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The magnetisation reversal of two interacting particles was investigated within a simple model

describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the

interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal

mode is obtained even for two particles with parallel easy axes. The model yields different phenomena

as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-

magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The

Wohlfarth’s remanence analysis performed on aggregations of such pairs of interacting particles shows

that the deviation dM(Hm) usually being considered as a hallmark of magnetic interaction vanishes for

all maximum applied fields Hm not only at W¼0, but also for sufficiently large values of W.

Furthermore, this so-called dM-plot depends on whether the sample is ac-field or thermally

demagnetised.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The hysteresis behaviour of a system consisting of magnetic
particles is greatly complicated by the interactions between them.
This problem has been treated in literature since a long time
[1–3]. It has been shown by Brown [4] that mean-field approaches
can yield erroneous results, especially when calculating switching
fields and coercivity based on them. Exact solutions are possible
only in a few simple cases, and have been obtained e.g. for the
case of dipole interaction between two identical uniaxial particles
[4,5]. Skomski and Sellmayer [6] obtained switching fields for a
system consisting of two particles coupled by a simple interac-
tion, such as also assumed in this study. However, no analysis has
been performed whether further reversal modes may exist
additionally to those obtained from an extrapolation of the
behaviour of non-interacting particles as described in the
Stoner–Wohlfarth model [7]. For non-interacting single-domain
particles according to the Stoner–Wohlfarth model, a reversible
rotation of the magnetisation additionally to irreversible switch-
ing occurs only if the easy axes are not parallel to the applied
magnetic field. In this paper, the appearance of a non-collinear
reversal mode, similar to modes observed in exchange-spring
magnets, will be demonstrated on the basis of the simple two-
particle interaction model. It will be shown that due to the
interaction between the two particles, a reversible magnetisation
ll rights reserved.
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rotation mode may exist even if the easy axes are parallel to each
other and to the applied field.

Henkel plots [8,9] or dM-plots [10] are often used for a
qualitative analysis of magnetic interaction from experimental
magnetic hysteresis data. Such an analysis is based on a short but
ingenious paper by Wohlfarth, where different types of remanent
magnetisation of minor (or recoil) hysteresis loops are compared
[11]. In this study, conclusions from the Wohlfarth’s remanence
analysis will be tested using exact demagnetisation curves of the
interaction model mentioned above, which is described in Section
2 in detail.
2. Model and critical fields

Let us consider two single-domain particles with a uniaxial
anisotropy and of identical volume V. The particles are presumed to
have parallel magnetic easy axes (Fig. 1), but different first
anisotropy constants K1 and K2 (here always K1ZK240) and to
be coupled by a ferromagnetic exchange coupling (magnetostatic
interaction being anisotropic in its nature as well as higher order
anisotropy constants are not considered here at all). The
ferromagnetic exchange within the particles is assumed to be
infinite (rigid particle). After applying a sufficiently strong
magnetic field along the easy axes (e.a.) the system becomes
saturated, both moments are aligned along their e.a. (y1¼y2¼0). If
a reverse field H40 is applied in the direction parallel to the easy
axes, magnetisation reversal starts at some critical (switching)
field. In our approach, the ferromagnetic exchange coupling is
described by EW ��Wðcosy1 cosy2þsiny1 siny2 cosðj1�j2ÞÞ,
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Fig. 1. Two interacting single-domain particles with parallel easy axes (e.a.) and

different anisotropy constants in a demagnetising field H40.
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where W40 is the coupling constant and ji is the azimuth angle.
For any y1 and y2 choosing j1–j2a0 results in an increase of the
exchange energy. Thus, during magnetisation reversal, the two
moments and the applied field form a common plane and it is
sufficient to minimize the following (free)-energy density:

E

V
¼ K1 sin2y1þK2 sin2y2þ JsHcosy1þ JsHcosy2�W cosðy1�y2Þ

ð1Þ

where Js is the spontaneous polarisation (for simplicity, assumed to
be identical for both particles). The angles y1 and y2 vary between 0
and p. For fixed values of H, the equilibrium conditions

