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a b s t r a c t

The internal energies, including transverse and longitudinal parts, of quantum Heisenberg systems for
arbitrary spin S are investigated by the double-time Green's function method. The expressions for
ferromagnetic (FM) and antiferromagnetic (AFM) systems are derived when one-component of
magnetization is considered with the higher order longitudinal correlation functions being carefully
treated. An unexpected result is that around the order–disorder transition points the neighboring spins
in a FM (AFM) system are more likely longitudinally antiparallel (parallel) than parallel (antiparallel) to
each other for Sr3/2 in spite of the FM (AFM) exchange between the spins. This is attributed to the
strong quantum fluctuation of the systems with small S values. We also present the expressions of the
internal energies of FM systems when the three-component of magnetizations are considered.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The quantum Heisenberg model has been studied enduringly.
The double-time Green's function method [1], being applicable in
the whole temperature range, has been employed to solve the
model over half a century [2–19]. For a long time, the magnetiza-
tion along the z direction was calculated, with the assumption that
the components other than this direction were zero [2–11]. Since
2000, a skill has been developed to calculate all the three
components of the magnetization [12–19]. In calculation of the
magnetizations, the equation of motion (EOM) of the Green's
functions is applied, and the higher-order Green's functions are
usually decoupled to the lower-order ones in terms of the well-
known Tyablikov decoupling [2], also called the random phase
approximation (RPA).

It is generally believed that evaluation of the magnetizations
under the RPA is quite reasonable. However, the internal energies
obtained up to now have not been satisfactory. The internal
energies of antiferromagnetic (AFM) lattices at temperature close
to zero was discussed [3]. A viewpoint was that it was better to go
beyond the RPA in order to achieve satisfactory internal energies
[18]. That is to say, higher-order Green's functions have to be
solved. However, it is very difficult to do so. There has not been
much work [20–26] attempting to solve the higher-order Green's
functions and they were usually limited to the low-dimensional
lattices and the lowest spin quantum number S¼1/2. Even for the
low-dimensional systems, it was difficult to deal with the cases

with higher spin quantum numbers. The only instance of dealing
with the higher S values was confined in finite lattice site systems
[25]. A remarkable progress was the calculation of the internal
energies of ferromagnetic (FM) lattices above the Curie point by
means of the higher-order Green's functions [27]. There was one
common feature in the work presented in Refs. [20–27]: the
higher-order Green's functions were constructed in the cases
where the magnetization was zero.

To sum up, the evaluation of the internal energy of the
Heisenberg systems when the magnetization was not zero by
means of the Green's function method has seldom been there to
see. We believe that under the RPA, it is possible to obtain as good
as possible expressions for the internal energy applicable to any S
value for nonzero magnetization.

The internal energy of a Heisenberg magnetic system mainly
includes two parts, the transverse correlation energy (TCE) and
longitudinal correlation energy (LCE), as defined in Eqs. (3) and (4)
below. The former is easily calculated by means of the well-known
spectral theorem without any further approximation [5,18,28].
Hereafter, when no further approximation is made in giving an
expression of the energy, we say the expression is precise. In this
sense, the expression of the TCE is precise. The LCE, however, can
be dealt with precisely only in the case of S¼1/2 and 1 [18,28,29].
For higher S values, the treatment of this part is troublesome.
At first thought, the following approximation can be taken [5]:

〈Szi S
z
j 〉� 〈Szi 〉〈S

z
j 〉; ia j ð1Þ

where the subscripts label the lattice sites. In previous work, we
also employed this approximation [30]. However, this approxima-
tion is obviously too rough. A good approximation of the long-
itudinal correlation function valid for any S value and temperature
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is still desirable. In this paper, we will present satisfactory expres-
sions of the internal energies for some magnetic systems.

2. One-component magnetization: ferromagnetic systems

The Hamiltonian reads

H¼ �1
2
J∑
i;j
S�
i Sþ

j �1
2
J∑
i;j
Szi S

z
j �Kz∑

i
ðSzi Þ2�bz∑

i
Szi ð2Þ

Throughout this paper, we consider the nearest neighbor exchanges,
and the lower case English letters label lattice sites. In Eq. (2), J40.
The first two terms reflect the transverse and longitudinal correla-
tions between the neighboring magnetic moments, respectively.
At finite temperature, any moment has an instant orientation along
the directions other than the z direction due to its thermomotion,
which is embodied in the transverse correlation function. The third
term is the single-ion anisotropy along the z direction that forces the
spontaneous magnetization along this direction. The fourth term is
the Zeeman energy when an external magnetic field bz along the z
direction is applied. For the sake of convenience, we hereafter denote
Sp¼S(Sþ1).

