1.2 

~'o 0.8 

J 
0.4 

00 

pFC RoHF C 

i i i 
0.04 0,08 0.12 0.16 

HFC (T)  

1.5 PH Fc RoHFc 

1.2 

0.9 

0.6 (tz) 

0.3 

| i i = 
0O 10 20 30 40 

X (K)  

Fig. 2. Variation of the Hall resistivity (p~C_ RoHFc) at Hvc 
( 0 )  and the Hall resistivity pH(t:) at time t: (E3) with (a) the 
cooling field Hvc at a fixed temperature of 16.8 K and (b) with 
temperature at a fixed cooling field of Hvc = 0.14 T. 

with time from 1 . 4 × 1 0  8 to 1 . 1 5 × 1 0  8 l")m at 
time t:, and in zero field it continues to relax slowly. 
In our previous report for the CG phase [9], the time 
origin was set to zero when H attained zero, while 
in the present study the above set time is used in 
order to calculate the time dependence of the Hall 
resistivity (or TRM) based on the domain theory; the 
solid curve in Fig. lb was calculated using Eq. (13) 
and Eq. (14) with the best-fit parameters (see later). 

Similar measurements were carried out at various 
cooling fields and temperatures. Fig. 2 plots the 
values of the Hall resistivity (p~C _ R o H F c )  (ct 
M vc) at HFC (solid circles) and the Hall resistivity 
pH(t:)  at time t:, where H = 0  (open squares), 
versus (a) the cooling-field intensity HFC at a fixed 
temperature of 16.8 K and (b) versus temperature at 
a fixed cooling field of Hvc = 0.14 T. The values of 
( pVC _ Ro Hvc) and  pH(t.)  increase nonlinearly with 
HFC, corresponding to the magnetization curve at 
Hvc and the remanent curve at time to. The tempera- 
ture dependence of (p~C _ RoHFc) is very small in 
the temperature range measured, 7.8-29.3 K; it will 
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Fig. 3. Time decay of the Hall resistivities PH at 16.8 K with 
t~ = 1800 s under various fields HFc, normalized by (p~C_ 
R o H~. c) at HFc in log-log plots. Arrows mark the deviation time 
td, above which the experimental points deviate from the power 
law of Eq. (1). The solid curves were calculated using Eq. (14) 
with the magnetic field-independent parameters p~ = 0.9 and 
t~'~/t~ = 0.0075 s e~-~, and the field-dependent parameters m, t o 
and tA H (see text). The inset shows semi-logarithmic plots of the 
same data, where arrows mark the deviation time t~ above which 
the data points deviate from the logarithmic form, OH(t)= C - 
D log t. 
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decrease drastically as the temperature is raised to- 
ward the glass temperature Tg = 41 K. On the other 
hand, PH(t:) shows a profound temperature variation 
above 20 K, where the value of pn( t : )  (magnetiza- 
tion at time t:) is decreased to nearly a half of 
( p~c _ R0 HF c)  (magnetization at the start, t = 0). 

Fig. 3 illustrates in log- log  plots the time decay 
of the Hall resistivity Pn after the cooling field is 
switched off with waiting time t w = 1800 s at 16.8 K 
under different field intensities HFc, where On is 
normalized by the initial value (p~c _ Ro Hvc)" The 
experimental points lie on straight lines (the power 
law pn( t )  =At  -m of Eq. (1), m = 0.018-0.027) up 
to the lapse time t d marked by arrows, beyond which 
the deviations from Eq. (1) become appreciable; 
here, we define the deviation time t d as the time at 
which the deviations begin to increase more than a 
quarter of  the mean square errors, as done for a SG 
material of  Eu0.4Sr0.6S [10]. Although not shown 
here, only at 26.8 K and Hvc = 0.14 T is the power 
law satisfied over the entire time range up to 104 s, 
which is similar to that found for field-cooled TRM 
data of the CG phase of  FexTiS 2 (x  = 1 /4)  obtained 
at HFc = 0.14 T and 27.4 K [9]. We have also found 
that these decay curves are independent of waiting 
time tw = 180-18 000 s under the experimental con- 
ditions of  HFc = 0.01-0.14 T and temperatures T =  
7.8-29.3 K, which we shall discuss later in terms of 
the 'overlap length' introduced by Bray and Moore 
[12]. Furthermore, these curves can also be fitted by 
a logarithmic dependence of the form p H ( t ) =  C -  
D log t (C and D are constants), as depicted in the 
inset of Fig. 3 plotted on a semi-logarithmic scale, 
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Fig. 4. Variation of the exponent m with (a) the cooling field HFc 
at various temperatures and (b) with temperature at different 
cooling fields. 