@E

@y1
¼ K1 sin2y1�JsHsiny1þW sinðy1�y2Þ ¼ 0 ð2aÞ

@E

@y2
¼ K2 sin2y2�JsHsiny2�W sinðy1�y2Þ ¼ 0 ð2bÞ

yield three obvious solutions

ðIÞ y1 ¼ y2 ¼ 0;

ðIIÞ y1 ¼ 0 and y2 ¼ p;
ðIIIÞ y1 ¼ y2 ¼ p ð3Þ

The stability of these solutions in an increasing reverse field
has to be investigated. Moreover, stable solutions different from
those given by Eq. (3) also need to be examined.

Additionally to equilibrium conditions in Eq. (2), the stability
conditions

@2E

@y2
1

@2E

@y2
2

�
@2E

@y1@y2

 !2

40 ð4aÞ

@2E

@y2
2

40 ð4bÞ

have to be satisfied simultaneously for a solution to be stable.
Obviously, the trivial solution (III) is reached for sufficiently large
H and is then stable. For the initial state (I) with y1¼y2¼0,
stability is given by the following restrictions for H:

H4Hð1Þmm �
K1þK2þW

Js
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1�K2Þ

2
þW2

J2
s

s
ð5Þ

HoHð2Þmm �
K1þK2þW

Js
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1�K2Þ

2
þW2

J2
s

s
ð6Þ

HoHð3Þmm �
2K2þW

Js
ð7Þ

whereas for the solution (II) the restrictions read

HoHð1Þmk �
K1�K2

Js
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1þK2Þ

2
�2WðK1þK2Þ

J2
s

s
ð8Þ

H4Hð2Þmk �
K1�K2

Js
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1þK2Þ

2
�2WðK1þK2Þ

J2
s

s
ð9Þ
H4Hð3Þmk �
�2K2þW

Js
ð10Þ

where the indices mm and mk denote the magnetisation direction

within the two particles y1¼y2¼0 and y1¼0, y2¼p, respectively
(see Fig. 1). The stability regions are determined taking into
account that on the initial state, a reverse increasing field H is

applied. For the initial state (I) y1¼y2¼0, the fields

Hð2ÞmmrHð3ÞmmoHð1Þmm and, therefore, the mm state becomes unstable

at H¼Hð2Þmm. Note that for a sufficiently strong interaction

W4WNC, where

WNC ¼ ðK1þK2Þ=2 ð11Þ

Eqs. (8) and (9) following from Eq. (4b) have no real solutions, i.e.
in this case the state mk is never realised during magnetisation
reversal. For WoWNC and because of Hð3ÞmkoHð2ÞmkoHð1Þmk, the
stability region of the state (II) mk is Hð2ÞmkoHoHð1Þmk. Because of
the existence of the solution (II), it is not trivial in which way the
magnetisation reversal occurs. In principle, it might be possible
that with increasing H the initial state, which becomes unstable at
H¼Hð2Þmk, is driven into the state mk (stable up to Hð1Þmk).

There exist several interesting limits of W. The first one, W)K1-K2,
representing the case of weak interactions, yields the critical
fields

Hð1Þmm ¼
2K1þW

Js
and Hð2Þmm ¼

2K2þW

Js
ðy1 ¼ y2 ¼ 0Þ ð12Þ

Hð1Þmk ¼
2K1�W

Js
and Hð2Þmk ¼

�2K2þW

Js
ðy1 ¼ 0; y2 ¼ pÞ ð13Þ

From Eq. (12) and K14K2, it follows that the instability in the
parallel alignment of the moments of the particles is determined by

the critical field Hð2Þmmð ¼Hð3ÞmmÞ. For applied fields below Hð2Þmm, no reversal

occurs. For Hð2ÞmmoHð1Þmk or WoK1-K2 with increasing H the state mk

may be realised. Then, as the applied field is increased further, the
particles reverse in a non-cooperative way at different fields