The internal energy is defined as the statistical average of the
Hamiltonian per site, UIN ¼ 〈H〉=N, where N is the total site number
in the system. Thus, the first two terms of the internal energy are
written as

UTC ¼ �1
2
J∑
j
〈S�

0 Sþ
j 〉 ð3Þ

and

ULC ¼ �1
2
J∑
j
〈Sz0S

z
j 〉 ð4Þ

and are termed as TCE and LCE, respectively. The subscript 0 means
the origin and the summations are taken over its nearest neighbors.

As has been mentioned, the first rough approximation made for
the LCE was Eq. (1). This was plausible when checking its value at two
special temperatures, zero and the Curie point. At T¼0, the internal
energy, with the absence of the external field and anisotropy, is

UINðT ¼ 0Þ ¼ ULCðT ¼ 0Þ ¼ �1
2
Jð0ÞS2 ð5Þ

where we have defined Jð0Þ ¼ c1J with the c1 being the nearest
neighbor number. The quantity J(0) is in fact the case of taking the
wave vector k¼0 in the Fourier component of the exchange para-
meter JðkÞ ¼ J∑

a
eika, where the summation is over the nearest

neighbors of the origin.
Eq. (5) is the rigorous ground-state energy of a FM system. At

the Curie point TC, the spontaneous magnetization becomes zero.
So it seems plausible that ULCðT ¼ TCÞ ¼ 0. However, the analysis is
not reliable. At T¼0, Eq. (5) happens to be correct for FM lattices
because the spontaneous magnetization is along the z direction
and there is no transverse correlation between neighboring spins.
In the case of an AFM system, even at zero temperature, the
neighboring spins are not rigorously antiparallel to each other, and
there is the transverse correlation effect. At this point Eq. (1)
exposes its drawback. At order–disorder transition temperature
such as TC (TN) for FM (AFM) lattices, although the spontaneous
magnetization becomes zero, the LCE may not be zero due to the
existence of the short-range correlation effect [27,31–33]. Hence, a
smart treatment of this energy is required. In the following, we
make use of the Green's function method to derive the expressions
of the energies.

The double-time Green's function is defined as Gijðt; t′Þ ¼
〈〈AiðtÞ;Bjðt′Þ〉〉 where the two operators in the present section are
chosen as A¼ Sþ and BðuÞ ¼ euS

z
S� .

Note that there is a parameter u in the operator B. In applying
the EOM method, the first job is to reckon the commutator of an
operator Sþ

i and the Hamiltonian:

½Sþ
i ;H� ¼ � J∑

j
ðSzi Sþ

j �Sþ
i Szj ÞþKzðSzi Sþ

i þSþ
i Szi ÞþbzS

þ
i ð6Þ

Then the higher order Green's functions are decoupled by the RPA.
Subsequently, the Fourier component of Gijðt; t′Þ, denoted as
gðk;ωÞ, is solved

gðk;ωÞ ¼ ½A;BðuÞ�
ω�ωðkÞ ð7Þ

The dispersion relation is ωðkÞ ¼ ðjJð0ÞjþKzCÞð1�γkCÞ〈Sz〉þbz, where
the notation γk is defined as γkC ¼ JðkÞ=ðjJð0ÞjþKzCÞ. The coefficient C
came from the Anderson–Callen version of the decoupling concerning
the single-ion term [6].

By means of the well-known spectral theorem, we obtain the
evaluation of the correlation function of the two operators:

〈Bmðu; t′ÞAlðtÞ〉¼ 〈½A;BðuÞ�〉∑
k

e� iωðkÞðt� t′Þ

eβωðkÞ �1
e� ikðl�mÞ; ð8Þ

where β¼1/T, the inverse of temperature. We have set Boltzman
constant kB¼1. In Eq. (8), let t ¼ t′ and l¼m, then under the RPA,
the expression of the magnetization can be solved from an
ordinary differential equation of the second order [4,19,28,34,35]:

〈Sz〉¼ ðΦþ1þSÞΦ2Sþ1�ðΦ�SÞðΦþ1Þ2Sþ1

ðΦþ1Þ2Sþ1�Φ2Sþ1 ; ð9Þ

where

Φ¼∑
k

1
eβωðkÞ �1

ð10Þ

From Eqs. (9) and (10), 〈Sz〉 is computed iteratively. Conse-
quently, the following three correlations can be evaluated:

〈ðSzÞ2〉¼ Sp�ð1þ2ΦÞ〈Sz〉; ð11Þ

〈ðSzÞ3〉¼ ½ð1þ2ΦÞ½Sp�3〈ðSzÞ2〉�þð2Sp�1Þ〈Sz〉�=2 ð12Þ
and

〈ðSzÞ4〉¼ S2p� 〈ðSzÞ2〉�2ð1þ2ΦÞ〈ðSzÞ3〉 ð13Þ

From Eq. (8) two formulas can be derived. Note the definition of
the operators A and B. Substituting them into (8), letting t ¼ t′,
taking derivative n times with respective to the parameter u,
letting u¼0 and then summing over the nearest neighbors of site
m, we obtain

