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A B S T R A C T

We study the Kondo Lattice Model (KLM) on a square lattice through a Hartree–Fock approximation in which
the local spins are treated semi-classically, in the sense that their average values are modulated by a magnetic
wavevector Q while they couple with the conduction electrons through fermion operators. In this way, we obtain
a ground state phase diagram in which spiral magnetic phases (in which the wavevector depends on the
coupling constants and on the density) interpolate between the low-density ferromagnetic phase and the
antiferromagnetic phase at half filling; within small regions of the phase diagram commensurate magnetic
phases can coexist with Kondo screening. We have also obtained ‘Doniach-like’ diagrams, showing the effect of
temperature on the ground state phases, and established that for some ranges of the model parameters (the
exchange coupling and conduction electron density) the magnetic wavevector changes with temperature, either
continuously or abruptly (e.g., from spiral to ferromagnetic).

1. Introduction

The Kondo Lattice Model (KLM) [1,2] describes a system consisting
of magnetic moments occupying each site of a regular lattice, and
interacting with conduction electrons through a local exchange inter-
action, J; see, e.g., Refs. [3,4]. The exchange coupling leads to two types
of effects: the Kondo screening and the Ruderman–Kittel–Kasuya–
Yosida interaction (RKKY). The former creates a hybridization between
conduction electrons and local moments, which favours a paramagnetic
Fermi liquid phase in which the local moments contribute to the Fermi
surface; the latter creates an indirect interaction between the local
moments, through the polarization of the conduction electrons, thus
favouring a magnetically ordered state with a small Fermi surface
accommodating solely conduction electrons. As first discussed by
Doniach [1], these two effects can coexist, hence compete with each
other, leading to a quantum phase transition from a magnetically
ordered state to a paramagnetic one.

This competition between Kondo screening and magnetism, in-
cluding the existence of a quantum critical point, is known to occur in
several heavy-fermion materials [4]; in view of this, it is generally
believed that the KLM provides an adequate description of some
aspects of these materials. Further, early mean-field approaches to
the Kondo-lattice Hamiltonian [2,5] already pointed out that for small
screening, J W≲ (W is the bandwidth), the magnetic ground state is
either ferromagnetic or antiferromagnetic, respectively for electronic

densities n0 ≤ ≲ 0.6c and n0.6 ≲ ≤ 1c . This immediately connects with
an interesting class of materials, the borocarbide family [6], which has
the chemical composition RT B C2 2 , where R represents a rare-earth
element and T is a transition metal. The rare earth usually contributes
with one local magnetic moment per unit cell, which, in turn, interacts
with the conduction electrons. Some members of the family display
coexistence between superconductivity and magnetism [6–10], the
interplay of which is a subject of current interest as a unifying link with
the iron pnictides [11], and, possibly, with the cuprates [12,13]. Setting
aside the superconducting behaviour of some borocarbides, one notes
that a wide variety of magnetic orderings (or modes) have been found:
depending on the particular combination of R and T, one finds
ferromagnetism, antiferromagnetism, as well as spin-density waves,
and multiple Q-wavevectors, commensurate and incommensurate
[6,14]. This variety of magnetic modes has been further scrutinized
with the synthesis of borocarbides with variable proportions of transi-
tion metals, as in Tb(CoxNi x1− )2B2C [15,16] and Ho(CoxNi x1− )2B2C
[17]. Notwithstanding the fact that the KLM does not incorporate
explicitly some aspects of the borocarbides (such as crystal field
effects), one may wonder whether it can be used as an effective model
to describe the evolution of magnetic modes with the band filling.

At any rate, the KLM is an interesting model in its own right, and a
great deal of theoretical effort has been invested to unveil its overall
properties. One-dimensional topologies are amenable to unbiased
methods such as the Density Matrix Renormalization Group
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(DMRG), and, indeed, ferromagnetism and spiral magnetic phases can
be stabilized in the linear chain, in different regions of the ground state
parameter space J n( , )c , where nc is the density of conduction electrons
[18]; further, the two-leg version of the model exhibits quasi-long-
range magnetic order, with the magnetic wavevector displaying a well
defined dependence with the electronic density [19]. In two dimen-
sions, auxiliary-field Quantum Monte Carlo (QMC) results are available
at half filling [20,21]; away from half filling, variational QMC has been
used, but only antiferromagnetic solutions were probed [22,23]. In
view of the intrinsic difficulties of those methods to extract compre-
hensive and simultaneous information (i) about the various magnetic
arrangements, (ii) about the interplay between Kondo screening and
magnetism, (iii) in two- and three dimensions, (iv) for all conduction
electronic densities (from 0 to half filling), and (v) the effects of
temperature, many mean-field implementations have been used over
the years, tackling some of these issues. While several studies only
allowed for para-, ferro- and antiferromagnetic phases [2,5,23–27], the
possibility of Q-dependent magnetic modes was considered in Ref.
[28], in which case the local spins were treated classically, thus
precluding the analysis of the coexistence of Kondo screening with
magnetic phases. By contrast, this coexistence has so far been
examined only in conjunction with ferromagnetic (FM) or antiferro-
magnetic (AFM) phases [23–26].