where the arrows mark the deviation time t~ in each 
curve (t~ is almost the same as td); such a logarith- 
mic dependence is valid for m << 1, as already dis- 
cussed for IRM studies [11]. In the present work, we 
have employed the power law of Eq. (1) to discuss 
our results within the framework of  the KH domain 
theory. 

Fig. 4 shows the exponent m for TRM plotted 
versus (a) the cooling field at different temperatures 
and (b) versus temperature at different field intensi- 
ties HFc. The exponent m increases linearly with 
increasing cooling field and also increases drastically 
as the temperature is increased toward Tg. This be- 
havior for SG is nearly the same as that for CG [9]. 

4. Discussion 

4.1. Domain theor), for the time decay of TRM 

We shall now consider the observed decay curves 
for TRM over the whole time range where deviations 
from the power law occur. Since our results show the 
power law in a short time region, we have analyzed 
them using the KH domain theory, employing the 
power law for the equilibrium relaxation function [6] 
rather than the FH law [5]. However, Koper and 
Hilhorst derived theoretical expressions with an ide- 
alized stepwise form for switching off an external 
cooling field HFc, whereas in our actual experiments 
it decreased at a constant rate 6H to zero within 
time t~. Thus, we need some modifications of their 
expressions, as described below. 

According to the KH model, the magnetization is 
expressed by assuming that linear response theory is 
valid for relaxation of SG 

M ( t )  = A M ( t )  + NXe q H ( t )  

l t 

= -NXeqfodt R(t , t ' ) tgI( t  ') 

+ NXe q H ( t ) ,  (4) 

where AM( t )  is the excess magnetization, N the 
number of  spins in the sample, and Xeq the equilib- 
rium dc susceptibility in zero field. Based on experi- 
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mental data [13] and Monte Carlo simulations [14], 
the relaxation function R(t,t') is written as 

R(t, t ' )  = R e q ( t -  t ' )F( t , t ' ) .  (5) 

In thermal equilibrium, R~q(t - t') is given by 

R e q ( t - t ' )  = [1 + ( t - t ' ) / t o ]  m, (6) 

where t o specifies the minimum relaxation time in 
the equilibrium relaxation spectrum, as discussed in 
Section 4.2. A plausible choice for F(t,t') is a cutoff 
reflecting deviations from equilibrium, F(t, t ' )= 
e x p [ - ( t - t ' ) / ' r m a x ( S ) ] ,  where rm~x(s) is the maxi- 
mum relaxation time in the relaxation spectrum of a 
size s domain, and a plausible generalization of 
F(t,t') using the time-dependent domain size s(t") 
(t '  < t" < t) gives 

F( t , t ' ; [ s ( t " ) ] )=exp{  t ,, - f ,  dt / /Tmax[S(t ')]) • 

(7) 
Due to the spin coherence within a domain, rma~(s) 
is assumed to be a function of domain size with 
typical spin spacing a 

Tmax(S ) ~-- t , ( s /a )  ~, (8) 

where t 1 is the microscopic time constant and z a 
dynamical parameter. 