J∑
j
〈ðSzmÞnS�

m Sþ
j 〉¼Φa〈½Sþ ; ðSzÞnS� �〉; ð14Þ

where we have defined

Φa ¼ 1
N
∑
k

JðkÞ
eβωðkÞ �1

ð15Þ

Now let us take derivative with respect to time t:

〈Bmðu; t′Þ½AlðtÞ;H�〉¼ 〈½A;BðuÞ�〉∑
k

ωðkÞe� iωðkÞðt� t′Þ

eβωðkÞ �1
e� ikðl�mÞ ð16Þ

Letting t ¼ t′, taking derivative n times with respective to the
parameter u and then letting u¼0, we achieve

〈ðSz0ÞnS�
0 ½Sþ

0 ;H�〉¼Φb〈½Sþ ; ðSzÞnS� �〉; ð17Þ
where

Φb ¼
1
N
∑
k

ωðkÞ
eβωðkÞ �1

ð18Þ

Eqs. (14) and (17) are quite useful for calculation of the LCEs.
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The TCE was defined in Eq. (3), and can be immediately
evaluated by taking n¼0 in Eq. (14)

UTC ¼ � 〈Sz〉Φa ð19Þ
This result was in fact already available in text books, and is a
precise one.

It is not so easy to put down a precise expression for the LCE
ULC. Some approximations are inevitable.

Multiplying on Eq. (6) an operator S�
i from the left leads to

S�
i ½Sþ

i ;H� ¼ � JS�
i ∑

j
ðSzi Sþ

j �Sþ
i Szj ÞþKzS

�
i ðSzi Sþ

i þSþ
i Szi ÞþbzS

�
i Sþ

i ð20Þ

Reordering the terms results in

J∑
j
〈Szi S

z
j 〉¼ � 〈S�

i ½Sþ
i ;H�〉þKz〈S

�
i ðSzi Sþ

i þSþ
i Szi Þ〉

þbz〈S
�
i Sþ

i 〉� J∑
j
〈Szi S

�
i Sþ

j 〉� J∑
j
〈S�

i Sþ
j 〉

þ JSp∑
j
〈Szj 〉� J∑

j
〈ðSzi Þ2Szj 〉 ð21Þ

All the terms except the last one on the right hand side of Eq. (23)
can be evaluated by use of Eqs. (14) and (17) without making
approximation. For the last term, we have to make approximation
as follows:

〈ðSzi Þ2Szj 〉� 〈ðSzi Þ2〉〈Szj 〉 ð22Þ

There are at least three reasons supporting this approximation
being a very good one. The first reason is that 〈ðSzi Þ2Szj 〉 is merely
one of the terms emerging in the expression of Eq. (21), meaning a
small part of 〈Szi S

z
j 〉. The second reason is that Eq. (22) is a

decoupling approximation of a higher order correlation function
〈ðSzi Þ2Szj 〉, which is of course much better than that of the lower-
order one in Eq. (1). The third reason is that when S¼1/2, Eq. (22)
becomes an identity because ðSzÞ2 ¼ 1=4, and in this sense, the LCE
can be evaluated precisely.

With the approximation Eq. (22), we are able to put down the
LCE

ULC ¼ �1
2
½Sp� 〈Sz〉�3〈ðSzÞ2〉�Φaþ 〈Sz〉Φb�

1
2
Jð0ÞðSp� 〈ðSzÞ2〉Þ〈Sz〉

þKz

2
½2〈ðSzÞ3〉þ3〈ðSzÞ2〉�ð2Sp�1Þ〈Sz〉

�Sp��
bz
2
½Sp� 〈Sz〉� 〈ðSzÞ2〉� ð23Þ

When S¼1/2, with the identities ðSzÞ2 ¼ 1=4 and ðSzÞ2S� ¼
�SzS� =2 [36], Eq. (23) goes back naturally to the form ever
obtained [18,28], and the expression becomes precise.

Before carrying out the numerical computation, let us discuss
the values of the energies at two special temperatures, i.e., T¼0
and T¼TC, in the absence of the external field.

At T¼0, it turns out that Φ¼Φa ¼Φb ¼ 0 and thus 〈ðSzÞn〉¼ Sn.
Therefore, we have

UTCðT ¼ 0Þ ¼ 0 ð24Þ

The longitudinal energy is exactly the same as Eq. (5), and the
internal energy as well.

At the Curie point TC, 〈Sz〉-0,Φa ¼ TC and Φb-

�TCðV �1�1Þ=〈Sz〉,
where V �1 ¼ 1

N∑
k

1
1� γkC

. The Curie temperature under the RPA is

TC ¼ Jð0ÞSp=3V �1. Therefore, one obtains

1
Sp
UTCðT ¼ TCÞ ¼ � Jð0Þ

3
ð1� 1

V �1
Þ ð25Þ

and

1
Sp
ULCðT ¼ TCÞ ¼

Jð0Þ
6

1� 1
V �1

� �
; ð26Þ

respectively. One feature is that both UTC=Sp and ULC=Sp at the
Curie point are independent of the spin quantum number S.