Hð2Þmm ¼ ð2K2þWÞ=Js and Hð1Þmk ¼ ð2K1�WÞ=Js by either a two-step

jump or non-cooperative rotation, as is discussed in detail below.
All the reversal modes may be distinguished as cooperative and

non-cooperative: the non-cooperative reversal leads to switching of
one of the particles and the second particle remains in the initial state,
while the term cooperative reversal merely means that both particles
reach their final reversed state together. Thus, the cooperative
reversal may proceed by both coherent, i.e. it occurs by a
simultaneous rotation of the two moments through equal angles in
the same direction, as well as by an incoherent rotation. This
distinction is based on the stability regions of the states mm and mk.
From the analysis based on Eqs. (2)–(4), no conclusions can be made
concerning the state beyond the instability. Further, as pointed out by
Brown [4], in order to prove that the reversal is coherent, a study of
the dynamic behaviour at finite angles is necessary. This will not be
done here.

As mentioned for strong interactions, W4WNC, the state mk is
not realised and the state mm becomes unstable if H exceeds the
smallest field among those given by Eqs. (5)–(7), i.e. Hð2Þmm. In the
limit of strong interactions, the reversal is cooperative.

Magnetisation reversal is cooperative and coherent, if the
anisotropies of both particles are equal, K1¼K2¼K. The stability
analysis yields

Hð1Þmm ¼
2Kþ2W

Js
and Hð2Þmm ¼

2K

Js
ðy1 ¼ y2 ¼ 0Þ ð14Þ

Hð1Þmk ¼
2K

Js

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

W

K

r
ðy1 ¼ 0; y2 ¼ pÞ ð15Þ
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The instability of the y1¼y2¼0 state is determined by Hð2Þmm of
Eq. (14), since the upper limit for the stable region of the state mk

given by Eq. (15) is below those in Eq. (14). In the model
considered here, the ferromagnetic interaction constant W is
positive and the particles will reverse at the common switching
field Hð2Þmm ¼ 2K=Js, independent of the interaction strength.

3. Magnetic phase diagram

In Section 2, the critical fields and stability regions of the
magnetisation states (I)–(III) given in Eq. (3) have been derived.
Knowledge of these fields is important, but not sufficient for
predicting the way, in which the magnetisation reversal occurs. The
existence of additional non-trivial solutions, additional to those given
by Eq. (3), cannot be excluded. In this section, magnetic phase
diagrams and energy surfaces are examined, analytically as well as
numerically, for particular parameters and related to the discussed
effects. The results are given on the basis of stability diagrams, which
show the fields Hð1Þmk, Hð2Þmk and Hð2Þmm in a H–W plane, and thereby
determining the stability regions. A variety of the magnetic phases
and types of possible magnetisation reversal processes follow from
the discussion, given below for two examples. The magnetisation
Js¼1.43 T for both particles and K1¼7.0 MJ/m3, which correspond to
the room temperature saturation magnetisation and anisotropy
constant of the L10 FePt phase, respectively [12], and two different
K2 were selected, while W has been varied.

3.1. Case 1: K1¼7.0 MJ/m3 and K2¼1.0 MJ/m3

For relatively strong K2 with respect to K1, the stability
diagram is also a magnetic phase diagram, i.e. it predicts the
mechanism by which magnetisation reversal occurs. For the case
K1¼7.0 MJ/m3 and K2¼1.0 MJ/m3 this follows from the detailed
analysis of energy surfaces (not shown here). For these para-
meters, the critical field contours (Eqs. (6), (8) and (9)) are plotted
in dependence on W (Fig. 2). This figure shows the regions of
cooperative and non-cooperative reversal for particular Js, K1 and
K2 values and the states, which are realised after applying the
reverse field H. In the shaded area in Fig. 2 both configurations, mk
Fig. 2. Stability diagram for two interacting single domain particles showing the