Furthermore, Bray and Moore [12] predicted that, 
during waiting time t w, the domain size s(t) cannot 
grow larger than an 'overlap length' laH for a given 
magnetic field jump A H (in our case HFc), which is 
written as laH ~ ]AHI 2/(d-2y) with the dimension 
of the system d and constant y. Taking into account 
the interplay between s(t) and lan,  the KH model 
considers the following two cases: for a small field 
jump, SOw) < laH, the domain size s(t) increases as 
a power of time 

s ( t )  --- a [ ( t  w + t)/ t2] ~, (9) 

where t 2 is the microscopic time and p another 
dynamical parameter. For a large field jump, where 
the linear size of domains reaches its upper limit laz  
during waiting time t w, s(t:) = lzH, and thus s(t), is 
written as, for  t > t:,  

s ( t )  ~ a[(lau/a)  '/p + ( t -  tz)/t2] ". (9 ' )  

The waiting time t w does not enter into this expres- 
sion, indicating that it does not affect the domain 
size after switching off  the external field. Since there 

is no t w dependence of the observed decay curves, 
we use Eq. (9')  for the time dependence of the 
domain size. In addition, a time tAH is defined, 
during which the domain is growing to a size of  laH 

tau=t=[( la , /a)]~/Z,~lAnl  2/t~-2,),1 (10) 

With this quantity and using Eq. (8) and Eq, (9'), the 
maximum relaxation time is given by 

~'ma×(t)=(tan+t-- tz)P:(t~:/ t l )  I (11) 

The time decay of TRM can be calculated using 
the above expressions. Taking into account the 
time-dependent magnetic field change at constant 
rate 8H in our case, not stepwise as in the KH 
model, we express the time variation of the magnetic 
field, with t~ = HFc/SH, as 

H(t)  = H F c - t S H  f o r 0 < t < t : ,  

= 0  for t> t . .  (12) 

In the time region t < t~ we may take F(t, t ' )= 1, 
since t - t' << ~-ma×(s), and we obtain 

M(t)  = UXeq~H [ - to~  ( - m  + 1)] 

× [ 1 - ( l + t / t o )  - '+ ']  

+ NXeq( HFC -- tSH).  ( l  3) 

On the other hand, in the case of t > t~, F(t,t') 4= l, 
yielding 

M(t)  = A M ( t )  

f o  g - t m = Nxe q 6H "dt[1 + ( t - t') /to] 

X e x p { [ ( G n + t - t : )  1 ,': 

- (  + , ' -  , ; 7  [ ,,(1 - r )l }. 
(14) 

The above integration cannot be carried out analyti- 
cally and therefore we have made a numerical inte- 
gration to calculate TRM. For the numerical calcula- 
tions of Eq. (13) and Eq. (14), we have assumed the 
following conditions for the fitting parameters: (i) 
we take the observed exponent m, (ii) pz is a 
universal constant independent of  temperature and 
magnetic field, (iii) the ratio tP~/t~ is a function of 
temperature alone, and (iv) both t o and tall depend 
on temperature and magnetic field. 
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As an example, the solid line in Fig. 1 shows the 
calculated curve of  the Hall resistivity (or TRM) 
using Eq. (13) and Eq. (14) with the best-fit values 
of m = 0 . 0 2 7 ,  t 0 = 7 × 1 0  -6 s, pz=0.9, t~':/tl= 
0.0075 s p: 1, and t 6 H = 4 0  s in the time range 
t = 0 - 4 0  ms, where the cooling field is decreasing at 
constant rate 10 T / s ,  in satisfactory agreement with 
observation. Furthermore, we have performed nu- 
merical calculations of  the overall time decay of 
TRM under various conditions (temperatures and 
cooling-field intensities) using Eq. (14) to obtain 
reasonable agreement with experiments, as shown by 
the solid curves in Fig. 3; the parameters used for the 
calculations are the field-independent (pz= 0.9, 
t~':/tl = 0.0075 s p : -  1) and the field-dependent pa- 
rameters ( m = 0 . 0 1 8 ,  0.022 and 0.027, t o = 9 ×  
10 s, 7 × 10 -7  and 7 × l0 ~' s, t6n = 350, 130 and 
40 s for Hvc = 0.035, 0.07 and 0.14 T, respectively). 
We shall discuss the obtained dynamical parameters 
below. 