It should be noted that ULCðTCÞ is positive. This means that near
the Curie point, the neighboring spins are mainly antiparallel to
each other, although the exchange between them is ferromagnetic.
This is an unexpected result. We think this a manifestation of
quantum fluctuation along the longitudinal direction. In a quan-
tum magnetic system, there exists both the thermodynamic and
quantum fluctuations at finite temperature. The former should be
isotropic, while the latter, from this work, seems not. Around the
Curie point the TCE is negative, which means that the spins are
transversely parallel to each other, while it is not along the
longitudinal direction.

The TCE UTC is precise, as having been mentioned above, and
UTCðTCÞ=Sp is independent of S. For the LCE, it happens that
ULCðTCÞ=Sp is also independent of S. Considering that Eq. (23) is
precise for the case of S¼1/2, this independence is regarded as an
evidence that supports the approximation Eq. (22) being a very
good one.

Fig. 1. The energies of bcc FM lattices at J¼100 for the lowest five S values. (a) The TCEs (descending curves) and LCEs (ascending curves). Near TC, ULC's are positive. (b) The
internal energies.
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Anyway, as the transverse correlation effect is strong enough,
UTCðTCÞ is in magnitude two times of ULCðTCÞ so that the sum
UTCðTCÞþULCðTCÞ is negative.

Fig. 1 shows the numerical results. As analyzed above, both
ULT ðTCÞ=Spand ULCðTCÞ=Sp are independent of S, and the latter is
indeed greater than zero. Fig. 1(a) reveals that the transverse
correlation effect becomes stronger as temperature rises, demon-
strating that the neighboring spins are antiparallel to each other in
the transverse directions. While along the z direction, at T¼0, the
neighboring spins are strictly parallel to each other. With tem-
perature rising, they deviate from the strict paralleling, and even
become antiparallel to each other along this direction when
temperature is near the Curie point.

Fig. 2 shows the effect of an external field on the energies in the
case of S¼1/2. In Fig. 2(a), below the Curie point UTC drops starting
from zero temperature as in Fig. 1(a). Obviously, the field
depresses the transverse correlation because it forces the spins
to be parallel along the z direction. Around the Curie point, this
energy turns to increasing with temperature. The turning point

slightly rises with the field. Fig. 2(b) shows that even if an external
field is applied along the z direction, the longitudinal energy
around the Curie point is still greater than zero, demonstrating
that a magnetic field is unable to totally depress the longitudinal
antiparallel correlation between neighboring spins. Above the
Curie point, this part of energy is always positive. With the
increasing of temperature ULCðTÞ=Sp gradually decreases toward
zero, showing that the correlation fades away. Anyway, the UIN is
always negative and tends to zero as temperature goes to infinite.

Eq. (20) prompts us that it is possible to evaluate the higher
order correlation functions so as to go beyond the approximation
Eq. (22). Let us do so. Multiplying Szi to Eq. (20) from the left and
combining the resultant with Eq. (21) to eliminate the correlation
function 〈ðSzi Þ2Szj 〉, we obtain

JðSpþ1Þ∑
j
〈Szi S

z
j 〉¼ � J∑

j
〈S�

i Sþ
j 〉þ J∑

j
〈ðSzi Þ2S�

i Sþ
j 〉

� 〈S�
i ½Sþ

i ;H�〉þ 〈Szi S
�
i ½Sþ

i ;H�〉
þ Jð0ÞSp〈Sz〉�Kz〈ðSzi �1ÞS�

i Sþ
i ð2Szi þ1Þ〉

�bz〈ðSzi �1ÞS�
i Sþ

i 〉þ J∑
j
〈ðSzi Þ3Szj 〉 ð27Þ

Again, all the terms on the right hand side except the last one can
be evaluated by Eqs. (14 ) and (17). This time, the necessary
approximation is

〈ðSzi Þ3Szj 〉� 〈ðSzi Þ3〉〈Szj 〉 ð28Þ

This approximation is made for the correlation function that is one
order higher than that in Eq. (22). Consequently, the achieved LCE
is

ULCðS41Þ ¼ � 1
2ðSpþ1Þ ½Sp�ð2Spþ1Þ〈Sz〉�3〈ðSzÞ2〉

n
þ4〈ðSzÞ3〉�Φaþ½�Sp�3〈Sz〉þ3〈ðSzÞ2〉�Φb

þ Jð0Þð〈ðSzÞ3〉þSpÞ〈Sz〉þKz½2〈ðSzÞ4〉
þ 〈ðSzÞ3〉�2ðSpþ1Þ〈ðSzÞ2〉þðSp�1Þ〈Sz〉
þSp�þbz½Sp�ðSpþ1Þ〈Sz〉þ 〈ðSzÞ3〉�g ð29Þ

This expression is no doubt better than Eq. (23).
In the case of S¼1, one should be cautious in dealing with

Eq. (27). He should not only employ the identity (Sz)3¼Sz, but also
make reduction of the operator production ðSzi Þ2S�

i [36]. After

Fig. 2. The energies of a fcc FM lattice for bz¼1 and 20 as S¼1/2 and J¼100. (a) The
TCEs. (b) The LCEs. (c) The internal energy. Please note that the Zeeman energy is
not shown.