regions of cooperative and non-cooperative reversal for K1¼7.0 MJ/m3, K2¼1.0

MJ/m3 and Js¼1.43 T. The upper boundary of the shaded area limits the stability of

the mm configuration when increasing H from zero up to Hð2Þmm , whereas the lower

one limits the mk stability region for decreasing H provided the reverse field was

below Hð1Þmk . The critical fields Hð1Þmk , Hð2Þmk and Hð2Þmm and interaction strength WRL,

WWCM and WNC are given in the text.
and mm, are stable. Let us start from the saturated state
(y1¼y2¼0) in zero external field. As the reverse field H40 is
applied and increased, the particles remain in their initial state
until the reverse field intensity reaches Hð2Þmm. When the interaction
is small (WoWWCM), where

WWCM ¼
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5K2

2þ4K1K2

q
�K2ðK1þ2K2Þ

K1þK2
ð16Þ

an increase of the external field above Hð2Þmm will lead to non-
cooperative jump, i.e. the particle with smaller anisotropy K2 will
reverse, whereas the high-anisotropy particle K1 will remain in its
initial direction. As the external field reaches the stability limit
Hð1Þmk (Eq. (8)), the high anisotropy particle will reverse as well. The
switching fields for both particles are modified by the interaction:
as the interaction strength W increases, the field Hð2Þmm, at which the
smaller anisotropy particle reverses, increases, whereas smaller
fields are required to reverse the high-anisotropy particle. When
the interaction strength exceeds some limit (in the case
considered W4WNC), cooperative reversal is observed, as the
state mk is never stable for these parameters.

As a matter of course, the magnetisation state of these two
single-domain particles depends not only on interaction strength,
anisotropy and external magnetic fields, but also upon the
magnetic prehistory of the sample. For instance, in the limit of
strong interactions (when the reversal is cooperative), starting
from the reversed state (y1¼y2¼p) and reducing the reverse field
to zero again, will not bring the system to the state y1¼y2¼0, but
the spins will of course remain in the y1¼y2¼p configuration. The
same is true for the case of small and moderate interaction
strength (WoWNC, non-cooperative reversal), if the reverse field
has exceeded Hð1Þmk. In these cases, the stability analysis has to be
done for that initial state and a starting increasing field of
opposite direction.

Consequently, for small and moderate interaction strength
WoWWCM, reducing the reverse field, which reached a value
above Hð2Þmm but below Hð1Þmk, to zero again will result in the
appearance of recoil hysteresis: the particle with smaller
anisotropy will return to the initial state y2¼0 not in the field
Hð2Þmm (upper limit of the shaded area in Fig. 2), but in the smaller
one H¼Hð2Þmk (lower limit of the shaded area in Fig. 2). This type of
hysteresis is also reflected in the behaviour of the energy profile
Fig. 3. Energy profile versus rotation angle of the low anisotropy particle (y2) for

increasing reverse field H from 0 to 2.0 and to 3.2 MA/m (closed symbols) and

subsequently decreasing reverse field to 1.8 and to 1.0 MA/m (open symbols). The

parameters used in the calculation are: Js¼1.43 T, K1¼7.0 MJ/m3, K2¼1.0 MJ/m3

and W¼3.0 MJ/m3. y1 has been fixed to zero for the considered fields.
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Fig. 4. Demagnetisation curves of two particles interacting according to Eq. (1) for K1¼7.0 MJ/m3, K2¼1.0 MJ/m3, together with certain minor recoil curves for

(a) vanishing interaction, W¼0, (b) 0oWoWRL, W=1MJ/m3, (c) WRLoWoWWCM, W=3MJ/m3 and (d) W4WNC, W=5MJ/m3. According to the definition in Eq. (1) the

applied field is Happl¼ -H.
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plots (Fig. 3). For the given interaction strength W¼3 MJ/m3

