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a b s t r a c t

The coupled cluster method (CCM) is employed to very high orders of approximation to study the
ground-state (GS) properties of the spin-s Heisenberg antiferromagnet (with isotropic interactions, all of
equal strength, between nearest-neighbour pairs only) on the honeycomb lattice. We calculate with high
accuracy the complete set of GS parameters that fully describes the low-energy behaviour of the system,
in terms of an effective magnon field theory, viz., the energy per spin, the magnetic order parameter (i.e.,
the sublattice magnetization), the spin stiffness and the zero-field (uniform, transverse) magnetic sus-
ceptibility, for all values of the spin quantum numbers in the range ≤ ≤s1

2
9
2
. The CCM data points are

used to calculate the leading quantum corrections to the classical ( → ∞s ) values of these low-energy
parameters, considered as large-s asymptotic expansions.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Isotropic Heisenberg antiferromagnets (HAFs) have a con-
tinuous SU(2) rotational symmetry in spin space, which may be
spontaneously broken under rather general conditions down to its
U(1) subgroup, thereby leading to classical ground-state (GS)
phases with magnetic long-range order (LRO). Such states are ty-
pically not eigenstates of the corresponding quantum Hamiltonian
in the case where the spins have a finite value of the spin quantum
number s. The role then played by quantum fluctuations on the
corresponding GS ordering properties of such HAFs comprising
interacting quantum spins placed on the sites of an (infinite)
regular periodic lattice continues to engender considerable inter-
est, both theoretically and experimentally.

In very general terms, quantum fluctuations are larger for
systems with lower dimensionality D, lower values of the spin
quantum number s, and lower values of the coordination number z
of the spatial lattice. The Mermin–Wagner theorem [1], which
asserts the impossibility of breaking a continuous symmetry when
D¼1, even for systems at zero temperature (T¼0), thus precludes
GS phases with magnetic LRO for one-dimensional (1D) quantum
.uk (R.F. Bishop),

.H.Y. Li, Journal of Magnet
spin chains. The same theorem also rules out magnetic LRO in any
isotropic quantum system with D¼2 at any nonzero temperature
( > )T 0 . Since it does not, however, apply to 2D systems at T¼0 (or,
indeed, to systems with >D 2), 2D quantum magnets at T¼0
provide a key arena for the study of the role of quantum fluctua-
tions on their properties. Furthermore, since the honeycomb lat-
tice has the lowest coordination number (z¼3) of all regular 2D
lattices, it is natural to focus particular attention on it, as we do
here.

The behaviour at low energies or large distances of any strongly
correlated system that has undergone spontaneous symmetry
breaking is governed by the properties and dynamics of the
massless Goldstone bosons that thereby emerge [2]. In the case of
the isotropic HAFs considered here these are simply the spin
waves or magnons. In turn, the dynamics of the Goldstone bosons
can be precisely formulated in terms of a simple, systematic ef-
fective field theory (EFT) [3–9], which is specified wholly by the
symmetry properties of the model in terms of a few low-energy
parameters. While models in the same symmetry class are thus
described by a universal EFT, the values of the low-energy para-
meters themselves depend on the specific model being studied.
Thus, while a particular EFT (pertaining to a given symmetry class)
leads to universal expressions for such asymptotic formulae or
scaling forms as those pertaining to finite-size or low-temperature
corrections, one still needs an independent knowledge of the
ism and Magnetic Materials (2016), http://dx.doi.org/10.1016/j.
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values of the low-energy parameters to implement them in
practice.

In principle the parameters can be obtained in two different
ways. In the first one performs a microscopic calculation at finite
values of the system size and/or at nonzero temperatures (Ta0),
and uses the results as input to the EFT scaling forms to extract the
low-energy parameters. In the second way one simply calculates
the low-energy parameters directly for a system of infinite size
(i.e., in the appropriate thermodynamic limit) and at T¼0, using
some suitable ab initio technique of microscopic quantum many-
body theory. For the specific case of the spin- 1

2
HAF, with nearest-

neighbour (NN) interactions only, on the honeycomb lattice, ty-
pical calculations of the former type have been performed using
quantum Monte Carlo (QMC) algorithms of various types [10–12].
Although QMC calculations can be highly accurate they are often
restricted in practice to unfrustrated systems, i.e., in the present
case to models with NN interactions only, due to the well-known
“minus-sign problem”. An alternative technique of the former sort,
which uses the exact diagonalization (ED) of finite lattices, does
not suffer from the same restriction, but is restricted in practice to
much smaller systems, which are hence also more problematic in
fitting to the asymptotic finite-size scaling forms.

There are relatively few microscopic spin-lattice techniques of
the second sort that can be applied to systems of N spins from the
outset in the limit → ∞N . Among them are the linked-cluster series
expansion (SE) method [13,14] and the coupled cluster method
(CCM) [15–21]. Both methods have been applied, for example, to
calculate the low-energy parameters of the spin- 1

2
HAF on the

honeycomb lattice (see, e.g., Ref. [22] for an SE calculation and Ref.
[23] for a CCM calculation that also includes frustrating bonds).