Therefore, a mean-field investigation of the KLM taking into
account both generic magnetic orderings and the effect of Kondo
screening is clearly in order. With this in mind, here we use a ‘semi-
classical’ approach, in which the local moments display a Q-dependent
average magnetization, while they are also expressed in terms of
fermionic operators allowing us to define a hybridization ‘order
parameter’ as a measure of the Kondo screening. In this quest, we
are led to minimize the free energy also with respect to the magnetic
wavevector, in order to establish the dependence of the stable Q values
with J, nc, and the temperature, T. Since this is more readily carried
out in two dimensions than in three, we choose to consider here the
KLM on a square lattice. Our main results can be summarized in the
form of a phase diagram with many magnetically-ordered phases which
evolve into a screening-dominated (Kondo) one, but going through
intermediate regions in which they coexist.

This paper is organized as follows. The model is presented in
Section 2, together with highlights of the standard Hartree–Fock
approximation, the details of which can be found in the Appendix. In
Section 3, we discuss the results for the ground state, while Section 4 is
devoted to finite temperature behaviour. And, finally, Section 5
summarizes our findings.

2. Model and method

The Kondo lattice model is described by the Hamiltonian

∑ ∑t c c J S s= − ( + H. c.) + · ,
i j σ

iσ jσ
i

i i
c

〈 , 〉,

†

(1)

where the sums run over sites of a two-dimensional square lattice,
with i j〈 , 〉 denoting nearest-neighbour sites. The first term represents
the hopping of conduction electrons, where ciσ

† (ciσ) is the creation
(annihilation) operator for an electron on site i with spin σ, and H.c.
stands for hermitian conjugate of the previous expression; t sets the
energy scale. The second term represents an interaction between local
moments and conduction electrons, where J > 0 is the coupling
strength, and Si and si

c are the spin operators for the local moment
and conduction electrons, respectively.

In order to set up a Hartree–Fock approximation, we write the spin
operators in a fermionic basis as

∑ σf fS = 1
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with σα β, denoting Pauli matrix elements, and fiσ
† ( fiσ) being the

creation (annihilation) operator for a localized electron with spin σ on
site i. Following the procedure outlined in the Appendix, the Hartree–
Fock Hamiltonian becomes
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with the definitions

∑V V c f= = 1
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where  is the identity matrix, and

∑ σc fV V= = 1
2

.ic if
α β

iα α β iβ
†

, = ±

†
,

(6)

Following the nomenclature introduced in Ref. [29], we refer to Vic
0

and Vif
0 as singlet hybridization operator, and to Vic and Vif as triplet

hybridization operators.
In order to analyse the stability of planar spiral magnetic phases,

the mean value S〈 〉i is taken as classical,

mS Q R Q R〈 〉 = [cos( · ), sin( · ), 0],i f i i
0

(7)

with

q qQ = ( , )x y (8)

being the magnetic wavevector, and Ri the vector position of site i
on the lattice. By the same token, we choose

ms Q R Q R〈 〉 = − [cos( · ), sin( · ), 0],i
c

c i i
0 (9)

where the minus sign above reflects the local antiferromagnetic
coupling between the local moments and the conduction electrons.

The singlet hybridization terms can be taken as

V V V〈 〉 = 〈 〉 = − ,ic if
0 0†

0 (10)

and the mean values of the triplet hybridization operators are
similarly assumed to be given by

VV V Q R Q R〈 〉 = 〈 〉 = ′[cos( · ), sin( · ), 0].ic if i i
†

0 (11)

The electronic density, nc, and the number of local moments per
site, respectively expressed by

∑
N

c c n1 = ,
iσ

iσ iσ c
†

(12)

and

∑
N

f f1 = 1,
iσ

iσ iσ
†

(13)

are imposed as constraints through the method of Lagrange multi-
pliers. The latter constraint is enforced on average, which seems to be
unavoidable in mean-field treatments; as pointed out in Ref. [22], this
may restrict analyses on the character of the Fermi surface, as far as
being hole-like or electron-like, large or small. However, our main
purpose here is to gain insight into the stabilization of different
magnetic modes, so that the tradeoff justifies imposing the constraint
in its weaker form.