(oWWCM), the particles remain in the initial state y1¼y2¼0 for
reverse fields up to H¼Hð2ÞmmE3 MA/m, as can be inferred from the
existence of the energy barriers for fields below 3 MA/m. In a
reverse field of 3.2 MA/m, the magnetisation of the particle with
smaller anisotropy reverses. Since this field is below the field, at
which the high-anisotropy particle switches, Hð1Þmk, the latter will
not rotate, i.e. for the considered reverse fields y1 is always zero.
Subsequent reduction of the reverse field will bring the system
into the initial state y1¼y2¼0, not at the critical field Hð2Þmm, but in a
smaller field equal to Hð2ÞmkE1.4 MA/m (Fig. 2), and thus for 1 MA/m
the barrier in Fig. 3 has disappeared.

In terms of the hysteresis loop, this situation is illustrated in
Fig. 4(a)–(c) and corresponds to the so-called recoil-loop
measurements. In the absence of interactions, W¼0, for an
applied field larger than the switching field of the low-
anisotropy particle (Hð2Þmm), but below the switching field of the
high-anisotropy particle (Hð1Þmk), the low-anisotropy particle
reverses, while the high-anisotropy particle remains in the
initial state (Fig. 4(a)). If the reverse field is subsequently
reduced, the low anisotropy particle follows its own hysteresis
loop. In order to reverse the low anisotropy particle, application of
the positive field equal to 2 K2/Js is required. This means, that in
the absence of interactions, W¼0, for applied fields below the
switching field of the high-anisotropy particle a minor loop
arising only from the low-anisotropy particle hysteresis is
observed. Interaction between the particles shifts the minor
loop to higher reverse fields producing the recoil loops (Fig. 4(b)
and (c)), as follows from Fig. 2. According to the model, the recoil
loop area decreases with increasing interaction strength, and it
vanishes in the limit of strong interactions (compare Figs. 2 and 4).
Interaction between the particles modifies the fields Hð2Þmm and Hð1Þmk.
Nevertheless, the low anisotropy particle switches irreversibly.
For non-vanishing interaction, but WoWRL with

WRL ¼
2K1K2

K1þK2
ð17Þ

the low anisotropy particle is reversed back in positive
Happl ¼�Hð2Þmk40 (Fig. 4(b)), the branch Hð2Þmk below the abscissa
in Fig. 2, not shown there. If the interaction is in the range
WRLoWoWWCM, the complete recoil loop shifts to the second
quadrant, i.e. to negative Happl (Fig. 4(c)). For strong enough
interactions, W4WNC, the minor loop disappears and the two
particles switch in unison (Fig. 4(d)).
3.2. Case 2: K1¼7.0 MJ/m3 and K2¼0.1 MJ/m3

The stability diagram for the case of K1¼7.0 MJ/m3 and
K2¼0.1 MJ/m3, i.e. a second particle with weak anisotropy shown
in Fig. 5 indicates that there exists a wide critical region
WWCMoWoWNC, where neither the state y1¼y2¼0 nor the
state y1¼0; y2¼p is stable.

The question arises, whether the y1¼y2¼p state is stable. But
inspecting the energy surface curves revealed a more complex
behaviour: a further reversal mode, additional to the transition
between the states given by Eq. (3), has been observed (see Fig. 6):
with increasing reverse field above Hð2Þmm, the particles do not
switch but start to tilt by different angles with respect to the easy
direction. As a guide for the eye, the direction of the
magnetisation of both particles at a given reverse field is also
schematically shown in Fig. 6. Provided the reverse field is below
Hð2Þmk, the rotation is fully reversible. The reverse field H¼Hð1Þmk

promotes the irreversible switching of both particles.
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Fig. 5. Stability diagram for two interacting single domain particles showing

