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ABSTRACT

We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the
use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin
configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling
parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit
with substrate is considered in GSH at the calculation of exchange integrals J;; of the nanosystem Ni;-Si
in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (en-
vironment) with atoms of the Ni;-cluster. The energy pattern was found from the effective GSH Ha-
miltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor
operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit
based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni
clusters on the silicon surface. The solution of the problem of the entanglement between spin states in
the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral
gap in their density of states. For quantifying the distribution of the entanglement between the in-
dividual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of
entanglement (DOE). In this study we have developed and used the advanced high-precision numerical
techniques to accurately assess the details of the decoherence process governing the dynamics of the
N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the
N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized
Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed
time (0.327 ps). The comparison of the energy pattern with the anisotropic exchange models con-
ventionally used for the analysis of this system and, with the results of the experimental XANES spectra,
shows that our complex investigations provide a good description of the pattern of the spin levels and
the spin structures of the nanomagnetic Ni; qubit. The results are discussed in the view of the general
problem of the solid-state spin qubits and the spin structure of the Ni cluster.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

molecules, etc. Among many candidates, spin-based solid-state
systems, such as quantum dots [2,3] or spin centers in host crystals

The promise of quantum computers to solve classically non-
computable problems [1] has generated the great excitement and
much research activity in different areas of physics, mathematics
and engineering. Various physical systems have been proposed for
implementation of quantum bits (qubits) in quantum information
processing devices: trapped ions, atoms in QED cavities, magnetic
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(phosphorus donors in silicon [4], NV centers in diamonds [5,6]),
constitute attractive candidates for qubits: these systems are well
scalable, can be fabricated and operated by the methods of mod-
ern microelectronics, and advanced spin-resonance techniques are
well-suited for the efficient quantum state manipulation. Thus, it
is not surprising that a large number of leading research groups,
both theoretical and experimental, focus their studies on devel-
oping and investigating solid-state spin-based qubits. It should be
noted that the study of such objects is only at the beginning, as
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opposed to molecular systems [7], and is currently more inter-
esting and important for fundamental reasons.

Since the quantum computing technology is being improved
and quantum computers with the nontrivial number of N qubits
appear feasible in the near future, an application of the quantum
computers with N > 2000 has ripened [8]. The information tech-
nologies provide very interesting challenges and an extremely
wide playground in which scientists working in materials science,
chemistry, physics and nano-fabrication technologies may find
stimuli for novel ideas. Curiously, the nanometre scale is the
cluster scale. So we may wonder whether, how or simply which
functional magnetic clusters can be regarded in some ways as the
possible components of the solid-state electron spin qubit, which
is the fundamental concept of the quantum computation. Key
challenges in building a quantum computer from spin qubits in
physical systems are the preparation of arbitrary spin states, im-
plementation of the arbitrary qubit evolution, reading out the
qubit states, overcoming of the decoherence and doing all this on a
large scale; that is, with a large number of qubits or a spin system
of N-qubits (SSNQ) with the definite spin structure. For the pur-
poses of implementing quantum computation, the physical system
can be treated as a SSNQ in which the couplings between the
qubits can be controlled externally. The concept of a SSNQ can be
related to the problem of the quantum spin structure, where the
nontrivial applications may exist for computers with a limited
number N of a qubits. The precise relationship between the type of
the entanglement and the distribution of the coupling strengths in
the SSNQ can be strongly dependent on external parameters, such
as applied magnetic fields and temperature. In this context, sys-
tematic studies of the relationship between the amount and nat-
ure of the entanglement and the spin structure of the SSNQ has
been pursued in order to identify the optimal spin structures to
create specific types of the entanglements [9].

Spins are alternative complementary to charges as degrees of
freedom to encode information. Recent examples, like for instance
the discovery and application of Giant magnetoresistance in
Spintronics, have demonstrated the efficient use of a spins for
information technologies [11]. Moreover, spins are intrinsically
quantum entities and they have therefore been widely in-
vestigated in the field of the quantum-information processing. The
cluster nanomagnets of a transition metal are real examples of
finite spin-clusters (0D), and therefore they constitute a new
benchmark for testing models of the interacting quantum objects.
New physics of the cluster magnets feeds hopes of certain pro-
spective applications, and such hopes pose the problem of un-
derstanding, improving, or predicting desirable characteristics of
these materials. The magnetic transition metal nanostructures on
non-magnetic substrates have attracted recently large attention
due to their novel and the unusual magnetic properties [12]. The
supported clusters experience both the reduction of the local co-
ordination number, as in free clusters, and the interactions with
the electronic degrees of freedom of the substrate, as in embedded
clusters. The complex magnetic behavior is usually associated with
the competition of the several interactions, such as interatomic
exchange and bonding interactions, and in some cases the non-
collinear effects, which can give rise to the several metastable
states close in energy. The ground state can therefore be easily
tuned by external action giving rise to the switching between
different states [13].