4.2. Equilibrium relaxation - the power law 

We shall now focus on the dynamical parameters 
t o and exponent m of  the equilibrium relaxation 
function Req(t - t ' )  in Eq. (6). For a system with a 
distribution function of  relaxation time ~-, P(~-), the 
equilibrium relaxation function is given by R e q ( t -  
t ' ) =  fd'rP(T)exp[(t-t ')/ 'c]. Using an inverse 
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Fig. 5. The best-fit values of the minimum relaxation time t o at 
different cooling fields HFC plotted versus temperature. 

Laplace transform, we can obtain P(~-) correspond- 
ing to Rcq(t - t ' )  with the power law form of Eq. (6) 

P('r) = [to/IV(m)](~'/to) ("+J'exp(-to/ 'r) ,  
(15) 

where F(m) is a gamma function of m. In terms of 
the relaxation spectrum Q(~-), which is defined by 
Roq(t - t ' )  = fd(ln T) Q(~-)exp[(t - t')/~'], we obtain 

O(~')= [1/F(m)](T/ to)  -mexp( - to /T  ) . (15 ')  

From the form of Eq. (15'), we see that t o is the 
minimum relaxation time and m characterizes the 
distribution intensity and width of the relaxation 
spectrum. 

The best-fit parameters t o obtained at different 
magnetic fields are plotted against temperature in 
Fig. 5. With increasing temperature, the values of t 0 
increase appreciably from 10 13 to 10-lZ s at around 
8 K and tend to saturate above 18 K at values as 
high as l0 6 - I 0 - 4  s. We also note that t o increases 
with the cooling field Hvc. The magnitude of t o for 
our system is comparable to those for the insulating 
SG of CdCrlvIn0.3S 4 (t 0 ~ 10 15 s) [6] and 
Fe0sMn05TiO 3 (t o = 10 6 -10 -5  s estimated from 
the reported decay curves) [15]. 

As shown above (Figs. 4 and 5), both exponent m 
and minimum relaxation time t 0 depend strongly on 
cooling-field intensity HFC and temperature. We then 
examined the validity of the universal relation be- 
tween exponent m and the RRM parameter 4' or 
for the present SG phase; RRM parameters are de- 
fined by 4 ' =  1-M(tz) /MFC(T) and s c =  I -  
M(t~)/MFC(T~ 0), where the magnetization at t:, 
M(t:), is normalized by the value MFC(T) at T and 
that at absolute zero [denoted by M~C(T ---, 0)], re- 
spectively [8,9]. Fig. 6a plots the values of  m versus 
~: on a logarithmic scale; similar results are obtained 
for the plot of m versus 4', not shown here. We see 
that the experimental points lie on a single line with 
two different slopes above and below the characteris- 
tic point ~:c = 0.21 marked by the arrow, which is 
well described by the expression 

m = Ds ~ ' ,  (16) 

where the best-fit parameters are determined to be 
D = 0 . 3 0  and y = l . 4  for ( > ~ c  and D = 2 . 6  and 
y = 2.8 for ~:< ~c. Thus Eq. (16) is regarded as a 
general expression for characterizing the dynamics 
of  TRM in the short time range less than t a for both 
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be expressed in the form of Eq. (16) (see text). (b) The values of 
t : / t  o plotted versus m; symbols are the same as those in Fig. 5. 
Arrows mark the characteristic values of Ec = 0.21 and m c = 
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SG and CG of our magnetic material and ~ is a good 
parameter to describe the freezing state of  SG and 
CG phases. We note that the y value for SG (y  = 1.4 
and 2.8) is larger than that for CG (3' = 1.0), which 
indicates that the dependence of m on s c is much 
stronger in the former case than in the latter. 