weakly coupled (WCM) and exchange-spring (ES) reversal mode regions for

K1¼7.0 MJ/m3, K2¼0.1 MJ/m3 and Js¼1.43 T. The boundary between the noncol-

linear reversal mode and y1¼y2¼p is indicated by a dot-dashed line. The critical

fields Hð1Þmk , Hð2Þmk and Hð2Þmmand interaction strengths WRL, WWCM and WNC are given in

the text.
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Thus, depending on the interaction strength, three major
reversal modes can be distinguished: (1) weakly coupled magnet
(WCM) region, where the low- and high-anisotropy particles
behave almost independently, (2) region with exchange-spring
behaviour (ES) for sufficiently strong coupling and (3) high-
anisotropy-particle dominated region, where the low- and high-
anisotropy particles switch in unison (Fig. 5).

In the ES regime, the low- and high-anisotropy particles rotate
non-collinearly. As the reverse field increases, the tilting angle y2

of the low anisotropy particle increases faster than that of the
high anisotropy particle (Fig. 7). Whereas y2 increases steadily
with H, the angle y1 first increases and then relaxes to zero, again
if y2 goes to p, if WWCMoWoWNC. The particles are thus driven
into the state mk, but during this process the high anisotropy
particle is perturbed by the rotation of the low anisotropy particle.

With increasing interaction strength, higher reverse fields are
required to switch the low anisotropy particle. However, when
the interaction exceeds some limit, given by W4WNC, the high
anisotropy particle does not relax to the initial state, but the non-
collinear reversible rotation is followed by the irreversible
switching of both particles (W¼4.0 MJ/m3 in Fig. 7). Thus, also
in the ES regime, the switching of both particles can be either
cooperative or non-cooperative depending on the interaction
strength. For K1¼7.0 MJ/m3 and K2¼0.1 MJ/m3, the cooperative
switching by the ES non-collinear mechanism is observed for the
interaction strength W4WNC. The boundary limiting the stability
of the non-collinear mode is sketched in Fig. 5. It is determined
numerically using the equilibrium conditions in Eq. (2). This
boundary continuously approaches the stability limit Hð2Þmm with
increasing W, since the deviation of the magnetisation from e.a.

and the angle (y2–y1) decreases with increasing interaction. For
W-N, the magnetisation reversal is collinear.

Fig. 8 shows demagnetisation curves as a function of inter-
action strength. In the limit of weak interactions WoWWCM

(W¼1 MJ/m3), the particles switch almost independently. With
increasing interaction W4WWCM, the demagnetisation curve is
not rectangular in shape and one can distinguish the first critical
field, at which non-collinear reversible rotation starts, and the
second critical field, at which the high anisotropy particle
switches irreversibly. The switching field for irreversible
rotation decreases dramatically with increasing the interaction
strength. Depending on the interaction strength, the reversal is
non-cooperative (WWCMoWoWNC, e.g. W¼3 MJ/m3) or
cooperative (W4WNC, e.g. W¼4 MJ/m3). In the limit of very
strong interactions (e.g. W¼8 MJ/m3), the demagnetisation curve
is largely rectangular, with a single critical field, being
substantially smaller than that of the non-interacting high-
anisotropy particle. However, the coherent magnetisation
reversal is expected only for W-N, where the particles behave
as a rigid magnet.
4. Wohlfarth’s remanence analysis

In order to obtain information on magnetic interaction in a
material from experimental hysteresis data Wohlfarth [11]
derived the simple relationship