Another technique that is commonly applied to spin-lattice
problems, and which is complementary to those discussed above
is spin-wave theory (SWT) [24–26]. It essentially works best close
to the classical limit ( → ∞s ), and develops series expansions in
powers of s1/ for the low-energy parameters. In this context one of
the strengths of the CCM in particular is that it is relatively
straightforward both in principle and in practice to apply to
models with arbitrary values of the spin quantum number, s. One
of the main purposes of the present paper is thus to apply the CCM
to high orders of approximation to study the GS properties of the
honeycomb-lattice HAF with values of the spin quantum number
in the range ≤ ≤s1

2
9
2
, with a particular aim to examine the

asymptotic large-s expansions for the low-energy parameters that
describe the model via EFT. We note that there is no fundamental
reason to limit our calculations to the cases with ≤s 9

2
. The CCM

can readily also be applied to spin-lattice models with much
higher values of s. The choice to limit ourselves here to cases with

≤s 9
2
is made purely on the practical ground that this range surely

suffices both to highlight the efficacy of the CCM and to investigate
fully the evolution of the low-energy parameters as a function of
increasing spin quantum number s, which are our joint main aims.

The outline of the rest of the paper is as follows. We first de-
scribe in Section 2 the low-energy parameters that describe the
magnon EFT. The CCM technology that we use to calculate them,
and the hierarchical approximation scheme that we employ are
then outlined in Section 3. The method is applied to the spin-s
honeycomb-lattice HAF for values of the spin quantum number

≤s 9
2
, and we cite extrapolated results in Section 4 for the corre-

sponding low-energy parameter set in each case. We use these
sets to derive respective expansions in powers of s1/ for each
parameter about the corresponding classical ( → ∞s ) limit and,
where possible, we compare with results from SWT. Finally, we
summarize in Section 5.
Please cite this article as: R.F. Bishop, P.H.Y. Li, Journal of Magnet
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2. Low-energy parameters

The systematic low-energy EFT for magnons [3–9] was itself
developed soon after the introduction of, and in complete analogy
to, chiral perturbation theory (χPT) (see, e.g., Ref. [27] and refer-
ences cited therein) for the pions that play the role of the Gold-
stone bosons in quantum chromodynamics (QCD). Just as the ha-
dronic vacuum plays the role of the broken phase in QCD, so does
the antiferromagnetic (AFM) phase play the same role for a HAF.
Similarly, just as the order parameter is given by the chiral con-
densate in QCD, for a HAF it is given by the average local on-site
magnetization (or, here, equivalently the staggered magnetiza-
tion), M. In the case of QCD the overall coupling strength in χPT is
given by the pion decay constant, whereas for a HAF it is given in
its EFT by the spin stiffness (or helicity modulus), ρs. Finally,
whereas in QCD the propagation speed inherent in χPT is the
speed of light, for a HAF the magnons of its EFT propagate with the
corresponding spin-wave velocity, c. The latter two quantities for a
HAF are related by the effective description of spin waves by a
hydrodynamic theory [28,29], which yields

ρ
χ

ℏ =
( )

c ,
1

s

where χ is the zero-field (uniform, transverse) magnetic suscept-
ibility, in units where the gyromagnetic ratio μ ℏ =g / 1B .

Thus, the fundamental low-energy parameter set that describes
completely the low-energy physics of a magnetic system of the
AFM type considered here consists of (a) the GS energy per par-
ticle, E N/ , (b) the average local on-site magnetization, M, (c) the
zero-field, uniform, transverse magnetic susceptibility, χ, (d) the
spin stiffness, ρs, and (e) the spin-wave velocity, c. The latter three
quantities are related via the hydrodynamic relation of Eq. (1). We
note too that the parameters ρs and χ, in particular, are defined
here per unit site, as is usual for a discrete lattice description. By
contrast, in a continuous EFT description, it is more normal to
define corresponding quantities, ρ̄s and χ̄ , per unit area. If we
define the NN spacing on the honeycomb lattice to be d, the lattice
then has ( )d4/ 3 3 2 sites per unit area, and hence

ρ ρ χ χ= ¯ = ¯ ( )d d
3
4

3 ,
3
4

3 . 2s s
2 2

We place quantum spins ≡ ( )s s ss , ,k k
x

k
y

k
z on the sites k of a

honeycomb lattice. They obey the usual SU(2) commutation rela-
tions,

δ[ ] = ϵ ( )s s i s, , 3k
a

l
b

kl abc k
c

with = ( + )s ss 1k
2 and, for the cases considered here,

=s , 1, , 2, , 3, , 4,1
2

3
2

5
2

7
2

9
2
. The SU(2)-invariant Hamiltonian of the

quantum HAF is

∑= · >
( )〈 〉

H J Js s ; 0,
4k l

k l1
,

1

where the sum over 〈 〉k l, runs over all NN pairs on the honeycomb
lattice, counting each pair once only. The Hamiltonian commutes
with the total spin operator,

∑[ ] = ≡
( )=

H S S s, 0; .
5k

N

k
1

The lattice and the Heisenberg exchange bonds are illustrated in
Fig. 1(a).

The honeycomb lattice is bipartite but non-Bravais. It com-
prises two triangular Bravais sublattices and . Sites on sub-
lattice are at positions = + = ( − ) ^ + ^m n m n dx ndzR a b 3k

1
2

3
2

,

where ∈m n, , in terms of Bravais lattice vectors ≡ ^dxa 3 and
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Fig. 1. The HAF on the honeycomb lattice, showing (a) the bonds (J1¼—–), the triangular Bravais lattice vectors a and b, and the Néel state, (b) the twisted Néel state for the
calculation of the spin stiffness coefficient, ρs, showing the twist applied in the x direction, (c) the canted Néel state for the calculation of the zero-field magnetic sus-
ceptibility, χ, with the external magnetic field applied in the zs direction. Sites on the two triangular sublattices and are shown by filled and empty circles, respectively,
and the spins are represented by the (red) arrows on the lattice sites.
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= ( − ^ + ^)d x zb 3 31
2

, defined to lie in the xz plane, as shown in
Fig. 1. Each unit cell k at position vector Rk thus comprises two
spins, one at ∈Rk and the other at ( + ^) ∈dzRk . The honey-
comb-lattice Wigner–Seitz unit cell is thus the parallelogram
formed by the lattice vectors a and b. It may also be equivalently
taken as being centred on a point of sixfold symmetry, so that it is
bounded by the sides of a primitive hexagon of side d.