Therefore the goal is ambitious: it is not just a matter to store
information in a 3d-metal cluster on a non-magnetic substrate, but
we may think to process information with a cluster and then to
communicate information at the clusters containing from mag-
netic 3d-metal atoms on a silicon surface. Among the various
candidates for a solid-state qubits, spins have been of the parti-
cular interest due to their relative robustness to decoherence

compared with other degrees of freedom, such as a charge. The
most coherent solid-state systems investigated so far are the spins
of well isolated donors in bulk 28Si, which produce coherence
times (T2) of up to seconds (extrapolated) for the electron spin and
minutes for the nuclear spin, which are comparable to those of a
ion trap qubits [10]. The problem of decoherence comprises our
main motivation to study the decoherence dynamics of a N-qubits
system [14-16]. From the experimental point of view, the coherent
transition from a coherent to an incoherent dynamics can be
probed by the observation of Rabi oscillations between the
quantum states of the spin processing in a static magnetic field
[24]. A related problem in the context of the present study is the
Rabi oscillations in a SSNQ. Here we suggest for construction of the
spin qubit the Ni small clusters on a silicon surface. The stabili-
zation of Rabi oscillations and the maximum of the entanglement
were discussed in this SSNQ. In recent years, the entanglement has
attracted the attention of many physicists working in the area of
quantum mechanics [17-19,24]. This is due to the ongoing re-
search in the area of quantum information [20]. Theoretical stu-
dies are also important in the context of spin interactions inside
structured reservoirs such as a metal cluster on a nonmagnetic
surface. Ni is the unique among the transition-metal adatoms,
because its half-filled valence configuration (3d34s2) yields strong
interatomic bonding leading to magnetic frustration. We apply our
method to the Ni clusters deposited on a Si(111) surface. In the
present work we study the entanglement between the spin states
in the spin spectrum. In our model, a spin state interacts with the
spin structure of the continuum at the temperature interval 0-
300 K, and the entanglement properties between the spin states in
the spin structure are considered. Using the global entanglement
as a measure of the entanglement, we derive a pair of distributions
that can be interpreted as the density of entanglement in terms of
all the eigenvalue of the spin spectrum. This distribution can be
calculated in terms of the spectrum of the spin excitation of the
Ni-cluster on a Si (111)-surface. With these new measures of the
entanglement we can study in detail the entanglement between
the spin modes in the spin structure. The method developed here,
in terms of the entanglement distributions, can also be used when
considering various types of the structured reservoirs [22]. The
low-lying excited states of a magnetic system are generally de-
scribed in the of a general spin-Hamiltonian [22,23]. For a mag-
netic system with many spin sites, this phenomenological Ha-
miltonian is written as a sum of pair-wise spin exchange interac-
tions between adjacent spin sites in a cluster and a surface.

As the most properties depend on the unique features of the
local atomic structure, the diagnostic methods to the control
structural parameters, such as the distances between the atoms,
with the very high precision are required. In this work, X-Ray
Absorption Near-Edge Structure (XANES) spectroscopy was used
both to study the adsorption geometry and to get information
concerning the electronic properties of the deposited Ni; clusters
[25,26]. XANES spectroscopy is now a powerful tool of investiga-
tion of the atomic and electronic structure of different classes of
materials in a condensed state. The XANES spectroscopy has es-
sential advantages as compared with other methods of atomic
structure analysis. For example, in contrast to X-ray and neutron
crystallography, XANES spectroscopy can be used for the in-
vestigation of materials without long order in atoms arrangement.
Extended X-ray Absorption fine structure (EXAFS) spectroscopy
also allows studying the compounds without long order, but it can
give only information about the coordination numbers and in-
teratomic distances, while XANES is very sensitive to both the
small bond distance and bond angle variations. For example,
XANES allows the determination of the interatomic distances with
0.02 A accuracy as well as the study of bonding angles with the
accuracy up to several degrees. Thus, on the basis of XANES
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analysis it is possible to determine the full 3D atomic structure of
studied materials. Previously, we have used the method of X-ray
absorption spectroscopy for a comprehensive study of copper
nanoclusters and diluted magnetic semiconductors [25,26]. The
knowledge of the properties of nanoclusters made it possible to
obtain information on how the transition from the atom or cluster
to the solid state can occur. In order to extract the necessary in-
formation from the experimental XANES spectra one needs to
perform theoretical analysis. In the present research the theore-
tical XANES spectra were simulated using FEFF9.0 program code
[27,28]. FEFF9.0 code is based on the real space full-multiple
scattering theory. The code uses the cluster approach for XANES
spectral calculations and, therefore (in contrast to program based
on the band structure calculations), can be applied for the study of
compounds without long order in atom distributions, like clusters.
The electronic structure of investigated clusters was analyzed on
the basis of the density functional theory (DFT) implemented in
the ADF2013 code [29,30].