As discussed in the Appendix, after substituting Eqs. (7)–(11) in the
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mean-field Hamiltonian, Eq. (4), imposing periodic boundary condi-
tions, and performing a discrete Fourier transform, we obtain our
working Hamiltonian, Eq. (A.17). It is represented by a 4×4 matrix,
which can be straightforwardly diagonalized, leading to the bands
E n, ( = 1,…,4)n

k .
The Helmholtz free energy then becomes

∑F
β

e= − 1 ln(1 + ) + const .,
n

βE

k,

− n
k

(14)

where β k T= 1/ B ; k = 1B throughout this paper. The effective fields
V0, V ′0 , mf

0, mc
0, μ, ϵf, and Q are to be determined self-consistently by

minimizing the Helmholtz free energy
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The resulting nonlinear coupled equations are solved numerically,
using standard library routine packages, with the aid of the Hellmann–
Feynman theorem.

At this point some comments are in order. First, we should mention
that we have tried to include additional modulations to the field
amplitudes, e.g., m m mS R Q R|〈 〉| → ( ) = + cos( · )i f i f f i

0 1 , and similarly for
s|〈 〉|i

c , V|〈 〉| and V|〈 〉|, but, as it turned out, the most stable solution
always yields m m V V= = = ′ = 0f c

1 1
1 1 for all ranges of J W/ and nc

considered. Second, attempts to consider different Q's for any of S〈 〉i ,
s〈 〉i

c and V amount to a much harder minimization procedure, and have
led either to unphysical results, such as spin amplitudes larger than 1/
2, or to trivial mean-field solutions.

3. Ground state behaviour

The set of nonlinear coupled equations, Eq. (15), is solved
numerically for each pair of (n J,c ), by fixing the temperature (T=0,
for the time being) and the electronic density, and by letting the
exchange coupling to vary. Figs. 1–4 show the behaviour of the order
parameter amplitudes, Eqs. (7)–(11), as functions of the exchange
coupling J (in units of the bandwidth, W t= 8 ) for different doping
levels (i.e., n < 1c ). The figures also display the behaviour of the
magnetic wavevector with J W/ : as we will see, the magnetic modes
and the coexistence with Kondo screening depend strongly on the
electronic density.

At half filling, the system is known to be an insulator for all J W/ ,
but a quantum phase transition between an antiferromagnetic state
and a spin singlet takes place at J W( / ) ≃ 0.4c . Care must be taken when
comparing this estimate with those of Refs. [20,21,30], since their
working Hamiltonians (i.e., after some decouplings or effective
Hamiltonians are introduced) is somewhat different from ours, Eq.
(A.17). Nonetheless, a rough correspondence can be worked out from
which the exchange coupling J used in those works is one half of the
one we use here; with this proviso, our estimate for J W( / )c is in good

agreement with those of Refs. [20,21,30].
Fig. 1(a) shows the results for n = 0.90c . In the weak-coupling

regime, there is no hybridization (hence no Kondo screening); the
local-moment amplitude is not affected by the exchange, while the
amplitude of the conduction electron magnetization increases steadily
with J W/ . The stable magnetically ordered phase corresponds to a
spiral arrangement with wavevector π qQ = ( , ) [or, by symmetry, with
q π( , )], and from Fig. 1(b), we see that q first decreases slightly with

J W/ , hence drifting away from the Néel case; that is, the increase in the
Kondo coupling by itself cannot drive the system into an antiferro-
magnetic state. However, when J W/ ≈ 0.35, hybridization abruptly sets
in, causing a sudden decrease in both magnetic amplitudes; the
magnetic mode also changes abruptly, stabilizing an AFM phase, with

π πQ = ( , ), which coexists and competes with Kondo screening. Further
increase in J W/ enhances the singlet hybridization which, in turn,
steadily suppresses the magnetic amplitudes, both vanishing at
J W/ ≈ 0.375. The triplet hybridization amplitude V ′0 also vanishes at
J W/ ≈ 0.375, tracking the suppression of the magnetization. Beyond
this point, there is only a paramagnetic phase with non-zero V0, usually
referred to as the Kondo phase. One can also see from Fig. 1(a) that the
order parameters are discontinuous across the lower transition (into
the coexistence region), and continuous at the second transition, into
the screened-only (Kondo) phase. The most stable ground state there-
fore corresponds to V V′⪡0 0, which indicates that the competition with
magnetism is almost entirely due to the singlet hybridization; accord-
ingly, from now on hybridization effects will only be associated with V0.