The appearance of a GS phase with a non-vanishing value of
the staggered magnetization order parameter,

∑ ϕ=
( )=N

M s
1

,
6k

N

k k
1

where ϕ ≡ + ( − )1 1k for ∈ ( )k , then signals the spontaneous
breaking of the SU(2) symmetry down to its U(1) subgroup. The
magnon field in SU(2)/U(1) may then be taken as

( ) = ( ( ) ( ) ( )) | ( )| = ≡ ( ) ( )e e e x ze R R R R e R R, , ; 1; , . 71 2 3
2

The effective action for the low-energy EFT of the AFM magnons is
given by

⎛
⎝⎜

⎞
⎠⎟∫ ∫ ρ[ ] = ¯

∂
∂

· ∂
∂

+ ∂
∂

· ∂
∂

+ ∂
∂

· ∂
∂ ( )

β
t R

x x z z c t t
e

e e e e e e
d d

1
2

1
,

8s
0

2
2

in terms of the inverse temperature parameter, β ≡ ℏ ( )k T/ B . We
shall be interested here only in the case T¼0. Note that the pre-
factor of the last (temporal) term in Eq. (8) may equivalently be
written as ρ χ¯ = ℏ ¯c/s

1
2

2 1
2

2 , from Eqs. (1) and (2).
The spin stiffness (or helicity modulus), ρs, of a spin-lattice

system is simply a measure of the energy required to rotate the
order parameter M of a magnetically ordered state by an (in-
finitesimal) angle θ per unit length in a specified direction. Hence,
if θ( )E is the GS energy as a function of the imposed twist, and N is
the number of lattice sites, we have

θ ρ θ θ( ) = ( ) + + ( ) ( )
E

N
E

N
O

0 1
2

. 9s
2 4

We note that θ has the dimensions of an inverse length. In the
thermodynamic limit of an infinite lattice ( → ∞N ) a nonzero
(positive) value of ρs implies the stability of the magnetic long-
range order (LRO). For the Néel AFM state illustrated in Fig. 1(a) for
a staggered magnetization in the xs direction, the value of ρs is
completely independent of the applied twist direction. Fig. 1
(b) illustrates the twist applied in the x direction to the Néel state
of Fig. 1(a). A trivial calculation, using the definition of Eq. (9),
shows that the value of ρs for the classical ( → ∞s ) Néel state is

ρ = ( )J d s . 10s
cl 3

4 1
2 2

Suppose we now place the Néel state shown in Fig. 1(a), or-
dered in the xs direction, in a transverse uniform magnetic field,
Please cite this article as: R.F. Bishop, P.H.Y. Li, Journal of Magnet
jmmm.2016.01.101i
= ^hzh s . In units where the gyromagnetic ratio μ ℏ =g / 1B , the Ha-
miltonian = ( = )H H h 0 of Eq. (4) then becomes

∑( ) = ( ) +
( )=

H h H h s0 .
11k

N

k
z

1

The spins now cant at an angle α to the xs-axis with respect to
their zero-field configurations, as shown in Fig. 1(c). The classical
( → ∞s ) value of α is easily calculated by minimizing the classical
energy, = ( )E E h , corresponding to Eq. (11), with respect to the
cant angle α. The uniform (transverse) magnetic susceptibility is
then defined, as usual, by

χ ( ) = − ( )h
N

E
h

1 d
d

, 12

2

2

Its zero-field limit is then the corresponding low-energy para-
meter, χ χ≡ ( )0 . A simple calculation shows that the value of χ for
the classical ( → ∞s ) Néel state is

χ =
( )J

1
6

.
13

cl

1

Eqs. (10) and (13) yield the corresponding classical ( → ∞s ) limit of
the spin-wave velocity,

ℏ = ( )c J ds
3
2

2 , 14
cl

1

from Eq. (1), which is simply the result of lowest-order SWT
(LSWT).
3. The coupled cluster method

We now outline the key features of the CCM, and refer the
reader to the extensive literature (and see, e.g., Refs. [15–21,30–32]
and references cited therein) for further details. While the CCM
was originally invented to discuss stationary states, and hence the
static properties, of quantum many-body systems, it has since
been extended to a fully dynamic (bi-variational) formulation [32],
which is readily capable, both in principle and in practice, of cal-
culating dynamic properties. Since, however, we are only inter-
ested here in GS properties, we henceforth concentrate only on the
stationary version of the formalism. As a first step one needs to
choose a suitable many-body (normalized) model (or reference)
state Φ| 〉, in terms of which the correlations present in the exact GS
wave function Ψ| 〉 can later be systematically incorporated, in a
fashion we describe below. Although we will describe the prop-
erties required of Φ| 〉 in detail below, we remark now that it plays
the role of a generalized vacuum state. For our present study the
quasiclassical Néel state shown in Fig. 1 (and its twisted and
canted versions also shown there) will be our choices for Φ| 〉.
ism and Magnetic Materials (2016), http://dx.doi.org/10.1016/j.
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The exact GS ket- and bra-state wave functions, Ψ| 〉 and Ψ〈 ˜ |,
respectively, are chosen to satisfy the normalization conditions