2. The theoretical approach

We are using here a quantum algorithm with the three distinct
steps: the calculation of the magnetic properties for the qubit;
encoding a spin wavefunction into the qubits (the spin structure);
a spin-dynamics simulating its time evolution. In order to give a
theoretical description of a magnetic cluster we exploit the irre-
ducible tensor operator technique [23]. Let us consider a spin
cluster of an arbitrary topology formed from an arbitrary number
of the magnetic sites, N, with a local spins Sy, S,,..., Sy which, in
general, can have different values. A successive spin coupling
scheme is adopted

S1+S= 5(2), S@ 4 S3= 5(3), [ SIN-1) 4 Sn=S, 1

where S represents the complete set of intermediate spin quantum
numbers S®, with k=1,2,...,N— 1. The eigenstates |[SM) of the spin-
Hamiltonian are given by the linear combinations of the basis
states [SWM®):

N
ISM) = Y (C,ISM)|SWM®),
u=1 ()

M =-S5, ..., S and the coefficients (c,|SM) can be evaluated once
the spin-Hamiltonian of the system has been diagonalized. Each
term of the spin-Hamiltonian can be rewritten as a combination of
the irreducible tensor operators technique [23]. The work [21]
focuses on the main physical interactions which determine the
spin-Hamiltonian and to rewrite them in terms of the ITO's. The
exchange part of the spin-Hamiltonian is introduced

ﬁspin = ﬁo + I/'I\BQ + ﬁ,qs + ﬁAN. A3)

The first term I% is the Heisenberg Hamiltonian, which represents
the isotropic exchange interaction, Hpg is the biquadratic exchange
Hamiltonian, Hys is the antisymmetric exchange Hamiltonian, and

Hay represents the anisotropic exchange interaction. Con-
ventionally, they can be expressed as follows [21]:

ﬁo =-2 Z]if§f§f
if “)

Heg = = Y jiy SiSp?
i.f 6)

I/‘I\As = E G,’f[g\i X §f]
iif (6)

Hw=-2Y Y Js§'Ss
if a @

with a=x,y,z.

We can add to the exchange Hamiltonian the term due to the
axial single-ion anisotropy:
Hz=Y Digzz(i)

i ®
where Jirand Jif are the parameters of the isotropic and anisotropic
exchange iterations, ji are the coefficients of the biquadratic ex-
change iterations, and Gy =-Ggp is the vector of the antisymmetric
exchange. The terms of the spin-Hamiltonian above can be written
in terms of the ITO's.

In this paper, we use the results of first-principles calculations
of the exchange parameters J; Here, we introduce the scenario
[34] to construct the parameters within the classical spin model
that contains the interactions, in principle, up to an arbitrary order.
Our development of a non-collinear method is based on semi-re-
lativistic first-principle calculations of the energy in the frame-
work of the density functional theory (DFT) within the linear
combination of the atomic orbitals (LCAO) method [35]. We sug-
gested a straightforward approach that allows the direction of the
magnetic moment of any atom to be fixed by using only an on-site
information [36]. Thus, we can obtain a sufficiently large number
of states with different non-collinear magnetic orderings and map
them onto an effective spin model by using least-squares methods.

The Heisenberg and biquadratic exchange are the isotropic in-
teractions. In fact, the corresponding Hamiltonians can be de-
scribed by the rank-0O tensor operators and thus these have the
non-zero matrix elements only with states with the same total
spin quantum number S (AS, AM =0). The representative matrix
can be decomposed into the blocks depending only on the value of
S and M. All the anisotropic terms are described by the rank-2
tensor operators which have the non-zero matrix elements be-
tween states with AS=0, + 1, + 2 and their matrices cannot be
decomposed into the blocks depending only on the total spin S in
account of the S-mixing between spin states with different S. The
single-ion anisotropy can be written in terms of the rank-2 single
site ITO's [21]. Finally, the antisymmetric exchange term is the sum
of the ITO's of the rank-1.

The ITO technique has been used to design the MAGPACK
software [23], a package to calculate the energy levels, bulk
magnetic properties, and inelastic neutron scattering spectra of
the high nuclearity spin clusters that allows studying efficient
properties of nanoscopic magnets.