Fig. 3. The energies of bcc FM lattices at J¼100 for the lowest five S values by Eqs. (29) for S¼1/2, Eqs. (39) for S¼1 and Eqs. (38) for S41, where the anisotropy and field are
absent. (a) The TCEs (descending curves) and LCEs (ascending curves). The former are the same as those in Fig. 1(a). Up to TC, ULC remains negative for S43/2. (b) The internal
energies.
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these manipulations, one will gain

ULCðS¼ 1Þ ¼ �1
4
½2�〈Sz〉�3〈ðSzÞ2〉�Φaþ

1
4
½2þ3〈Sz〉

�3〈ðSzÞ2〉�Φb�
1
2
Jð0Þ〈Sz〉�1

2
Kz½�2〈ðSzÞ2〉

þ 〈Sz〉þ1��1
2
bzð1� 〈Sz〉Þ ð30Þ

This expression is precise. This time the correlation function
〈ðSzi Þ2Szj 〉 is treated precisely.

Once more, we reckon the values at T¼0 and T¼TC when the
field is absent. At zero temperature, both Eqs. (29) and (30) reach
ULC ¼ � Jð0ÞS2=2. At the Curie point, the energy values can be
written as

1
Sp
ULC S4

1
2
; TC

� �
¼ gðSÞJð0Þ

6
1� 1

V �1

� �
þK2aðSÞ ð31Þ

where gðS¼ 1
2Þ ¼ 1, K2aðS¼ 1

2Þ ¼ 0, gðS¼ 1Þ ¼ 1
2, K2aðS¼ 1Þ ¼ 1

12Kz ,

gðS41Þ ¼ �2Sp þ9
5ðSp þ1Þ and K2aðS41Þ ¼ Kz ð4Sp �3Þ

30ðSp þ1Þ . Firstly, let us see the

case where the anisotropy is absent. The factor g(S) demonstrates
that the quantity ULCðTCÞ=Sp is now dependent on S. It is noticed
that as S¼3/2, g(3/2) ¼6/95, and g(S43/2)o0. As S goes to
infinity, the factor g(S) approaches �2/5. This discloses that for
S43/2, the neighboring spins are not antiparallel. Only for So3/2,
will the neighboring spins be antiparallel to each other around the
Curie point. This reveals that the longitudinal correlation effect is
actually closely related to the spin quantum number S. A system
with the lower S has the stronger quantum fluctuation. Secondly,
when there is an single-ion anisotropy, the K2aðSÞ term in Eq. (31)
is always positive, i.e., this kind of anisotropy strengthens the
longitudinal quantum fluctuation. By contrast, this anisotropy did
not play a role in Eq. (26).

Fig. 3 presents the numerical results. The lines for S¼1/2 are
just those in Fig. 1. The S¼1 lines are calculated from Eq. (30), and
remaining lines from Eq. (29). Fig. 3(a) demonstrates that the
longitudinal quantum fluctuation decays with spin quantum
number. The smallest S has the strongest quantum fluctuation.

In Ref. [18], the energy expression of S¼1 was given when a
higher-order Green's function 〈〈Sþ

i ; Szj S
�
j 〉〉 was employed. We

retrieved their derivation, and numerical results revealed that
the TCE and LCE are exactly the same as the dashed curves in
Fig. 3. This discloses that the precise process of 〈ðSzi Þ2Szj 〉 is

equivalent to the inclusion of the higher order Green's function
〈〈Sþ

i ; Szj S
�
j 〉〉.

Fig. 4 shows the effect of an external field on the energies in the
case of S¼5/2. The overall behavior of the curves are the same as
those in Fig. 2, except that the LCE in the case of S¼5/2 are always
negative, as shown in Fig. 4(b).

The energy formulas Eqs. (29) and (30) stand for the case
where the magnetization is nonzero. It was pointed out that the
influence of quantum spin effects on the magnetic short-range
order increased with a decrease in quantum spin value [27]. Our
work discloses that in the presence of the magnetic long-range
order, a smaller spin quantum number has a stronger longitudinal
quantum spin effect.

3. One-component magnetization: antiferromagnetic systems

The Hamiltonian is now

H¼ �1
2
J∑
i;j
〈Sþ

1i S
�
2j þSz1iS

z
2j〉� ∑

2

μ ¼ 1
½Kzμ∑

i
〈ðSzμiÞ2〉þbz∑

i
〈Szμi〉� ð32Þ

Here Jo0. We assume that the lattice is divided into two
sublattices, each with N/2 sites, which are labeled by the lower
case Greek letters such as μ, μ¼1, 2. The spin quantum numbers
might not be the same, denoted as S1 and S2, respectively, so that
the system might be a ferrimagnetic one. Correspondingly, we
define Spμ ¼ SμðSμþ1Þ; μ¼ 1;2.