Moving on to nc=0.60, we see from Fig. 2(a) that the order
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Fig. 1. (a) Order parameter amplitudes as functions of the Kondo exchange coupling J
(in units of the bandwidth, W t= 8 ): local moment, mf

0 (full black line), conduction
electron magnetization, mc

0 (dashed blue line), singlet hybridization, V0 (dashed-dotted
red line) and triplet hybridization, V ′0 (full orange line). (b) Magnetic wavevector
component q as a function of J W/ ; the spiral magnetic phase is described by the
wavevector π qQ = ( , ). All data are for conduction electron density nc=0.90, and zero
temperature. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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parameters behave in a way similar to the case with nc=0.90, including
the order of the transitions; in addition, a similar magnetic mode with

π qQ = ( , ) is stabilized in this case. As shown in Fig. 2(b), q also
decreases with J W/ in the unscreened region, though with the
important difference that in the coexistence region it is the π( , 0) mode
which dominates. Later on, we will discuss the behaviour of Q as a
function of nc, for fixed J W/ .

Fig. 3 shows the corresponding analysis for n = 0.35c . We see that
the stable magnetic phase now has a wavevector πQ = ( , 0) in the
unscreened region. In the coexistence region, the wavevector first
stabilizes in a mode qQ = ( , 0), before becoming FM, Q = (0, 0), as
showed in Fig. 3(b); see also Fig. 5. To the best of our knowledge, this is
the first time that the coexistence of a spiral incommensurate magnetic
mode with the Kondo phase is predicted within a static mean-field
analysis; more on this coexistence later.

Further decrease in the electronic density, e.g., for n = 0.25c , leads
to a spiral magnetic phase with qQ = ( , 0); see Fig. 4. While in the
unscreened phase one finds a monotonically decreasing q J W( / ), in the
coexistence region a uniform FM phase [i.e., one with Q = (0, 0)] is
stabilized. Interestingly, while the transition into coexistence (which
occurs at J W/ ≈ 0.51) is still of first order, here we see that, unlike what
we have discussed so far, the transition to pure Kondo behaviour,
occurring at J W/ ≈ 1.02 is also discontinuous.

Similar analyses were performed for other values of nc, the results
of which are summarized in the phase diagram of Fig. 5. In line with
previous mean-field approaches [2,5], we see that at low densities a
saturated ferromagnetic phase is stable, while at half filling it is an
antiferromagnetic phase which is the stable one. On the other hand, we
have established that the evolution of magnetic modes with the
electronic density is much smoother than hitherto assumed; the
diagram of Fig. 5 also shows that magnetically ordered phases can
still withstand some screening, though no trace of magnetism is found
deep in the Kondo phase, as expected.
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We now discuss these aspects in turn, starting with the magnetic
ordering in the absence of Kondo screening. As the electronic density
increases from zero, a spiral modulation develops in one of the lattice
directions, say, the x-direction, while the same modulation is repeated
along the y-direction, for which qy=0. Fig. 6 illustrates the evolution of
the modulation vector with the density, for fixed J W/ : the modulation
along x becomes staggered (q π=x ), and so remains, even as the density
increases slightly up to n ∼ 0.4c . As nc continues to increase, the
modulation along y starts changing until it also reaches q π=y close to
half filling.

The presence of spiral magnetic phases has been found for the one-
dimensional KLM [18], in addition to ferromagnetic ‘island’ phases;
while our results reveal that spiral phases also occur for the square
lattice, no ferromagnetic island states led to minimal free energies in
the present case. The continuous change in one of the components of
the magnetic wavevector can be attributed to a distribution of conduc-
tion electrons preferentially along one of the lattice directions; similar
effects have been observed in the DMRG study of the 2-leg Kondo
ladder [19]; that is, the Kondo lattice seems to develop a stripe
structure. The correspondence with the 2-leg Kondo ladder goes even
farther: fits to the linear portions of q n( )c in Fig. 6 yield q n≈ c and
q n≈ 2 c, respectively near half-filling, and near n ∼ 0.35c . This should be
compared with n πQ = ( , 1)c and n πQ = (2 , 0)c , for n ≳ 0.5c and n ≲ 0.5c
respectively, for the ladder [19]. On the other hand, there is a
noticeable difference for a range of densities near n ≈ 0.4c , where, for
the square lattice, the commensurate phase π( , 0) stabilizes; see Fig. 5.