Ψ Ψ Φ Ψ Φ Φ〈 ˜ | 〉 = 〈 | 〉 = 〈 | 〉 ≡ ( )1. 15

They are now parametrized with respect to the chosen reference
state Φ| 〉 in the distinctive CCM exponentiated forms,

Ψ Φ Ψ Φ| 〉 = | 〉 〈 ˜ | = 〈 | ˜ ( )−e Se; . 16S S

In principle the correlation operator S̃ may be expressed in terms
of its counterpart S as

Φ Φ
Φ Φ

〈 | ˜ = 〈 |
〈 | | 〉 ( )

†

†S
e e

e e
,

17

S S

S S

using Hermiticity. In practice, however, the CCM methodology
chooses not to impose this constraint. Rather, the two correlation
operators are formally decomposed independently as

∑ ∑= ˜ = + ˜
( )≠

+

≠

−S C S C; 1 ,
18I

I I
I

I I
0 0

where ≡+C 10 is defined to be the identity operator in the re-
spective many-body Hilbert space, and where the set index I de-
notes a complete set of single-body configurations for all N par-
ticles. More specifically, we require that Φ| 〉 is a fiducial (or cyclic)
vector with respect to the complete set of mutually commuting,
multiconfigurational creation operators { }+CI . In other words, the
set of states Φ{ | 〉}+CI is a complete basis for the ket-state Hilbert
space. Furthermore, Φ| 〉 is a generalized vacuum with respect to
the operators { }+CI , in the sense that

Φ Φ〈 | = = | 〉 ∀ ≠ ( )+ −C C I0 , 0, 19I I

where ≡ ( )− + †C CI I are the corresponding multiconfigurational de-
struction operators.

The rather general CCM paramerizations of Eqs. (16), (18) and
(19) lie at the heart of the CCM, and have several immediate
consequences. A seeming drawback is that Hermiticity is not made
explicit via Eq. (17). Thus, while the exact correlation operators of
Eq. (18) will certainly fulfill Eq. (17), when approximations are
made (e.g., by truncating the expansions over configurations I in
Eq. (18), as is usually necessary in practice) Hermiticity may be
only maintained approximately. Nevertheless, this possible dis-
advantage is usually far outweighed in practice by several ad-
vantages that flow from the CCM parametrization scheme. Thus,
for example, it guarantees the exact preservation of the Goldstone
linked-cluster theorem, even when approximate truncations are
made to the sums in Eq. (18), as we describe more fully below. This
feature then guarantees the size-extensivity of the CCM at any
such level of approximate implementation, so that all extensive
variables, such as the GS energy, for example, scale linearly with N.
For this reason, the CCM has the first important advantage that we
may work from the very outset in the thermodynamic limit
( → ∞N ), thereby obviating the need for any finite-size scaling of
the numerical results, as is required in many competing methods
such as the ED method. The exponentiated CCM parametrizations
of Eq. (16) correspondingly lead to the second key advantage of the
method that it also exactly preserves the very important Hell-
mann–Feynman theorem at any similar level of approximation (or
truncation).

In the CCM all GS information of the system is encoded in the c-
number correlation coefficients { ˜ },I I . They are themselves now
found by minimization of the GS energy functional,

Φ Φ¯ = ¯ [ ˜ ] ≡ 〈 | ˜ | 〉 ( )−H H Se He, , 20I I
S S

from Eq. (16), with respect to each of the coefficients
{ ˜ ∀ ≠ }I, ; 0I I separately. Thus, variation of H̄ from Eq. (20) with
respect to the coefficient ˜ I yields the condition
Please cite this article as: R.F. Bishop, P.H.Y. Li, Journal of Magnet
jmmm.2016.01.101i
Φ Φ〈 | | 〉 = ∀ ≠ ( )− −C e He I0, 0, 21I
S S

which is simply a coupled set of nonlinear equations for the set of
coefficients { ∀ ≠ }I, 0I , with the same number of equations as
unknown parameters. Similarly, variation of H̄ from Eq. (20) with
respect to the coefficient I yields the condition

Φ Φ〈 | ˜ [ ] | 〉 = ∀ ≠ ( )− +Se H C e I, 0, 0, 22S
I

S

which is, correspondingly, a coupled set of linear equations for the
coefficients { ˜ ∀ ≠ }I, 0I , again with the same number of equations
as unknown parameters, once the coefficients { ∀ ≠ }I, 0I are used
as input after having been obtained from solving Eq. (21).

The value of H̄ from Eq. (20) at the extremum so obtained is
thus the GS energy E, which is hence simply given, using Eqs. (18),
(19) and (21), as

Φ Φ Φ Φ= 〈 | | 〉 = 〈 | | 〉 ( )−E e He He , 23S S S

in terms of the correlation coefficients { }I alone. Clearly, the GS
expectation value of any other physical operator (e.g., the sub-
lattice magnetization, M) requires a knowledge of both sets of
correlation coefficients, { }I and { ˜ }I . We note, too, that use of Eq.
(23) in Eq. (22) leads to the equivalent set of linear equations,

Φ Φ〈 | ˜( − ) | 〉 = ∀ ≠ ( )− +S e He E C I0, 0, 24S S
I

for the coefficients { ˜ ∀ ≠ }I, 0I . Eq. (24) is just a set of generalized
linear eigenvalue equations for these coefficients.