Now the RRM parameter ~ can be expressed 
using the dynamical parameters m and t 0, as given 
below. The magnetizations in s c are written as 
MVC(T--* O) = NXeq(T ~ 0)Hvc and M(4) = 
NXeq(T)~SH[-to/(-m + 1)][1 - (1 + tJto )-''+ l] 

NX~q(T)Hvc(t:/to)-m/(-m + 1), thus ~ is 
rewritten as 

~= 1 - M( t~)/M~C(T -~ O) 

~ l - [ Xeq(r)/X q(r-  01] 
×( tJ to )  m / ( - m +  1). (17) 

Since X~q(T)/X,q(T ~ 0 ) ~  1 for general SG cases, 
including our results (see Fig. 2b), we obtain the 
simple form 

~~ 1 - ( t z / t o ) - ' / ( - m  + 1). (17') 
The values of  t:/t o are plotted versus m in Fig. 6b. 
With increasing m, t:/t  o decreases and becomes 
nearly constant above m c = 0.033, marked by the 
arrow, which corresponds to the characteristic value 
~:c = 0.21 which represents the turning point where 
the minimum relaxation time t o (or 4 / 4 )  depends 
on the temperature or not. 

10 "~ 

10" , ~ , ~ I  , , 
10 20 30 

T ( K )  

Fig. 7. The best-fit values of t~'"/t= plotted versus temperature 
on a logarithmic scale, which follow a single line, expressed as 
t ~ ' : / t l = 2 . 8 × l O  5T2. 

4.3. Nonequilibrium relaxation 

In nonequilibrium relaxation, the maximum relax- 
ation time ~-max(t) [ = ( t a l l +  t-t:)P:(t~):/tl) 1] in 
Eq. (11) is an important quantity that characterizes 
the upper cutoff in the relaxation spectra of time-de- 
pendent domains. Fig. 7 plots the best-fit values of 
t~':/tL versus temperature on a logarithmic scale, 
which follow a single line, as t~':/t I = 2.8 × 10 5T2. 
Fig. 8a shows the values of ta H, which characterizes 
the overlap length laH, at different temperatures 
plotted versus cooling field HFc on a logarithmic 
scale, where one can see that the experimental points 
lie on single lines at fixed temperatures, whose 

103 

.-~ I02 

a 

10 "2 10 "1 

HFC ( T )  

.f,0, 

100 

10"I 

. . . .  1'0 ,'o 3'0 
T (K) 

Fig. 8. (a) The best-fit values of tan at different temperatures 
plotted versus the cooling field Hvc on a logarithmic scale: 
symbols l?om open triangles to solid circles correspond to temper- 
atures of 7.8, 9.8, 11.8, 16.8, 21.8 and 26.8 K, respectively. The 
slope of each line is equal to - 1.5, which corresponds to - 2 / [ ( d  
- 2 y ) p ]  in Eq. (10). (b)The  values of t±H/Hvc I, 5 plotted versus 
temperature. 
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slopes are all equal to - 1 . 5 ,  or t aH~  H~ -15. In 
order to see the temperature dependence of  tAH, in 
Fig. 8b we illustrate the values of taH/HFc 15 versus 
temperature in log- log  plots. As the temperature is 
increased, the experimental points decrease follow- 
ing a straight line up to a temperature of about 
20-25  K ( ~  TJ2), as  t~H/HF 1"5= 1.2 × 104T -3, 
above which they show a steep decrease; such dras- 
tic temperature variations are also found in other 
quantities, such as PH(t:) (Fig. 2b) and m (Fig. 4b). 
We should note that the ratio tP:/fi exhibits no 
drastic variation around that temperature (Fig. 7), 
while the value of tall or t 2 [see Eq. (10)] changes 
appreciably, which means that the time constant t] is 
reduced markedly above 20-25  K. These results 
indicate that thermal fluctuations in spin-glass sys- 
tems become appreciable above this temperature. 