Let us now compare these predictions with the experimental data
for the borocarbide alloy Tb(CoxNi x1− )2B2C [15,16]. The planar mag-
netic arrangement in TbNi2B2C is a spin-density wave, with a wave-
vector close to π( , 0) [14], so that we can represent this compound by
the n ≈ 0.4c point in Fig. 6. Assuming the primary effect of the gradual
substitution of Ni by Co is a decrease in the number of conduction
electrons (hence of nc), Fig. 6 correctly predicts that the alloy evolves
towards a saturated ferromagnet in the opposite limit of 100% Co; the
comparison cannot be made for intermediate dilutions, since partial
replacement mainly affects the modulation along the c-axis. In the
corresponding case of the Ho alloys, the planar arrangement is
ferromagnetic for all Co concentrations, x, while the magnetic modula-
tion along the c-axis is strongly dependent on x [17]. However, since
Ho(CoxNi x1− )2B2C is superconducting below x=0.03, one expects
electron-electron interactions to play an important role in the ensuing
magnetic arrangement, even when the system is not superconducting.
While these effects are certainly absent in the simple model considered

here, the capture of the trend observed in the Tb alloys may be taken as
an indication that the KLM is a viable starting point to describe the
magnetism in this class of materials.

Further insight can be gained by discussing the relative stability
between AFM and FM phases. Fig. 7 shows a contour map of the
internal energy E as a function of magnetic wavevector (q's), for
J W/ = 0.175 and n = 0.60c . The map is obtained by minimizing the
energy, Eq. (15), with respect to all variables, but qx and qy. From
Fig. 7 we see that when π πQ = ( , ) and (0,0), the internal energy
reaches its largest values, showing that for this choice of (n J W, /c ) the
most stable magnetic arrangement in the ground state is neither AFM
nor FM. The minimum of the internal energy actually occurs for q π( , )
[and, by symmetry for π q( , ), as well], with q π/ ≈ 0.55, thus providing us
with an explicit example showing that many different magnetic
arrangements may be closely separated in energy. Fig. 8 shows the
corresponding contour map for the polarization, mc

0. We first note that
the polarization is in opposite phase in relation to the internal energy.
For this choice of (n J W, /c ), the hybridization is zero (see Fig. 2), and
the system is dominated by the RKKY interaction, so that the
polarization is the sole driving force to magnetism.

As far as the order of the density-driven transitions is concerned,
we should add a few comments. First, we note that the transition is
necessarily discontinuous if Q changes abruptly at the boundary; as
shown in Fig. 6, Q does not suffer any discontinuity in the whole range
of nc. Further evidence comes from Fig. 9, which shows the internal
energy as a function of q, as the transition from π q( , ) to π( , 0) is
approached, for fixed J W/ and varying nc: we see that the two global
minima go continuously to zero as the critical point is approached.
Analogous behaviour occurs for all other transitions at fixed J W/ .

We now discuss the coexistence of Kondo screening and magneti-
cally ordered phases. First, we note that this coexistence is restricted to
moderate degrees of screening, as indicated in Figs. 1–4, and summar-
ized in Fig. 5. In line with other mean-field analyses [23–26], our
results show that close to half filling, i.e., for n ≳ 0.86c , Kondo screening
coexists with an AFM mode, while for low electronic densities
( n0.15 ≲ ≲ 0.31c ) this coexistence occurs with the FM configuration.
However, our approach allows us to go further, and establish that for
intermediate electronic densities, n0.31 ≲ ≲ 0.68c , coexistence is pos-
sible with phases other than FM and AFM; see Figs. 2, 3 and 5. A
commensurate magnetic phase, with wavevector πQ = ( , 0), stabilizes
into the coexistence region for the range n0.36 ≲ ≲ 0.68c . More
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denotes a phase in which screening, as measured by the hybridization, is present (see
text). Solid and dashed lines respectively represent continuous and discontinuous phase
transitions.
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interestingly, for the range n0.31 ≲ ≲ 0.36c such coexistence is with a
spiral incommensurate magnetic phase.