2JRðHmÞþ JDðHmÞ�JR ¼ 0 ð18Þ

being valid for an assembly of non-interacting magnetically
uniaxial single-domain particles. In Eq. (18) JR(Hm) is the
remanent magnetisation of the sample measured after a positive
field Hm had been applied to and subsequently removed from the
sample, which was thermally or ac-field demagnetised (howe-
ver—not dc-field demagnetised). JR¼ JR(N) is the common
remanence of the system. The remanent magnetisation JD(Hm) is
acquired after the sample has been saturated in a large positive
field, and then a field –Hm had been applied and subsequently
removed. Thus, deviations from Eq. (18) can be caused by (1)
non-uniaxial anisotropy, (2) non-homogeneous magnetisation
modes (deviating from the single-domain state) or (3) particle
interaction. It should be noted that Eq. (18) holds whatever the
degree of orientation (texture) of the easy axes and whatever
the variation of the anisotropy within the assembly is. On the
other hand, the validity of Eq. (18) is only a necessary condition
for the sample to be a system of non-interacting magnetically
uniaxial single-domain particles. Also, if the conditions for
the validity of Eq. (18) are not fulfilled, the deviations from it
could depend on whether the sample was thermally or ac-field
demagnetised.

According to Eq. (18), the quantity

dMðHmÞ ¼ 2JRðHmÞ=JRþ JDðHmÞ=JR�1 ð19Þ

vanishes for the ideal case of an assembly of non-interacting
magnetically uniaxial single-domain particles. Therefore, the so-
called dM plots, i.e. dM(Hm)-versus-Hm-curves, have been used to
analyse the deviations of the behaviour of real materials from the
ideal case [8,10].

Here, we consider the dM plot for the very simple system
consisting of an aggregation of independent pairs of particles
described by Eq. (1). It is obvious from Figs. 2 and 4 that the dM

plot completely vanishes, dM(Hm)¼0, for arbitrary Hm40, not
only for the ideal case W¼0, but also for W4WRL, independent of
whether the analysis started with a thermally or an ac-field
demagnetised state. In the case of WRLoWoWWCM (as in
Fig. 4(c)), the recoil hysteresis has no influence on remanent
states (i.e. states at H¼Happl¼0) and for W4WWCM there is no
recoil hysteresis as the pairs switch in unison. Hence, dM(Hm)a0
can only appear for weak interaction 0oWoWRL.

If the system is ac-field demagnetized, it consists of pairs mm,
kk, mk and km, each with a statistical weight of 25%. For
0oWoWRL, the values of dM(Hm) of such a sample are non-zero
only in the field range

�Hð2ÞmkoHmoHð2Þmm ð20Þ
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Fig. 6. Energy surface contour plots of two interacting particles for the reverse field increasing from 1.5 to 2.9 MA/m (Js¼1.43 T, K1¼7.0 MJ/m3, K2¼0.1 MJ/m3 and

W¼3.0 MJ/m3). The magnetisation direction (y1, y2) of the two particles is given by the minimum of the energy, somewhere in the centre of the darkest blue region. Arrows

show schematically the direction of the magnetisation of the particles at the corresponding reverse field.
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with Hð2Þmk and Hð2Þmm from Eqs. (9) and (6), respectively, and has the
value dM(Hm)¼1/2. As an example, the dM plot corresponding to
the case of Fig. 4(b) is shown in Fig. 9.

On the other hand, the detailed state of the corresponding
thermally demagnetised system depends on the temperature
dependencies of the material parameters Js, K1, K2 and W. It can be
easily shown that both types of thermally demagnetised states
can appear, the one obtained also for ac-field demagnetisation
(see above), whereas the other is a collection of pairs mm and kk,
each with a statistical weight of 50%. In the latter case, there is
dM(Hm)¼0 for all values Hm40.

The novel non-collinear magnetisation mode discussed in
Section 3.2 is reversible and has no influence on states at Happl¼0,
and consequently it does not modify the dM plot. Note that in the
exchange-spring regime, the pairs mk and km are not stable in
Happl¼0.
5. Conclusions

The influence of magnetic interaction between different types
of ferromagnetic particles on the magnetisation reversal in
permanent magnets has been investigated using a very simple
two-particle model. Information on the reversal mechanisms and
critical fields, at which the reversal takes place has been described
by magnetic phase diagrams in terms of magnetic field, interac-
tion strength and anisotropy strengths. Although the anisotropy
axes of both particles have been chosen parallel to each other and
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Fig. 7. Calculated angles y1 (open symbols) and y2 (closed symbols) as a function of

the reverse field for various interaction strength W (K1¼7.0 MJ/m3, K2¼0.1 MJ/m3,

Js¼1.43 T).