From Figs. 7 and 8, we obtain Zm~x(t)= 3.6 × 
1 0 4 T  2(1 .2  × 104HFcLST 3 _~_ t - I _ )  0 .9  for the max- 
imum relaxation time at low temperatures below 
20-25  K. The typical temperature dependence of the 
maximum relaxation time %,~(t) for HFc = 0.14 T 
at different times ( t =  t:, 10 2, 10 3 and 104 s) is 
shown in Fig. 9 on a logarithmic scale; the curves at 
t = t. (the time when the external field is reduced to 
zeroi and 104 s follow a straight line, but those at 
102 and 10 3 S do not lie on a straight line. We see 
that rm,×(t) increases with time t, which indicates 
that the domain size in the SG system grows as time 
laps. Although not shown here, we also found that, 
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106 ~ o  4 s 

104 

10 ~ t 

10 I I I I I 
6 8 10 15 20 25 30 

X (K) 

Fig. 9. The calculated values of maximum relaxation time "rmax(t) 
for HFc = 0.14 T at different times (t  = t:, 102, 103 and 104 s) 
plotted versus temperature on a logarithmic scale. The slope at 
t = t_ is - 4 . 7  and that at 104 s is - 2  (see text). 
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Fig. 10. Variation of the relaxation spectrum Q ( r )  and maximum 
relaxation time rm~,x(t) at t = t. and 104 s with (a) the cooling 
field HFc at a fixed temperature of 16.8 K and (b) with tempera- 
ture at a fixed cooling field of HFc = 0.14 T. 

at fixed temperature, Tmax(t) at t=t .  depends 
strongly on the cooling field as  HFc 135, but it be- 
comes independent of HFc for t >> t~. 

Moreover, Fig. 10 illustrates the relaxation spec- 
tra Q( r )  for TRM calculated using Eq. (15') with the 
obtained parameters t o and m, together with the 
maximum relaxation time rm,x(t) at t =  t_ (solid 
lines) and 10 4 S (broken lines). As shown in Fig. 
10a, with increasing cooling field Hvc, the lower 
cutoff t o shifts to the longer time side with increased 
intensity and slope, while the higher cutoff % J r )  at 
t = t~ becomes shorter, but at t = 104 s it is indepen- 
dent of HFc. The relaxation spectrum depends re- 
markably on temperature, as shown in Fig. 10b for 
the typical case of  HFC = 0.14 T. The lower cutoff 
shifts to the longer time side with increasing temper- 
ature up to 16.8 K, above which it becomes almost 
constant, and the relaxation spectrum narrows; the 
upper cutoff also shifts gradually to the shorter time 
side. These results are in qualitative agreement with 
those obtained by Nemoto and Takayama [16] from 
Monte Carlo simulations in the temperature range 
0.6 < T/Tg < 2 for two-dimensional Ising SG, where 
they assumed that the longer relaxation time repre- 
sents the dynamical aspect associated with the over- 
turn of  the spin cluster to which the spin belongs, 
while the shorter relaxation time represents the fast 
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Table 1 
Best-fit parameters obtained experimentally of pz and - 2 / [ d -  
2y)p], together with the evaluated values p and z using the 
theoretical values of y for two-dimensional (d = 2) and three-di- 
mensional (d = 3) Ising SG by Bray and Moore [12] 

d y pz - 2 / [ ( d - 2 y ) p ]  p z 

3 0.19 0.9 - 1.5 0.51 1.8 
2 -0.29 0.9 - 1.5 0.52 1.9 

relaxation associated with the local excitation of 
each spin. 

Finally, we evaluated the dynamical parameters 
for TRM of our SG system. From t~x/4 ~ Hr 15, we 
have - 2 / [ ( d - 2 y ) p ] = - l . 5  in Eq. (10). With 
this value, the parameters p and z are evaluated 
using the theoretical value of y for the two- (d  = 2) 
and three-dimensional (d  = 3) Ising model of  Bray 
and Moore [12]. Our estimated values are listed in 
Table 1 ( p  ~ 0.5, z ~ 2) together with the theoreti- 
cal values, and are in good agreement with those 
estimated by Koper and Hilhorst [6] using the experi- 
mental data for insulating SG of CdCrl.7ln0.3S4 of 
Alba et al. [13]. It is of  interest to note that the 
dynamical parameters p and z are independent of 
the insulating Ising SG or our itinerant magnetic SG. 