Let us now focus on the coexistence between Kondo and spiral
phases. Fig. 10(a) compares the internal energy as a function of q π/ (for
fixed J W/ ) when the triplet hybridisation amplitude (V ′0 ) is constrained
to be zero, and (b) when it is allowed to be non-zero. In the former case,

the energy is minimum at the ferromagnetic mode Q = (0, 0), while
when this constraint is relaxed a mode with q π/ ≈ 0.25 becomes the
most stable one. It should also be stressed that, by contrast, the final
minimisation outcome for the remaining auxiliary fields, mf

0, mc
0 and

V0, is hardly affected by whether V ′0 is zero or non-zero. We conclude
that the appearance of modes with q π≠ 0, in the region of coexistence
between Kondo screening and magnetic order is directly related to a
modulation of the hybridisation with the magnetic wavevector Q.
Evidently, as J W/ varies, the value of q which minimizes the energy
also varies; see Fig. 3(b). Another subtle aspect is that the resulting
amplitude of the modulated hybridisation is weak (typically
V V′/ ≃ 0.10 0 ), so that coexistence involving Kondo screening and modes
with either q ≠ 0 or π≠ only occur in small portions of the diagram, the
precise location of which would demand a much more elaborate
analysis; suffices to say, for our purposes here, that coexistence with
q π≠ 0, is indeed possible.

Finally, we examine the transition to the Kondo phase, which marks
the disappearance of magnetism. As shown in Figs. 1, 2 and 5 the
transitions to the pure Kondo regime from both the AFM+Kondo phase
and from the π(0, )+Kondo phase, are continuous. By contrast, the
transition from FM+Kondo is discontinuous, as it can be seen from
Fig. 11, in which we fix the electronic density as n = 0.30c , and plot the
internal energy as a function of the local moment amplitude mf

0, for
values of J W/ near the transition point, J W( / ) ≈ 0.866c . Within the
coexistence region, J W J W/ = 0.85 < ( / )c, the internal energy displays
global minima at m ≈ ± 0.4f

0 , signalling a FM state, together with a

local minimum at m = 0f
0 . At the transition point, this local minimum

becomes degenerate with those for which m ≃ ± 0.4f
0 , and for

J W J W/ = 0.881 > ( / )c, the minimum at m = 0f
0 becomes the most stable

one: the transition is therefore discontinuous. Similar discontinuous
behaviour of the internal energy is found for the direct transitions (i.e.,
without going through coexistence regions) to the Kondo phase from
the Q = (0, 0) (for n ≲ 0.15c ) and π qQ = ( , ) ( n0.5 ≲ ≲ 0.85c ) phases;
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Fig. 7. Internal energy contour map as a function of the magnetic wavevector, for
n = 0.60c and J W/ = 0.175.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

qx/

0.048

0.060

0.072

0.083

mc

π 

Fig. 8. Polarization contour map as a function of magnetic wavevector, for the same
parameters as in Fig. 7.
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Fig. 10. Internal energy as a function of magnetic wavevector qQ = ( , 0) at n = 0.35c and
for fixed J W/ = 0.59, in the cases where (a) the triplet hybridisation term (V ′0 ) is forced to
be zero, and (b) when it is allowed to be non-zero, in the coexistence region. The thin
black dashed line is the ferromagnetic internal energy for both cases.
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see Fig. 5. One should note that in Ref. [26] the transition FM+Kondo
to Kondo was found to be continuous; possible sources for this
discrepancy may lie in either the constant density of states used in
that work, or to the fact that the mean-field implementation differs
from ours, especially for the FM solution (see the Appendix).

4. Finite temperatures

In analysing the behaviour at finite temperatures we fix nc, while
the temperature and the exchange coupling are allowed to vary.
Similarly to what we did for T=0, we examine the temperature
dependence of the order parameters to determine the phase bound-
aries; we also determine the temperature dependence of the magnetic
wavevector.

Fig. 12 summarizes our findings for nc=0.25 in the form of a
‘Doniach diagram’, in which several details on the nature of the
magnetically ordered phases can now be unveiled. First, we note that
for this electronic density, the unscreened magnetic phase is actually a
spiral phase. More interestingly, the magnetic mode qQ = ( , 0) is such
that q displays a temperature dependence, as shown in Fig. 13(a), for a
fixed J W/ = 0.56. In this case, the magnetic mode is hardly dependent
on the temperature in the unscreened region, but an abrupt change
occurs as soon as the temperature drives the system into the coex-
istence region, where, in this case, ferromagnetism sets in over a
temperature interval; for a slightly smaller value, say J W/ = 0.5, there is
a noticeable temperature dependence of q with T (not shown), but the
range of temperatures in which the FM phase exists is quite smaller
than the one shown. The order of the transitions along the border
between FM and PM Kondo phases changes from continuous (at higher
temperatures) to discontinuous (lower temperatures); the insets show
the evolution of the free energy along the first-order boundary, and at
the tricritical point. For completeness, one should mention that a
similar phase diagram was obtained in Ref. [31] for a single electronic
density, nc=0.2; however, since no spiral phases were considered there,
the evolution of the wavevector Q with the temperature could not be
established.