2.1. Calculation of the spin structure of the N-spin system

One of the major challenges in quantum computing is to
identify a system that can be scaled up to the number of qubits
needed to execute the nontrivial quantum algorithms. Peter Shors
algorithm [8] for finding the prime factors of the numbers used in
the public-encryption systems (numbers that typically consist of
more than a hundred digits) would likely require a quantum
computer with e several thousand qubits. Depending on the error
correction scheme appropriate to the particular computer, the
required number could be much larger. The solid-state spin
quantum computers may be more likely candidates. In this work
we offer the model of the quantum computer based on studying of
the spin structure of the 3d-metal Ni clusters on a silicon surface.
In our model the total electronic structure can be written as a sum
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of a non-spin-polarized charge, DOS npos(e), and the spin DOS,
Spos (e),

n(e) = npos(€) + Spos(€) 9

The first part npes(e) is connected with a one-electron structure
and can be received by any DFT method. The second part Spgs (¢) is
purely a spin structure and is defined only proceeding from the
spin model of a cluster. In order to separate in the experimental
spectra the contributions from a purely spin states and from the
excitations connected with the one-electron transitions, is rea-
sonable within an uniform approach to receive the electronic
structure of a cluster and then, using the one-electron data for the
calculation of the exchange integrals, to calculate the spin struc-
ture by the ITO method within the generalized spin Hamiltonian
ﬁsp,-n. We have developed the idea of spins as a degree of freedom,
with which models are built [37]. The spin magnetic moment due
to the exchange interaction is

M = — 2(S)up/7, (10)

where

A A \2 A \2 A \2
)= J<s> + <sy> + <s>

is the spin structure. With the spin-Hamiltonian ﬁspm result (3) we
can obtain the quantum mechanical expectation values

Se) = (SMISISM), an
(Sy) = (SMISy SM), (12)
S.) = (SMIS, ISM). (13)

With the algebra of the spin operators we can obtain the ex-
pectation values for Hgpin

A 1 N 5
(Sx) =5 2 i
u=1

(14)
A i~
Sy)=- ) ; CiBy as)
A X,
(Sz)=;CﬂM(") 6)

where

A, = [SOE® + 1) = MOM® + 1)

+SWESW 4 1) - MOM® — 1)

and

B, = JSW(S®W + 1) — MOM® + 1)

— JSWE® + 1) - MOM® — 1)

The spin DOS S(e) can be done by inserting the following func-
tions:

N
Sx(©) = Y c2Ab(e —€,),
= a7

N
Sye) = Y c2B,s(e —€,),
p=1 (18)

N
Sz(e) = Y. CZMWs(e — e,).
u=1 (19)

The spin DOS is

Spos(e) = |[S3(e) + S3(e) + S2(e) 20)

2.2. Calculation of the magnetic properties

Once we have the energy levels, we can evaluate different
thermodynamic properties of the system as the magnetization, the
magnetic susceptibility, and the magnetic specific heat. Since in
further researches the anisotropic part of GSH will be only scalar,
the magnetic properties of the anisotropic system do not depend
on the direction of the magnetic field. Thus we can consider the
external magnetic field H, directed along arbitrary axis z of the
cluster coordinate frame that is chosen as a spin quantization axis.
In this case the energies of the system will be ¢,(Ms) + g.fMsH;,
where ¢,(M;) are the eigenvalues of the GSH containing the
magnetic exchange and the double exchange contributions (index
p runs over the energy levels with given total spin protection Mg).
Then the partition function in the presence of the external mag-
netic field is given by

Z(H:) = ), expl — e, (Ms)[kT] )’ exp[ — g.MsH,/KT]
Ms,u Ms (21)

Using this expression one can evaluate the magnetic susceptibility
x and the magnetization M; by the standard thermodynamic de-
finitions

()
oH Jy_o (22)

oln Z
oH 23)

M, (H) = NkT

2.3. The spin-dynamics simulations

Broadly speaking, a quantum computer is a physical system
that can be initialized to some known state |¥ (t;)) = |¥ (to)), and
whose dynamics can be controlled so as to induce any unitary

A
transformation of the state vector |¥ (t;)) = U|¥ (to)). In the stan-
dard approach, the computational process is given by the unitary
time-evolution operator 0 of the state vector, and is driven by the
application of the external stimuli. Under the assumption of a
small time step At we can expand the time evolution operator

O(t + At, £) ~ (I — iHAL %) + O(AL2),

where H = Hypin — ial® with Hgi, and T being Hermitian operators
and a being a damping constant (a > 0), leading to the energy
dissipation. The dynamic behavior of a spin is determined by the
equation of motion, which can be derived from the quantum
theory with the spin Hamiltonian ﬁsp,-n. This Hamiltonian, which

describes the interaction of the spin § with the external magnetic
field, given by its flux Hey, can be expressed as

ﬁspin =- Heffg 24)

where the effective magnetic field Hey is an external magnetic
field H;, the anisotropy fields Hgy, the exchange interaction Heyx and
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external magnetic pulse field Hpyse(t). Here we use the approx-

imation for Hey = HIF™ with replacement S = M; = (S). In [39] it
was demonstrated that

AS) _ _ gy 5 Hoin a[(§) x a<s>]
at o(S) Jat

25)