5. Conclusion 

Using the anomalous Hall effect, we have mea- 
sured the time decay of field-cooled thermoremanent 
magnetization (TRM) in the spin-glass (SG) phase of 
itinerant magnetic Fe~TiS 2 (x  = 0.20, Tg = 41 K) for 
cooling field HFc = 0.01-0.14 T over the time range 
10 2-104 S with waiting time t w = 180-18000 s 
below T / T g  ~ 0.7. We found the following salient 
features of the dynamical properties of SG in this 
material: 

(i) In the short time regime t < t d, the time decay 
of the Hall resistivity (or TRM) after switching off 
the external field can be expressed in the form of the 
power law p H ( t ) = A t  m, whose exponent m de- 
pends on both cooling field HFc and temperature T, 
while for t > ta deviations from the power law be- 
come appreciable (except for higher field HFc = 0.14 
T at 26.8 K). As found for the cluster-glass (CG; 
x = 1 /4 )  phase, the magnetic field and temperature- 
dependent exponent m is written in the universal 

form, m = Ds ~ ,  where ~ =  1 - M ( t : ) / M F C ( T  --+ O) 

is a parameter of the 'relative relaxed magnetization' 
(RRM), with best-fit values of D = 0.30, y = 1.4 for 
s~>~c ( = 0 . 2 1 )  and D = 2 . 6 ,  y = 2 . 8  for s~<s~c, 
the y values being larger than for CG (y  = 1.0). 

(ii) Using the 'domain theory' developed by Koper 
and Hilhorst, numerical calculations were performed 
for the observed decay curves of TRM over the 
whole time range with modifications of their theoret- 
ical expressions. As a result, we found satisfactory 
agreement between the simulations and experiments, 
including the independence of the TRM decay on the 
waiting time. The minimum relaxation time t o in the 
relaxation spectrum increases with increasing tem- 
perature up to 18 K, above which it becomes con- 
stant (of the order of  10- s_ 10- 7 S), while the upper 
limit Zmax(t) depends on time, temperature, and cool- 
ing field Hvc ,  which is expressed empirically as 
7ma×(t) = 3.6 X 104T-Z(I.2 × I 0 4 H K ! S T  -3 + t - 

t :)  °9, which was obtained from the observed param- 
eters t~ ' : / t  I and tz~ with the best-fit value of 
pz = 0.9. Using these parameters, the equilibrium 
relaxation spectra were calculated; the spectra be- 
come narrow with increasing temperature and cooing 
field, which is in qualitative agreement with the 
Monte Carlo simulations for two-dimensional Ising 
SG [16]. 

(iii) Using the dynamical parameters appearing in 
the domain theory, we can express the parameter of 
relative relaxed magnetization ~, which character- 
izes the temperature and cooling-field dependence of 
the time decays of TRM in a short time span, in the 
form ~ ~  1 - ( t : / t o ) - m / ( - m  + 1), which is a func- 
tion of t=/t  o and the exponent m. 

(iv) With the evaluated value 2 / [ ( d - 2 y ) p ]  = 
1.5 and the theoretical value of v for the two- 
(d  = 2) and three-dimensional (d  = 3) Ising model, 
we obtained the dynamical parameters p ~ 0.5 (the 
domain size increases as a power of time with 
exponent p) and z ~ 2 (the upper relaxation time 
depends on the domain size with exponent z), in 
agreement with those of some insulating Ising SG, 
With regard to the nature of magnetism (localized 
spin or itinerant electron picture), there are no differ- 
ences in these dynamical parameters. More studies of 
relaxation phenomena, such as the temperature cycle, 
are desirable for another viewpoint of  the hierarchi- 
cal kinetics for our itinerant magnetic material. 
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