It should be emphasized that the following treatment of the
AFM systems is not applicable to the case of zero temperature.
Hence, hereafter, when we mention T¼0, we actually means the
temperature very close to zero.

Now we choose the operators A¼ ðSþ
1m; S

þ
2nÞT and B¼

ðexpðuSz1iÞS�
1i ; expðuSz2jÞS�

2j Þ to construct Green's function Gðt; t′Þ
¼ 〈〈AðtÞ;Bðt′Þ〉〉. This is a matrix, and its Fourier component is
denoted as g(ω). The application of the EOM leads to a linear
equations

½ωI�P�g¼ F�1; ð33Þ
where F�1 is the commutator matrix of operators defined:
F�1 ¼ 〈½A;B�〉. The matrix P is

P¼
Jð0Þ〈Sz2〉þKz1C1〈S

z
1〉þbz � JðkÞ〈Sz1〉

� JðkÞ〈Sz2〉 Jð0Þ〈Sz1〉þKz2C2〈S
z
2〉þbz

 !
ð34Þ

Its eigenvalues ωτ(k), τ¼1,2 can be solved, and the eigenvector
matrix U and its inverse U�1 of P as well.

Although the Green's functions are in a matrix form, we can
follow the routine almost the same as the last section so as to obtain
the internal energy of the system. The TCE and LCE are

UTC ¼ �1
2
J∑
n
〈S�

2nS
þ
1m〉¼Φa;21〈S

z
1〉 ð35Þ

and

ULC ¼ �1
2
J∑
n
〈Sz1mS

z
2n〉¼

1
2

½�Sp1þ 〈Sz1〉þ3〈ðSz1Þ2〉�Φa;21þ2〈Sz1〉Φb;1

n
� Jð0Þ½Sp1� 〈ðSz1Þ2〉�〈Sz2〉þKz1½2〈ðSz1Þ3〉þ3〈ðSz1Þ2〉
�ð2Sp1�1Þ〈Sz1〉�Sp1��bz½Sp1� 〈Sz1〉� 〈ðSz1Þ2〉�g ð36Þ

respectively, where we have defined the notations

Φa;μν ¼
2
N
∑
k
∑
τ

UμτU
�1
τν

eβωτ �1
JðkÞ ð37Þ

and

Φb;μ ¼
2
N
∑
k
∑
τ

ωτUμτU
�1
τμ

eβωτ �1
ð38Þ

Fig. 4. The energies of a fcc FM lattice for bz¼1 and 20 as S¼5/2 and J¼100. (a) The
TCEs. (b) The LCEs. (c) The internal energy. Please note that the Zeeman energy is
not shown.
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The results obtained in Ref. [29] for S¼1/2 can be retrieved in the
same way with the caution that the exchange there was
anisotropic.

For an AFM lattice, S1 ¼ S2 ¼ S. When the external field is
absent, 〈Sz1〉¼ �〈Sz2〉¼ 〈Sz〉. The energy values at zero temperature
and the Néel point TN can be easily put down. At T¼0,

UTCðT ¼ 0Þ ¼ �1
2
ðj Jð0ÞjþKzCÞ〈Sz1〉∑

k

γ2kC
ð1�γ2kCÞ1=2

ð39Þ

and

ULCðT ¼ 0Þ ¼ ½Sp� 〈Sz〉�3〈ðSzÞ2〉�Φa;12þ2〈Sz〉Φb;1

� Jð0Þð〈ðSzÞ2〉�SpÞ〈Sz〉
�Kz½〈�2ðSzÞ3�3ðSzÞ2þð2Sp�1ÞSz〉þSp� ð40Þ

At T¼TN,

1
Sp
UTCðTNÞ ¼ � Jð0Þ

3
1

V �1
�1

� �
ð41Þ

and

1
Sp
ULCðTNÞ ¼

Jð0Þ
6

1
V �1

�1
� �

ð42Þ

The right hand sides of Eqs. (41) and (42) are in fact exactly the
same as those of Eqs. (25) and (26), which is due to the fact that
under RPA the Néel point TN of the antiferromagnet is the same as
the Curie point of the ferromagnet with the same exchange
strength. Again, the LCE is positive around the transition tempera-
ture, which means that the neighboring spins are parallel to each
other, although the exchange between them is antiferromagnetic.

Fig. 5 shows the TCE and LCE of bcc AFM lattices without the
field and anisotropy.