So far no approximations have yet been made in the CCM
procedure and implementation. It is clear, however, that Eq. (21),
which determines the set of creation coefficients { ∀ ≠ }I, 0I , is
intrinsically highly nonlinear in view of the exponential terms, ±e S,
and one may wonder if approximations are needed in practice to
truncate their infinite-series expansions. We note, however, that
the (exponentiated forms of the) operator S only ever enter the
equations to be solved [i.e., Eqs. (21) and (24)] in the combination

−e HeS S of a similarity transformation of the Hamiltonian. This may
be expanded in terms of the well-known nested commutator
series,

∑=
!

[ ]
( )

−

=

∞

e He
n

H S
1

, ,
25

S S

n
n

0

where [ ]H S, n is an n-fold nested commutator, defined iteratively
as

[ ] = [[ ] ] [ ] = ( )−H S H S S H S H, , , ; , . 26n n 1 0

A further key feature of the CCM is that this otherwise infinite sum
in Eq. (25) now (usually, as here) terminates exactly at some low,
finite order, when used in the equations to be solved. The reasons
are that all of the terms in the expansion of Eq. (18) for S commute
with one another, and also that H itself (usually, as here) is of finite
order in the relevant single-particle operators.

Thus, for example, if H contains up to m-body interactions, in
its second-quantized form it will comprise sums of terms invol-
ving products of up to 2m one-body destruction and creation
operators. In this case the sum in Eq. (25) terminates exactly at the
term with n¼2m. In our present case, where the Hamiltonian of
Eq. (4) is bilinear in the SU(2) spin operators, the sum terminates
at n¼2. We note too that the fact that all of the operators in the set
{ }+CI that comprise S via Eq. (18) commute with each other auto-
matically implies that all non-vanishing terms in the expansion in
Eq. (25) are linked to the Hamiltonian. Unlinked terms simply
cannot be generated, thereby guaranteeing that the Goldstone
theorem and the consequent size-extensivity are preserved, even
when truncations are made for the correlation operators S and S̃.

Hence, the only approximation that is ever made in practice to
implement the CCM is to restrict the set of multiconfigurational
ism and Magnetic Materials (2016), http://dx.doi.org/10.1016/j.
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indices { }I that we retain in the expansions of S and S̃ in Eq. (18) to
some suitable (finite or infinite) subset. The choice of both model
state Φ| 〉 and the indices { }I retained must clearly be made on
physical grounds. Hence, we now turn to how such choices are
made for spin-lattice models in general, and for the specific sys-
tem under present study in particular.

For a general quantum spin-lattice problem, the simplest
choice of model state Φ| 〉 is an independent-spin product state in
which the spin projection of the spin on each lattice site, along
some specified quantization axis, is chosen independently. Clearly,
the two-sublattice, collinear Néel AFM state shown in Fig. 1(a) is
precisely of this form, as are other similar (quasi-)classical states
with perfect magnetic LRO. The Néel model state is used here for
the calculations of the GS energy per spin E/N and the magnetic
order parameter M. The twisted and canted Néel states shown,
respectively, in Figs. 1(b) and 1(c) are also of this same form, and
are used here as CCM model states for the respective calculations
of the spin stiffness coefficient ρs and the zero-field magnetic
susceptibility χ. In order to treat all such states in a universal
fashion, it is highly convenient to make a passive rotation of each
spin independently (i.e., by choosing local spin quantization axes
on each site independently), so that every spin on every site points
downwards, say, in the negative zs direction, where the spin axes
are as shown in Fig. 1. Such rotations are unitary transformations
that preserve the basic SU(2) commutation relations of Eq. (3).
Hence every lattice site k is completely equivalent to all others,
whatever the choice of such an independent-spin product, quasi-
classical model spin state Φ| 〉, all of which now take the universal
form Φ| 〉 = | ↓ ↓ ↓ ⋯ ↓ 〉 in their own choices of local spin-co-
ordinate frames for each site k separately.

It is clear that Φ| 〉 so defined can now be taken as a fiducial
vector with respect to a set of mutually commuting creation op-
erators { }+CI , which are hence now chosen as a product of single-
spin raising operators, ≡ ++s s isk k

x
k
y. Thus, → ⋯+ + + +C s s s ;I k k kn1 2

= …n sN1, 2, , 2 , and the set index I thus becomes a set of lattice-
site indices, → { … = … }I k k k n sN, , , ; 1, 2, , 2n1 2 , in which each site
index may appear up to 2s times at most. Once the local spin co-
ordinates have been chosen for the given model state Φ| 〉, as spe-
cified above, one needs to simply re-express the Hamiltonian H in
terms of them.

Our approximations now clearly involve simply a choice of
which configurations { }I to retain in the decompositions of Eq. (18)
for the CCM correlation operators ( ˜)S S, , in terms of which all GS
quantities may be expressed. A rather general such approximation
scheme is the so-called SUBn–m scheme, which has proven to be
extremely powerful in practice for a wide variety of applications to
spin-lattice problems ranging from unfrustrated to highly fru-
strated models. It retains, for given values of the two truncation
indices n and m, all multi-spin configurations involving a max-
imum of n spin-flips (where each spin flip requires the action of a
spin-raising operator +sk acting once) that span a range of up to m
contiguous sites at most. A set of lattice sites is defined to be
contiguous for these purposes if every site in the set is the NN of at
least one other in the set (in a specified geometry). Evidently, as
both truncation indices n and m become indefinitely large, the
approximation becomes exact, and different sub-schemes can be
specified according to how each index approaches the exact in-
finite limit.