This time-dependent equation is similar to the Landau-Lifshitz—
Gilbert (LLG) equation [40] for the spin magnetic moment M; (10)
dynamics

oM; mean oM
praiaie 2M; x Hgif™ + aMs x p 26)

In order to solve this equation, as an effective magnetic field, we
take the variational derivative of the energy with respect to the
magnetization

¥
HMean — _
i M,
where § is the free energy of the magnetic nanosystem

§=— NkgT In Z(H;)

with the partition function (21). Here

M, =- 5
oH

and

oM
" oH

’

where H is the magnetic field. Thus

calculated by formulas (22) and (23). We have derived a general
form of the time-dependent spin equation for a system of the
spins precessing in an effective magnetic field by specifying all the
interactions in GSH (3).

2.4. The entanglement in the N-spin system

Identifying and measuring of the entanglement in multi-spin
systems presents various complications. Apart from the case of a
two-qubit system, where the entanglement can be identified both
for a pure and a mixed state [41-44], a multi-qubit entanglement
is an open problem [45-47]. For the analysis that follows, we will
be using the measure of the recently proposed density of en-
tanglement. Based on the residual entanglement [47], we present
the global entanglement of a N-spin state as collective measures of
a multi-particle entanglement. These measures were introduced
by Meyer and Wallach [48]. The MeyerWallach (MW) measure is
written in the Brennen form [49] and we use the Q-measure [48],
which corresponds, for a cluster with N qubits, to the average
purity of the reduced density matrices of each qubit

N
Q) =) 2[1 - Tr(pd)]
kg ¢ @7

where py is the reduced density matrix for kth qubit. The problem
of the entanglement between spin states in the N-spin systems
becomes more interesting when the clusters with a spectral gap in
their density of the states are considered. For quantifying the
distribution of the entanglement between the individual spin ei-
genvalues in the spin structure of the N-spin system we use the
density of the entanglement (DOE) [50]. The density of the
entanglement e(e,, €, €) de gives the entanglement between the

spin eigenvalue ¢, and the spin eigenvalue ¢, in the energy interval
¢, to ¢, + de,. One can show that the entanglement distribution
can be written in terms of a spectrum of a spin excitation

S(en ©) = [cif'5(e —€2) 28)
and
e(ey € €) = 25(es, €)S(ey, €) (29)

where the coefficient (c,|SM) is the eigenvector (2) of the spin-
Hamiltonian (3) of the cluster. Thus, the entanglement distribu-
tions can be derived from the excitation spin spectrum

oWf & of

(e—<—:,‘)2+A2 151 (e—(—:l)2+A2 30)

202 &
Qo=1-=5 ;1
where A is the Lorentzians width. Though the very nature of the
entanglement is the purely quantum mechanical, we saw that it
can persist for the macroscopic systems and survive even in the
thermodynamical limit. In this section we discuss how it behaves
at the finite temperature of the thermal entanglement. The states
in the N-spin system, describing a system in the thermal equili-
brium states, are determined by the generalized spin-Hamiltonian
and the thermal density matrix

exp( - Hspin/kT)

T =
P Z(H,) 31

where Z(H,) is the partition function of the N-spin system. The
thermal entanglement is

242 % |C

,,‘2 expl — e,/KT]

,T,H)=1-
Q(€ 2) ﬂzNZ(Hz)z = (e — 6”)2 +A2
y % |c:]* expl — e,/kT]
i1 (e —e)? + A2 32)

2.5. Calculation of the density of states npos ()

The total density of states npos (¢) of Ni clusters was calculated
by the all-electron density functional theory (DFT) approach im-
plemented in the ADF2013 code [29,30]. The main point of the
density functional theory is that the potential acting on each
electron of all the other electrons in the molecule or crystal de-
pends only on the electron density of the ground state and its
gradient. Thus, we can apply the one-electron formulation of a
system of N interacting electrons by introducing the appropriate
local exchange-correlation potential Vxc(r), in addition to any ex-
ternal potentials V. (r) and the Coulomb potential of the electron
cloud V¢ (r) and it has the following form:

(= 2V2 4 Vot (T) + Ve(T) + Vie (D) (T = eiyi(T) 33)

The one-electron molecular orbitals ¢; with the appropriate orbital
energies ¢ define precise electronic charge density and, in prin-
ciple, give access to all the properties, because they are all ex-
pressed in terms of density functional, especially energy. In addi-
tion, they allow us to represent the system as a set of independent
electron orbitals. In our calculations the electronic configuration of
the Ni; cluster was described by the polarized triple zeta (TZP)
basis set of the Slater-type orbitals. The total DOS was obtained
using the BLYP exchange functional which is equivalent to Becke
(exchange) [31] and Lee-Yang-Parr (LYP correlation) [32]. The
calculations were done for the high-spin state of Ni; cluster.
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3. Results and discussion