The features brought about by the spiral phases also manifest
themselves at other densities. Fig. 14 shows data for nc=0.6, in which
case the spiral phases involved at T=0 are those for π qQ = ( , ), with q
decreasing as J W/ increases (see Fig. 2). One notes that the magnetic
boundary between π( , 0)+Kondo and the Kondo phase is completely
detached from the boundary between π q( , ) and PM(N); therefore, one

can go from π q( , ) to the Kondo phase without an intervening
coexistence region, simply by raising the temperature. As Fig. 13(b)
shows, for J W/ = 0.3 the effect of temperature is to increase q, moving
towards antiferromagnetism. On the other hand, the coexistence region
which appears for J W0.4 ≲ / ≲ 0.54 involves the ‘striped’ phase

πQ = ( , 0).
For nc=0.9, the phase diagram is shown in Fig. 15. Unlike the

previous cases, by increasing the temperature one can now smoothly
interpolate from π q( , ) to π π( , ), provided the value of J W/ lies entirely
to the left of the first order line (red dashed curve in Fig. 15). By
contrast, if one chooses, say J W/ = 0.28 as in Fig. 13(c), one obtains a
reentrant behaviour for the AFM mode, π πQ = ( , ).

5. Conclusions

In conclusion, we have analyzed the Kondo Lattice model on a
square lattice, using a semi-classical-spin approach within a Hartree–
Fock approximation. This allowed us to probe the presence of spiral
magnetic modes, which, for some ranges of parameters, turned out to
be more stable than the ferromagnetic, antiferromagnetic, and para-
magnetic modes, usually assumed to be the only ones at play. The
presence of spiral phases is in line with DMRG calculations for the one-
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point to pure Kondo are represented by black (solid), red (dashed) and blue (dash-
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to the web version of this paper.)
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dimensional case [18], as well as for the two-leg ladder [19], so that one
may expect they are not an artifact of the approximations employed
here. Accordingly, we have obtained a ground state phase diagram in
terms of the Kondo coupling, J W/ (W is the bandwidth), and the
conduction electron density, nc. As nc varies from 0 to 1 (half-filling),
the weak- to moderate coupling region displays a variety of incom-
mensurate phases [i.e., with continuously changing magnetic wavevec-
tors, in the form π qQ = ( , ), q( , 0), or (q,q)], in which Kondo screening
is absent. Recent dynamical mean-field theory (DMFT) calculations on
the KLM away from half filling (see Ref. [32]) show incommensurate
spin-density waves on both the small- and large Fermi surface regions;
our results are in good agreement in the unscreened region.

We have also found that magnetic phases can coexist with some
degree of screening, and that the change in magnetic wavevector with
the Kondo coupling occurs even in the region of coexistence with the
Kondo phase. Such a coexistence with incommensurate magnetic
modes occurs in just a tiny region of the phase diagram, being related
to the modulation of the triplet hybridisation term. It seems that a
modulated hybridisation is an important ingredient for the stabilisa-
tion of magnetic modes other than Q = (0, 0) or πQ = ( , 0) in the
coexistence region. On the other hand, for sufficiently strong coupling,
screening dominates and magnetism is suppressed. While completing

this work we became aware of Ref. [33], in which the decoupling of the
Kondo term in singlet and triplet hybridisations is the same as ours,
but, unlike our present framework, the magnetic wave vector Q was not
left as a free parameter to be determined by minimisation of the free
energy. Since Li et al. [33] set it as (π π, ), they could not discuss spiral
phases; instead, they considered the effects of an additional hopping
term between next-nearest neighbours.

We have also discussed the behaviour at finite temperatures in the
form of ‘Doniach-like’ phase diagrams T J W× / , for fixed electronic
densities. We have established that unscreened spiral magnetic phases
can be found in the low-temperature and small-coupling portion of the
phase diagram. Within each unscreened phase, the magnetic wavevec-
tor in general increases with temperature, until it reaches the first-
order transition to the phase of screened magnetic order, when abrupt
changes in q may occur; interestingly, the coexisting magnetic mode is
always commensurate, leading to antiferromagnetic, ferromagnetic, or
striped phases. As expected, at sufficiently high temperatures only
paramagnetic phases survive, though they can be either unscreened or
screened, depending on the magnitude of the Kondo coupling; how-
ever, as pointed out before [31], the sharp transition between these two
regimes is expected to become a crossover if fluctuations were taken
into account beyond a mean-field treatment. The results presented here
suggest that through a judicious choice of parameters, Kondo lattice
systems may allow for temperature-driven switching between detect-
able magnetic modes. Notwithstanding the fact that the present results
have been obtained for a square lattice, we have found that the
evolution of magnetic modes with the model parameters shares
common trends with borocarbides family of materials, so that the
Kondo lattice model should provide an adequate description of their
non-superconducting properties.