If we first let → ∞m , for example, we have the so-called
SUBn ≡ SUBn–∞ scheme, which is just the CCM truncation scheme
employed rather generically for systems defined in a spatial con-
tinuum (rather than on a discrete lattice, as here). Examples to
which the SUBn scheme have been extensively applied, include
atoms and molecules in quantum chemistry [16], finite atomic
nuclei or infinite nuclear matter in nuclear physics [33] (and see,
Please cite this article as: R.F. Bishop, P.H.Y. Li, Journal of Magnet
jmmm.2016.01.101i
e.g., Refs. [18,30,31] for further details). By contrast to continuum
theories, for which the notion of contiguity is not readily applic-
able, in lattice theories both indices n and m may be kept finite. In
this case a very widely used scheme is the so-called LSUBm
scheme [21,20], which is defined to retain, at the mth level of
approximation, all spin clusters described by multi-spin config-
urations in the index set { }I that are defined over any possible
lattice animal (or equivalently, polyomino) of maximal size m on
the lattice. A lattice animal is defined here, in the usual graph-
theoretic sense, to be a configured set of contiguous (in the above
sense) lattice sites. Clearly, the LSUBm scheme is equivalent to the
previous SUBn–m scheme when =n sm2 for particles of spin
quantum number s, i.e., ≡mLSUB SUB2sm–m. Just this LSUBm
scheme was what was employed in our earlier studies of spin- 1

2
honeycomb lattice models [23,34], for example.

However, the number = ( )N N mf f of fundamental spin config-
urations that are distinct under the symmetries of the lattice and
the specified model state Φ| 〉 (i.e., the effective size of the index set
{ }I ), and which are retained at a given mth level of LSUBm ap-
proximation, is lowest for =s 1

2
and rises sharply as s is increased.

Since Nf(m) also typically rises super-exponentially with the
truncation index m, an alternative scheme for models with >s 1

2
is

often preferable. One such alternative is to set m¼n and employ
the ensuing SUBn–n scheme, as we shall do here. Clearly
LSUBm ≡ SUBm–m only in the special case =s 1

2
. For >s 1

2
we have

SUBn–n ⊂ LSUBn. Just as for the LSUBn scheme, however, the
number Nf of fundamental configurations retained at a given nth
level of approximation also rises as the spin quantum number s is
increased. Thus, for example, whereas for the =s 1

2
honeycomb-

lattice HAF the highest LSUBm approximation attainable with
available supercomputing power using the Néel state as CCM
model state [23,34] was m¼12 (for which =N 103, 097f ), we are
now constrained to SUBn–n approximations with ≤n 10 for the
cases ≤ ≤s1 9

2
considered here. Thus, for example, at the SUB10–

10 level of approximation with the Néel model state, we have
=N 219, 521f for the case s¼1, and =N 538, 570f for the case

=s 9
2
.

In order to derive and then solve [20] the corresponding sets of
CCM equations for the correlation coefficients { ˜ },I I we employ
massively parallel computing [35]. Once these coefficients have
been obtained at a given SUBn–n level of truncation we may cal-
culate any GS property of the system at the same level of ap-
proximation. For example, we may calculate the order parameter,
as defined in Eq. (6). In terms of the local rotated spin-coordinate
frames that we have described above, it takes the simple form,

∑ Φ Φ= − 〈 | ˜ | 〉
( )=

−M
N

Se s e
1

.
27k

N
S

k
z S

1

The final step now involves the sole approximation made in our
entire CCM procedure, viz., the extrapolation of the “raw” SUBn–n
data points for our calculated low-energy parameters to the exact

→ ∞n limit. While no exact extrapolation rules are known, a large
body of experience has by now been accumulated from many
applications that have been made of the method to a large variety
of spin-lattice models. For example, a very well tested and highly
accurate extrapolation ansatz for the GS energy per spin has been
shown to be (and see, e.g., Refs. [21,34,36–53])

( ) = + + ( )
− −E n

N
e e n e n . 280 1

2
2

4

Unsurprisingly, all other GS quantities are found to converge
less rapidly than the GS energy, as the truncation index n is in-
creased (i.e., with leading exponents less than two). Thus, for ex-
ample, for unfrustrated models as considered here, a scaling
ism and Magnetic Materials (2016), http://dx.doi.org/10.1016/j.
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ansatz for the magnetic order parameter, M(n), with leading
power n1/ (rather than n1/ 2 as for the GS energy),

( ) = + + ( )− −M n m m n m n , 290 1
1

2
2

has been found to fit the CCM data points extremely well (and see,
e.g., Refs. [36–39,43–50,53]). Similar schemes, with the same
leading exponent as for M, have also been successfully used pre-
viously for both the spin stiffness ρs [23,40,54,55],

ρ ( ) = + + ( )− −n s s n s n , 30s 0 1
1

2
2

and the zero-field magnetic susceptibility, χ [23,55,56],

χ ( ) = + + ( )− −n x x n x n . 310 1
1

2
2

Since each of the extrapolation schemes of Eqs. (28)–(31)
contains three fitting parameters, it is obviously preferable to use
at least four SUBn–n data points in order to obtain stable and ro-
bust fits. Furthermore since the lowest-order SUB2–2 approx-
imants are less likely to conformwell to the large-n limiting forms,
all of our fits for E N/ and M to Eqs. (28) and (29) are performed
using SUBn–n data points with = { }n 4, 6, 8, 10 . Whereas we are
able to perform SUBn–n calculations for the cases ≤s 9