We proceed to deal with the correlation function 〈ðSzi Þ2Szj 〉 in the
way similar to Eq. (27) and to take the approximation of the higher
order correlation function as Eq. (28). The resultant LCE are

ULCðS41Þ ¼ � 1
Sp1þ1

½Sp1�ð2Sp1þ1Þ〈Sz1〉�3〈ðSz1Þ2〉
n

þ4〈ðSz1Þ3〉�Φa;21þ½�Sp1�3〈Sz1〉þ3〈ðSz1Þ2〉�Φb;1

þ Jð0Þ〈ðSz1Þ3〉〈Sz2〉þ Jð0ÞSp1〈Sz2〉þKz1〈2〈ðSz1Þ4〉
þ 〈ðSz1Þ3〉�2ðSp1þ1Þ〈ðSz1Þ2〉þðSp1�1Þ〈Sz1〉
þSp1〉þbz½Sp1�ðSp1þ1Þ〈Sz1〉þ 〈ðSz1Þ3〉�g ð43Þ

and

ULCðS¼ 1Þ ¼ �1
4
½2� 〈Sz1〉�3〈ðSz1Þ2〉�Φa;21

�1
4
½�2�3〈Sz1〉þ3〈ðSz1Þ2〉�Φb;1

�1
2
Jð0Þ〈Sz2〉þ

1
2
Kz1½2〈ðSz1Þ2〉� 〈Sz1〉�1�

þ1
2
bzð〈Sz1〉�1Þ ð44Þ

When the external field is absent, the longitudinal energies of
an antiferromagnet at zero temperature and the Néel point are

1
Sp
ULCðT ¼ 0; S41Þ ¼ � 1

SpðSpþ1Þ ½Sp1�ð2Sp1þ1Þ〈Sz〉�
�3〈ðSzÞ2〉þ4〈ðSzÞ3〉�Φa;21

þ½�Sp�3〈Sz〉þ3〈ðSzÞ2〉�Φb;1� Jð0Þ〈ðSzÞ3〉〈Sz〉

� Jð0ÞSp〈Sz〉þKz〈2〈ðSzÞ4〉þ 〈ðSzÞ3〉

�2ðSpþ1Þ〈ðSzÞ2〉þðSp�1Þ〈Sz〉þSp〉g; ð45Þ

1
2
ULCðT ¼ 0; S¼ 1Þ ¼ 1

2
�1
4
½2� 〈Sz〉�3〈ðSzÞ2〉�Φa;21

�

�1
4
½�2�3〈Sz〉þ3〈ðSzÞ2〉�Φb;1

þ1
2
Jð0Þ〈Sz〉þ1

2
Kz½2〈ðSzÞ2〉� 〈Sz〉�1�

�
ð46Þ

and

1
Sp
ULC S4

1
2
; TN

� �
¼ gðSÞJð0Þ

6
1� 1

V �1

� �
þK2aðSÞ; ð47Þ

where g(S) and K2a(S) are the same as those in Eq. (31).
We do not plot the curves of the LCE versus temperature

presented by Eqs. (43) and (44). We merely mention two facts
from which one can be aware of the curves. One is that at TN, the
right hand side of Eq. (47) is exactly the same as Eq. (31). The other
is the comparison of Eqs. (45) and (46) with (40) at T¼0. It is
difficult to prove that they are equal to each other, but the
numerical results turn out that they do not have significant
difference. This demonstrates that the consideration of the higher
longitudinal correlation functions significantly improves the ULC

values near T¼TN, but does not so near T¼0.

Fig. 5. The energies of bcc AFM lattices when the anisotropy and external field are absent at J¼�100 for the lowest five S values. (a) The TCEs (descending curves) and LCEs
(ascending curves). Near TC, ULC's are positive. (b) The internal energies.
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4. Three-component magnetization for ferromagnetic systems

In the above two sections, both the anisotropy and the field
point to the z direction, so that the magnetization does. If the field
orients arbitrarily, the Hamiltonian should be written, instead of
Eq. (2), as

H ¼ �1
2
J∑
i;j
SiSj�Kz∑

i
ðSzi Þ2�b∑

i
Si ð48Þ

Subsequently, the magnetization may have more than one com-
ponent. This case was first studied by Fröbrich et al. [12,13] for FM
films. Following their work, we investigated the bulk systems and
gave a formula for evaluating three-component magnetizations
applicable to any S value [16]. The calculation of the internal
energy in this case has not been touched yet.

The internal energy should be

UIN ¼ �1
2
J∑
j
〈Sþ

i S�
j 〉�1

2
J∑
j
〈Szi S

z
j 〉�Kz〈S

zÞ2〉�b〈S〉 ð49Þ

As long as the magnetization is nonzero, its z-component is so due
to the existence of the Kz term. In spite of this fact, the first two
terms in Eq. (49) should not be regarded as the transverse and LCE,
because the word “longitudinal” refers to the direction parallel to
the magnetization, not just one of its components. They are
therefore denoted instead as Uxy and Uz, respectively.