Here we present the results of the application of our theoretical
and experimental approach to study of the N-qubits from seven
nickel atoms interacting with a Si (111)-surface in terms of nu-
merically solvable DFT-models for the exchange integrals J; and
we exploit the ITO technique [21] for the calculation of the spin
structure of the N-qubits system. In practice, this model was ap-
plied to the nanosystem (Ni,-cluster on Si (111)-surface) and
provides an understanding of the chemical bonding of the nickel
nanoparticles with the silicon substrate. It is advantageous to have
access to sufficiently accurate DFT-total energies to compare the
different competing spin configurations. In the most first-princi-
ples calculations of the magnetic systems only ferromagnetic or
some antiferromagnetic states were considered. Along with these
collinear magnetic configurations, many nanomagnetic clusters
show the non-collinear ground states, such as conical or spin
spirals or commensurate superpositions of several spiral spin-
density waves. To access such states from the first principles, the
vector-spin DFT, which treats the magnetization density as a vec-
tor field (and not as a scalar field as in the collinear DFT calcula-
tions), has to be applied [35,36]. The ab initio magnetic interac-
tions are mapped onto a certain parametric GSH model (in the
simple cases, the Heisenberg-Dirac-Van Vleck (HDVV) model),
which is studied by using the parameters extracted from the mi-
croscopic evaluation [13]. Although one of the fundamental para-
meters is the magnetic moment of the single cluster, ab initio
studies of its origin are scarce, so little is known about the cluster
spin structure. One of the reasons for the lack of ab initio studies is
the number of metal ions as spin sources. The LCAO methods,
including the electronic and the spin interactions such as the
vector-spin DFT, are applicable for these clusters owing to large
number of their active electrons and active spaces, and to the
quantum chemical description of the magnetic anisotropy of the
nanosystems. Our computations of the electronic and the mag-
netic properties are based on the LCAO method in the framework
of DFT and have been performed with the package SIESTA [53]
which was adapted for an investigation of the non-collinear
magnetic systems. Starting from the generalized gradient ap-
proximation (GGA) for the spin-polarized systems, we apply our
on-site constraint method for the systems with the arbitrary
magnetic structures to determine the ground state and a set of
excited magnetic configurations. To describe the atoms in the
SIESTA code, we generated the pseudopotentials for the atomic
elements according to the Troullier and Martins procedure [51]
with the 3p-semicore states for the Ni atoms. A double-{ polarized
basis set has been used for the Si atoms and a triple-{ polarized
basis set for the Ni atoms. The exchange-correlation functional
PBE [52] was employed. For the real space grid, we set a uniform
mesh corresponding to an energy cut-off of 200 Ry. We wish to
determine the exchange interaction parameters from the first
principles by calculating the appropriate total energies and map-
ping these results onto the Heisenberg model ﬁspm. The orienta-
tional energy dependence (i.e., the dependence of the mutual
classical spin orientations) can be interpreted in terms of a clas-
sical spin system with an effective spin Hamiltonian. The magnetic
state of N atoms can be characterized by the array {Mg">},»:1___N
where M) = 4;S; is the spin magnetic moment of a particular ion i
and y; is the magnitude of the magnetic moment. Our calculations
result in the values of magnetic moments is u; = 1.053 yp,
py = 0.876 pup, us_7 = 0.9 up. In general, the energy of a spin system
up to the second order with respect to the spin operators (or the
classical spin values) includes the exchange-interaction and the
magnetic-anisotropy terms. Since the spinorbital interaction [54]
is omitted, the anisotropy terms do not appear in the present
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Fig. 1. The anisotropic spin-Hamiltonian spectra of Ni; cluster on a silicon surface.

calculations and, therefore, the exchange interaction can be re-
presented solely by the isotropic HDVV term as shown in Eq. (4),
where Jir is the isotropic exchange coupling constant between
spins i and f

E{Sih, Uph) = X JySi-Sy
i>f (34

To obtain the exchange coefficients Ji, we fit the total energy
E({Si}, Uy )) of the spin system, Eq. (35), to the orientational
potential relief by using the y* method. For calculation composed
of Has and Huy in Eq. (3) we used a technique [55].

The calculated (within the GSH model) spin levels of Ni; are
shown in Fig. 1. They are grouped according to the spin moment
M;. A peculiar feature of the energy pattern is the presence of the
levels belonging to M;=0 (the ground state and the low lying
excited states) and M;==+(1-7) (the highly lying excited states)
separated by a small gap 4, and the sets of the excited levels
(>300 meV) are well separated from the low-lying levels. The ex-
change integrals describe the interaction between the spins of the
neighboring atoms. From the analysis of the calculated values of
the exchange integrals Jir of the nickel cluster on a silicon surface it
follows that the greatest values 14.2-10.8 meV turn out only for
the nearest neighbors further their values sharply decrease (ap-
proximately by 3 orders). In this regard our estimates show that
the cluster from seven atoms well describes the spin structure of a
nickel surface. In our model the total electronic structure can be
written as a sum of a non-spin-polarized,charge DOS npos (), and a
spin DOS, Spos(e). The spin DOS S(€) of Ni; cluster on a silicon
surface is present in Fig. 2. Fig. 3 shows the projected total npos ()
of the Ni; cluster calculated without taking into account the re-
lativistic effects. As one can see from the spectrum, there are the
free electronic states higher than the LUMO level, which describe
well the calculated spin DOS S(e) of Ni; clusters (see Fig. 3).