2
for the

honeycomb-lattice HAF with ≤n 10 based on the Néel state of
Fig. 1(a) as CCM model state, the reduced symmetry of both the
twisted Néel state of Fig. 1(b) and the canted Néel state of Fig. 1
(c) restricts our corresponding SUBn–n calculations of both ρs and
χ to ≤n 8. Thus, for example, at the SUB8–8 level of approximation
with the twisted Néel state of Fig. 1(b) as model state, we have a
number of fundamental configurations =N 352, 515f for the case

s¼1, and =N 753, 729f for the case =s 9
2
. The corresponding

SUB8–8 numbers with the canted Néel state of Fig. 1(c) as model
state are =N 59, 517f for the case s¼1, and =N 127, 239f for the

case =s 9
2
. For the extrapolations for ρs and χ from Eqs. (30) and

(31) our results shown below are from fits using SUBn–n data
points with = { }n 4, 6, 8 . Their stability and robustness has been
demonstrated, however, by comparison in each case with corre-
sponding fits using data sets with = { }n 2, 4, 6, 8 .
4. Results

We show in Table 1 our extrapolated set of low-energy para-
meters for the HAF on the honeycomb lattice for all values of the
Table 1
GS parameters of the HAF on the honeycomb lattice, with NN interactions only (of
strength >J 01 ), for various values of the spin quantum number s. Results for the

GS energy per spin E N/ and magnetic order parameter M are extrapolations using
CCM SUBn–n results with = { }n 4, 6, 8, 10 fitted to Eqs. (28) and (29), respectively,
while those for the spin stiffness ρs and the zero-field transverse magnetic
susceptibility χ are corresponding extrapolations with = { }n 4, 6, 8 fitted to Eqs.
(30) and (31), respectively.

s ( )E NJ s/ 1
2 M s/ ρ ( )J d s/s 1

2 2 χJ1

1
2 �2.17866 0.5459 0.5293 0.0852

1 �1.83061 0.7412 0.6208 0.1165
3
2 �1.71721 0.8249 0.6647 0.1287

2 �1.66159 0.8689 0.6874 0.1376
5
2 �1.62862 0.8955 0.7008 0.1433

3 �1.60681 0.9132 0.7095 0.1471
7
2 �1.59133 0.9258 0.7156 0.1499

4 �1.57976 0.9351 0.7201 0.1522
9
2 �1.57080 0.9424 0.7236 0.1538

∞ �1.5 1 0.75 0.1667

Please cite this article as: R.F. Bishop, P.H.Y. Li, Journal of Magnet
jmmm.2016.01.101i
spin quantum number in the range ≤ ≤s1
2

9
2
.

The extrapolated ( → ∞n ) values e0 and m0 for the GS energy
per spin E N/ and magnetic order parameter M from Eqs. (28) and
(29), respectively, are obtained using fits to our calculated CCM
SUBn–n approximants with = { }n 4, 6, 8, 10 . The corresponding
extrapolated ( → ∞n ) values s0 and x0 for the spin stiffness ρs and
the zero-field transverse magnetic susceptibility χ from Eqs. (30)
and (31), respectively, are obtained using fits to our calculated
SUBn–n approximants with = { }n 4, 6, 8 . An indication of the er-
rors inherent in the fits can be obtained for the particular case

=s 1
2
, for which it is possible to perform SUBn–n approximations

with higher values of n than for the cases >s 1
2
, due to the sig-

nificantly reduced number of fundamental configurations Nf for
each quantity in this specific case. Thus, for example, the results
[23] for the case =s 1

2
using SUBn–n approximants with

= { }n 6, 8, 10, 12 are ( ) = −E NJ s/ 2.178641
2 , =M s/ 0.5428, and

χ =J 0.08471 , while the corresponding result for ρs using SUBn–n
approximants with = { }n 6, 8, 10 is ρ ( ) =J d s/ 0.5296s 1

2 2 . All of
these are in remarkably close agreement with those shown in
Table 1, where the fits have been made using SUBn–n approx-
imants of lower orders in each case.

We note that as an indicator of the accuracy of our CCM results,
we have already made a detailed comparison in an earlier paper
[23] of our results for the low-energy parameters with the corre-
sponding largest-scale and numerically most accurate QMC results
available for the isotropic, honeycomb-lattice HAF, namely for the
spin- 1

2
case [11,12]. This is the extreme quantum limit, where one

expects the effects of quantum correlations to be greatest. For
example, our CCM result [23] for the GS energy of the spin- 1

2
model is ( ) = − ( )E NJ/ 0.54466 21 , while the corresponding best
available QMC result [11] is ( ) = − ( )E NJ/ 0.54455 201 . The inter-
ested reader is referred specifically to Table I of Ref. [23], and the
discussion surrounding it, for further details of the corresponding
agreement for other low-energy parameters of the spin- 1

2
model.

There is no reason at all why the CCM results for the models with
>s 1

2
should not be at least as accurate as those for the spin- 1

2
model.