We close with a cautionary remark. The prediction of ordered states
at finite temperatures in two-dimensional systems with continuous
symmetry is certainly a drawback of mean-field approximations.
Nonetheless, ground state features like the continuous variation of Q
with the electronic density (as described in the simple picture above)
should be present in both two- and three-dimensional systems; our
results also broadly suggest how the temperature would influence the
magnetic modes in three dimensions (or weakly-coupled two-dimen-
sional layers).
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Appendix A. Mean-field approximation

The interaction term S s·i i
c in Eq. (1) can be decomposed into several

quartic operators, which are decoupled through a Hartree–Fock
approximation (see, e.g., Ref. [34]). In what follows, all mean values
are taken into account to obtain the final mean-field Hamiltonian.

Using the definition of Si and si
c from Eqs. (2) and (3), respectively,

the axial component of the interaction term becomes
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while the planar component can be written as
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with the definitions of Viβ
α (α x y z= 0, , , ; β c f= , ) given by Eqs. (5)

and (6).
Eqs. (A.1) and (A.2) then lead to
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Then, substituting Eq. (A.3) into the Hamiltonian, Eq. (1), leads to
Eq. (4).

In addition, in order to fix the electronic density and the number of
local magnetic moments, the terms μ c c Nn− (∑ − )iσ iσ iσ c

† and

f f Nnϵ (∑ − )f iσ iσ iσ f
† must also be included in the Hamiltonian, Eq. (4),

with n = 1f . These terms represent the constraints which are included
as Lagrange multipliers, whose values of μ and ϵf are determined self-
consistently.

For completeness, we recall that the mean values are expressed as

mS Q R Q R〈 〉 = (cos · , sin · , 0),i f i i
0

(A.4)

ms Q R Q R〈 〉 = − (cos · , sin · , 0),i
c

c i i
0 (A.5)

V V V〈 〉 = 〈 〉 = −ic if
0 0†

0 (A.6)

and

VV V Q R Q R〈 〉 = 〈 〉 = ′(cos( · ), sin( · ), 0).ic if i i
†

0 (A.7)

We now perform a discrete Fourier transform on the conduction
electrons operators (and similarly for the f electrons), defined as

∑c
N

i ck R= 1 exp( · ) ,σ
i

i iσk
(A.8)

where N is the number of lattice sites. Then, the Hamiltonian
becomes
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where t k kϵ = −2 [cos( ) + cos( )]k x y , while t k q k qϵ = −2 [cos( + ) + cos( + )]k Q x x y y+ .
Then, limiting ourselves to non-degenerate subspace k k Q( ↑ , + ↓ ),
where the base vectors are (in a Nambu spinor representation)
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(A.10)

the Hamiltonian is
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In some instances, the 4×4 Hamiltonian matrix (A.12) reduces to
simpler 2×2 matrices, saving a significant amount of CPU time. One
particularly interesting example is when the self-consistency process
converges to a ferromagnetic state, that is, one with Q = (0, 0). In order
to determine the most general 2×2 Hamiltonian matrix, we make use of
the rotational symmetry, and take

mS〈 〉 = (0, 0, 1),i f
0

(A.13)

ms〈 〉 = − (0, 0, 1),i
c

c
0 (A.14)

and

VV〈 〉 = ′(0, 0, 1),i 0 (A.15)

on the Hamiltonian of Eq. (4).
Then, taking Eqs. (A.13)–(A.15) into Eq. (4), the Hamiltonian

becomes
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Fourier transforming the operators in the previous equation, and
adding the constraint terms leads to
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Using a Nambu spinor representation Ψ c f= ( , )σ σ σk k k
† † † , it becomes
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which provides the eigenvalues

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

E σJ m m

σJ m m J V σV

= 1
2

ϵ̃ + ϵ +
2

( − )

± 1
2

ϵ̃ − ϵ +
2

( + ) +
4

(3 − ′) ,

σ k f f c

k f f c

k
± 0 0

0 0
2 2

0 0
2

(A.20)

which μϵ̃ = ϵ −k k .
It is interesting to note that the spectra of the 4×4 and of the two

2×2 representations of the mean-field Hamiltonian are equivalent
when Q = (0, 0), irrespective of V0 and V ′0 vanishing or not.
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