The comparison of the projected spin DOS S (¢) of Ni; cluster on
a silicon surface and the one-electron npos(e) of Ni, cluster is
shown in Fig. 4. In this figure, the Ni 3d-hole one-electron cluster
states which coincide with low-lying (0-500 mV) excited spin
states have been allocated.

The properties of the 3d-electrons are best probed in an X-ray
absorption experiment by the excitation of 2p core electrons to
unfilled 3d states. In principle, X-ray absorption spectra contain
contributions from both p — d and p — s transitions, but in prac-
tice the p —» d channel dominates by a factor >20. The line in-
tensities, denoted I}, and I;5, respectively, are directly proportional
to the number of d holes. The use of circularly polarized X-rays
opens the door for spin studies (XMCD spectroscopy). In this
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where N; and N, are the numbers of d holes with the spin 1 and the
spin |, respectively. Now the two-spin model is the main model in
XMCD [56]. However it is surprising that the treatment of the
X-ray absorption spectra, in general, is based on the simplified
model neglecting a mixing of the spin states. Undoubtedly, it
would be useful to reconsider interpretation of these spectra,
already taking into account mixing of spin states.

In this work X-Ray Absorption Near-Edge Structure (XANES)
spectroscopy was used both to study the adsorption geometry and
to get information concerning the electronic properties of the
deposited Ni-clusters. An interpretation of the experimental
XANES data, which were taken from [33], was provided in the
present study by model spectra, based on real-space multiple-
scattering approach implemented in the FEFF9 program code
[27,28]. FEFF9 uses an ab initio self-consistent real space multiple
scattering approach, including polarization dependence, core-hole
effects, and local field corrections, based on self-consistent, sphe-
rical muffin-tin scattering potentials.

In Fig. 5 we show the comparison between the theoretical
spectrum, calculated in the one-electron approximation, with the
experimental one, taken from [33]. The experimental spectrum
was measured for the similar system of Ni clusters grown on the
carbon nanotube layer. We have chosen the experimental data as
the most suitable for our system Ni clusters on the silicon surface
because silicon and carbon atoms have the similar configuration of
the electronic shell - [Ar]ns2np3, where n=2 and 3 for carbon and
silicon, respectively. As one can see, there are three features on the
experimental spectrum called A;, A, and As, which represent the
spin structure of the Ni clusters. This structure cannot be repeated
without taking into account of the multiplet effects. This fact is
obvious from the theoretical spectrum calculated by the one-
electron FEFF9 code. If we compare the spin DOS S (¢) of Ni; cluster
on a silicon surface with the post-edge region of the experimental
Ni L3-XANES spectrum for Ni catalyst nanoparticles (see Fig. 6),
one can notice that the energy position of the features of spin DOS
S(e) coincides with the post-edge features of the absorption
spectrum of Ni clusters.

A studying of the decoherence in the solid-state spin-based
qubit systems was the focus of our project. Since the decoherence
is a complex many-body non-equilibrium process, and its de-
scription by purely analytical means is rarely possible, our main
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Fig. 5. The theoretical one-electron and experimental NilL;-edge XANES for Ni,
cluster on a silicon surface.
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tool was the direct and highly accurate numerical solution of the
time-dependent Schrédinger equation for the whole system (qu-
bits plus their silicon substrate). This is very difficult but extremely
reliable approach, involving no approximations about a system or
a environment. In this study we have developed and used the
advanced numerical techniques to accurately assess the details of
the decoherence process governing the dynamics of SSNQ inter-
acting with a silicon surface. A well-studied model for the deco-
herence is a central-spin system coupled to the N noninteracting
spins. The exact evaluation of dynamics for the central spins is
obtained for the special cases, where there is uniform coupling
with the spin bath, or a special choice of the initial states, or the
system-bath interaction is a simple interaction between the z-
component of the spins. Each such studied case can explain the
experimentally observed results in some solid-state devices. We
offer a model in which there is no division of the Hamiltonian on
Ho and Hpqm, and the interaction with a bath (environment) is
considered in the GSH technique at the calculation of the exchange
integrals J;; of a nanosystem Ni,-Si in the one-electron approach
taking into account the chemical bonds of all atoms of the Si
substrate (environment) with the atoms of the Ni; cluster. We
investigated in detail the electron spin decoherence and Rabi os-
cillations for various magnetic fields H,. As a result, we developed
a new method of simulations of the decoherence, which allowed
modeling of the realistically large systems (thousands of quantum
spins) with a complex dynamics. Here we used 2187 spins for the
generalized spin Hamiltonian. A noticeable part of our studies has
become possible due to the progress in the methods for a nu-
merical modeling of a decoherence. We also studied the visibility
and the decay of Rabi oscillations in SSNQ qubits. In Fig. 7 we have
plotted the Rabi oscillations to evaluate the qubit as a function of
the time and H,=0.01 Ts. An important requirement for a quan-
tum computing is a control, which can be made through the
magnetic fields. In Fig. 8 we have plotted the Rabi oscillations to
evaluate the qubit as a function of the time and H,=1.76 Ts. Here
we show the quantum state stabilization (stabilizing Rabi oscilla-
tions) in the Ni;-Si nanosystem for H,=1.76 Ts. Thus, we have
observed the stabilized Rabi oscillations and the stabilized quan-
tum dynamical qubit state and the Rabi driving after the fixed time
(0.327 ps).