Fig. 8. Calculated demagnetisation curves of two interacting particles for different

values of the interaction strength W (K1¼7.0 MJ/m3, K2¼0.1 MJ/m3 and Js¼1.43 T).

According to the definition in Eq. (1) Happl¼ -H.

Fig. 9. dM plot according to Eq. (19) for an ac-field demagnetised assembly of

independent pairs of particles described by Eq. (1), with the parameters of

Fig. 4(b).
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to the magnetic field non-collinear reversal modes have been
obtained. Similar modes are known from non-textured nanocom-
posite exchange-spring magnets [13–15]. Depending on the
interaction strength, the reversal may be cooperative or non-
cooperative also in the regime of this kind of exchange-spring
behaviour (see Fig. 7). Non-collinear reversal modes have also
been observed by Fullerton et al. [16] and Amato et al. [17], where
exchange-spring soft/hard layers consisting of hundreds of spins
were studied using a one-dimensional discrete model qualita-
tively similar to Eq. (1). It is striking that here the existence of the
non-collinear reversal mode can be obtained considering interac-
tions between only two particles with parallel easy axes, thus
suggesting that the exchange-spring behaviour is a very general
phenomenon.

Any reversal mode, including the mentioned type of exchange-
spring behaviour, is characterised by the dependence y1(H) and
y2(H), which may be mapped as a curve in the y1–y2 plane. Fig. 10
summarises schematically the different characteristic modes
found for the model of this study. In the case of equal anisotropy
constants, a transition from the y1¼y2¼0 to y1¼y2¼p state occurs
by a simultaneous switching. This conclusion is made on the basis
of the equilibrium Eq. (2). However, to follow the details of this
reversal would require a study of the dynamic behaviour [4]. Non-
cooperative switching is observed in the case of weak (WoWWCM)
or absent interaction (W¼0). In the ES region, reversible
magnetisation rotation is followed by an irreversible switching.
Depending on the interaction strength, reversal can be either non-
cooperative (ES NC), for WWCMoWoWNC or cooperative (ES C), for
W4WNC.

Exchange spring behaviour can also be resembled by shifted
recoil loops similar to that in Fig. 4(c). Such shifting caused by
magnetic interaction has been proposed by Preisach [18].
Meiklejohn and Bean [19] observed such an effect for ferromag-
netic particles exchange coupled to an antiferromagnet, and they
designated this effect as an exchange anisotropy. If both K2 and W

are small, the closed recoil loop in Fig. 4(c) becomes narrow and
close to the field axis similar to the reversible curves in Fig. 8 and
to the recoil loops observed in exchange spring materials
[12,13,20].

This very simple but exactly solvable model could successfully
be used to answer general questions concerning the Wohlfarth’s
remanence analysis: although the dM plot for an assembly of non-
interacting uniaxial single-domain particles yields dM(Hm)�0 for
both, thermally and ac-field demagnetised samples, the devia-
tions of dM from zero may be different for the two types of
demagnetising and dM can even be zero for finite (in particular
strong) interaction between the particles.

The model investigated in this study can be extended to
more general cases such as different spontaneous magnetisations
Fig. 10. Schematic representation of possible reversal modes in a system

consisting of two interacting particles. Solid lines correspond to a reversible

magnetisation rotation, dashed lines represent irreversible switching (a jump of at

least one particle). Reversal in the ES regime is noncooperative (ES NC) for

WWCMoWoWNC and cooperative (ES C) for W4WNC.
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(or volumes) of the two particles, negative values of the inter-
action parameter W or different directions of the two easy axes.
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