As has been presented in Refs. [16] and [34], we have to choose
the operators A¼ ðSþ ; S� ; SzÞT and B¼ expðuSzÞðSþ ; S� ; SzÞ to con-
struct the Green's function Gijðt; t′Þ ¼ 〈〈Ai;Bj〉〉. This is a matrix
Green's function, and its Fourier component is denoted as g(ω).
The application of the EOM leads to a linear equation in the form
of Eq. (33) with matrix F�1 being F�1 ¼ 〈½Ai;Bj�〉. The matrix P and
the solution of the linear equations were presented in Ref. [16].

The following quantities were essential: Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HþH� þH2

z

q
, where

Hz ¼ Jð0Þð1�γkÞ〈Sz〉þKzC〈S
z〉þbz, H7 ¼ Jð0Þð1�γkÞ〈S7 〉þb7 , γk ¼

JðkÞ=Jð0Þ andb7 ¼ bx7 iby.
Under the RPA, the magnetization components observe a

regularity condition [12,13,16], from which one obtains

qα〈S
β〉¼ qβ〈S

α〉;α¼ þ ; � ; z; ð50Þ

where

qαðkÞ ¼
HαðkÞ

EðkÞcothðβEðkÞ=2Þ;α¼ þ ; � ; z ð51Þ

In terms of the spectral theorem, the expression of the Uxy can
be derived

Uxy ¼ �1
4

5� 3

R2

� �
〈Sz〉∑

k

JðkÞ
qz

ð52Þ

where

R2 ¼ 1þjqþ =qzj2 ð53Þ
When the field just points to the z axis, and the magnetization is
along this direction without other components, we have H7 ¼ 0
and q7 ¼ 0. Then it can be checked that Eq. (52) goes back to Eq.
(19). In this case, the Uxy can be regarded as the TCE.

The merit of treatment of the three-component magnetization
is that all the necessary correlation functions, including 〈Szi S

z
j 〉, can

be evaluated. This enables one to calculate the Uz without resort-
ing to Eqs. (14) and (17). Here we simply put down the final result
without giving the tedious derivation

Uz ¼ �1
4

1� 3

R2

� �
〈Sz〉∑

k

JðkÞ
qz

ð54Þ

The energies being in this form, it is difficult to estimate theirs
values at the two special temperatures as we did in the last two

sections. Nevertheless, it is guaranteed that UxyþUz is always
negative.

We have to point the two shortcomings of Eq. (54). This
equation is not valid for q7 ¼ 0, since in the course of deriving it
we have divided qþ . Thus, unlike the case in Sec. II, where the
energies can be calculated even when the magnetization close to
zero, Eq. (54) stands for the cases when qþ , as well as 〈Sþ 〉, does
not tend to be zero. This is one of the shortcomings of Eq. (54). In
Sec. II, one is able to explore the better expression of the LCE Eqs.
(29) and (30) by making the approximation to the higher order
correlation functions such as Eq. (28). The key is to employ Eqs.
(14) and (17). In the present section, these equations are not used,
and the longitudinal correlation function 〈Szi S

z
j 〉 is directly calcu-

lated within the RPA. Therefore, the degree of approximation of Eq.
(54) should equivalent to that of Eq. (23), and it is difficult to
explore the better expressions like Eq. (29). This is the other
shortcoming of Eq. (54).

5. Summary

In this paper, we derived the internal energies of some
magnetic systems modeled by Heisenberg Hamiltonian with the
nearest neighbor exchanges. The internal energy mainly include
two parts: the TCE and LCE. We firstly derive the expressions for
FM systems where the magnetizations are along the z direction. By
making use of Eqs. (14) and (17) derived from the spectral theorem
Eq. (8), we are able to reckon higher order longitudinal correlation
functions such as 〈ðSzi Þ2Szj 〉 so as to achieve better results, e. g., Eqs.
(29) and (30). For AFM systems, the deriving procedure is similar
to that of FM ones. An interesting result is that for the three
smallest spin quantum numbers, the LCE around the transition
temperatures are positive for both FM and AFM systems, which
means that the neighboring spins in FM (AFM) systems are
antiparallel (parallel) to each other in spite of the FM (AFM)
exchanges between them. This is attributed to quantum fluctua-
tion which is believed anisotropic. A smaller spin has a stronger
quantum longitudinal fluctuation, and this effect cannot be totally
suppressed by an external magnetic field. The consideration of the
higher longitudinal correlation functions significantly improves
the LCE near the transition temperatures for both FM and AFM
systems, while it does not so near T¼0 for AFM ones.

At last, the case of three-component magnetization of FM
systems is investigated. The main parts of the energy are Uxy and
Uz. When the magnetization point to the z direction, the expres-
sion of Uxy becomes the same as that of TCE. The two shortcomings
of the expression of Uz are pointed out.

Since now the expressions of the internal energy have been
available, see Eqs. (29), (30), (43) and (44), other thermodynamic
quantities such as free energy can be calculated consequently.
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