Today, in fact, the quantum entanglement is recognized as a
new physical resource which is important for a quantum compu-
tation. We have analyzed a behavior of the entanglement in the
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Fig. 7. Time evolution of the quantum mechanical expectation (S)xy,z of Niy cluster
on a silicon surface (H,=0.01 Ts).
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Fig. 8. Time evolution of the quantum mechanical expectation (S)x,y,z of Ni; cluster
on a silicon surface (H,=1.76 Ts).

finite clusters of the quantum spins and have shown that the en-
tanglement in these systems is significantly modified near special
values of the energy and temperature. These results could be
particularly relevant for applications in quantum computations. In
this paper we have identified the global entanglement patterns in
SSNQ by analyzing the behavior of the density of entanglement as
a function of the energy and temperature, which ultimately leads
to a change in the spin structure of the cluster.

Identifying and measuring entanglement in the multi-spin
systems is a challenge. Apart from the case of a two-qubit system,
where an entanglement can be identified both for a pure and a
mixed state [41-44], the multi-qubit entanglement is an open
problem and to date several measures of an entanglement have
been proposed [45-47]. For the analysis that follows we will be
using the global entanglement [47] since this will enable us to deal
with many spin eigenvalues (spin modes). Since we will assume
only a single excitation in each cluster spin mode, we can treat the
cluster spin states as a set of qubits for the purpose of computing
global entanglement. For quantifying the distribution of an en-
tanglement between the individual spin eigenvalues in the spin
structure of the SSNQ-system in a Ni-cluster on a silicon substrate
we use the density of entanglement. In Fig. 9 we have plotted the
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calculated density of the global entanglement vs. temperature and
energy for the Ni; cluster on a silicon surface. From the figure we
can see that in the wide interval of the temperatures from 0 to
230 K and in the range of the energy from 0 to 200 meV practically
all states of SSNQ have the most entanglement that is very im-
portant for the work of the quantum computer. Since 230 K at the
energy e; = 153 meV and e; = 162 meV there is a sharp falling of a
complexity and we observed the spectral gap in DOE. In this
context, the systematic studies of the relationship between the
amount and nature of an entanglement and a spin structure have
been pursued in order to the identify optimal researches to create
specific types of the entanglements.

4. Concluding remarks

Under technological inputs, the cluster magnetism is now
moving more and more towards surface science with the im-
plications for the use of new theoretical and experimental tech-
niques and with the development of new synthetic approaches.
The cluster nanomagnets on a nonmagnet substrate have specific
features that make them paradigmatic cases to the test models
and with which we may build the novel quantum architectures.
Carrying out a theoretical and experimental investigation of the
quantum model of the solid-state spin qubit Ni on a nonmagnetic
silicon surface for the quantum register, the quantum computer
theory is developed. Within the present paper, we used the nu-
merical simulations and X-ray spectral methodology to study of a
spin structure, micromagnetic simulations decoherence and a
global density of entanglement in the N-spin qubit systems. We
have also investigated important fundamental problems of an
entanglement and a decoherence theory in the N-spin nanosystem
Ni3d-Si heterostructure. We have studied the spin structure, the
dynamics of decoherence vs. magnetic field and the global en-
tanglement in the hybrid nanosystems. As a result, we have pro-
vided the detailed theoretical and experimental description for
many important aspects of the spin structure, the decoherence
and the entanglement in the systems relevant for quantum in-
formation processing and quantum computers. No doubt, the
challenges we face in building a real silicon-based N-qubit with
N > 2000 are significant, but our initial results offer hope that
large-scale quantum computing may one day be realized.
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