We can now also use our results to estimate the leading
quantum corrections to the classical ( → ∞s ) values, which we also
show in the last line of Table 1 [and see Eqs. (10) and (13)]. We
thus develop each of the low-energy parameters as a simple
power-series in s1/ ,

⎛
⎝⎜

⎞
⎠⎟

( ) = − + ϵ + ϵ + ϵ + ⋯
( )

E s
N

J s
s s s

3
2

,
321

2 1 2
2

3
3

⎜ ⎟⎛
⎝

⎞
⎠

μ μ μ
( ) = + + + + ⋯

( )
M s s

s s s
1 ,

33
1 2

2
3
3

⎛
⎝⎜

⎞
⎠⎟ρ

ρ ρ ρ
( ) = + + + + ⋯

( )
s J d s

s s s
3
4

,
34s 1

2 2 1 2
2

3
3

⎛
⎝⎜

⎞
⎠⎟χ

χ χ χ
( ) = + + + + ⋯

( )
s

J s s s
1 1

6
,

351

1 2
2

3
3

exactly as also emerges in an SWT analysis. We show in Table 2 the
values of the two leading quantum coefficients in each of these
expansions, obtained in six separate least-squares fits.

For two of the fits we use the eight results with
⎧⎨⎩

⎫⎬⎭=s 1, , 2, , 3, , 4,3
2

5
2

7
2

9
2
, for another two we use the six results

with
⎧⎨⎩

⎫⎬⎭=s 2, , 3, , 4,5
2

7
2

9
2
, while for the last two we use the four
ism and Magnetic Materials (2016), http://dx.doi.org/10.1016/j.
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Table 2
Lowest-order coefficients in the s1/ expansions of the low-energy parameters for the HAF on the honeycomb lattice, as defined in Eqs. (32)–(35). The CCM fits are performed
using the results for the spin-s models indicated, and where the notation quadratic (cubic) indicates that we fit to forms that terminate after the first three (four) terms in the

s1/ expansion. Results from SWT [57,58] are shown for comparison.

Method ϵ1 ϵ2 μ1 μ2 ρ1 ρ2 χ1 χ2

CCM: ≤ ≤s1 9
2
; quadratic �0.3155 �0.0152 �0.2628 þ0.0034 �0.1189 �0.0109 �0.0638 þ0.0132

CCM: ≤ ≤s1 9
2
; cubic �0.3145 �0.0185 �0.2531 �0.0309 �0.1105 �0.0405 �0.0552 �0.0175

CCM: ≤ ≤s2 9
2
; quadratic �0.3149 �0.0165 �0.2568 �0.0106 �0.1136 �0.0235 �0.0586 þ0.0006

CCM: ≤ ≤s2 9
2
; cubic �0.3148 �0.0172 �0.2560 �0.0157 �0.1126 �0.0291 �0.0536 �0.0275

CCM: ≤ ≤s3 9
2
; quadratic �0.3149 �0.0167 �0.2566 �0.0114 �0.1134 �0.0242 �0.0556 �0.0099

CCM: ≤ ≤s3 9
2
; cubic �0.3149 �0.0168 �0.2574 �0.0055 �0.1137 �0.0217 �0.0507 �0.0455

SWT �0.3148 �0.0165 �0.2582 �0.1150 �0.0605
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results with
⎧⎨⎩

⎫⎬⎭=s 3, , 4,7
2

9
2
. For each of these we fit to the forms of

Eqs. (32)–(35) that are either quadratic or cubic in the parameter
s1/ . For comparison we also show in Table 2 results from SWT

[57,58]. Our corresponding results for ( )E s N/ , M(s), ρ ( )ss and χ ( )s
are also shown in Figs. 2, 3, 4 and 5, respectively, where we again
compare with known results from SWT up to O( s1/ n), denoted as
SWT(n).

The SWT(2) results for the GS energy per spin, ( )E s N/ , shown in
Table 2 and Fig. 2, are taken from Zheng, Oitmaa and Hamer (ZOH)
[57]. ZOH also give SWT(1) results for both the order parameter, M
(s), and the zero-field transverse magnetic susceptibility, χ ( )s , and
these too are shown in both Table 2 and Figs. 3 and 5, respectively.
ZOH do not cite SWT results for the spin stiffness, ρ ( )ss . However,
Mattsson et al. [58] cite the SWT(1) result for the spin-wave ve-
locity, ( ) = ( ) [ + ( )]c s J ds s3 2 /2 1 0.20984/ 21 . By making use of the
hydrodynamic relation of Eq. (1) and the ZOH SWT(1) relation for
χ ( )s , this readily yields the corresponding SWT(1) relation,

⎛
⎝⎜

⎞
⎠⎟ρ ( ) = −s J d s s0.1150/s 1

2 2 3
4

, which we have shown in Table 2 and

Fig. 4.
We see from Table 2 that our calculated coefficients for the GS

energy, ϵ1 and ϵ2, are in remarkable agreement with the corre-
sponding SWT(2) values. Fig. 2(b) shows very clearly how simple

( )O s1/ n fits with n¼2 or 3 to the CCM data points for ( ) ( )E s NJ s/ ,1
2

with
⎧⎨⎩

⎫⎬⎭=s 3, , 4,7
2

9
2
, agree extremely well with both the corre-

sponding SWT(2) result and the unfitted CCM data points with
≤ ≤s1 5

2
. Even the extreme quantum case =s 1

2
is rather well
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Fig. 2. Extrapolated CCM results for the scaled GS energy per spin, ( )E NJ s/ 1
2 , for the hon

those of SWT(2) [57]. The cross ( × ) symbols show the CCM data points, while the linear,
terms only of Eq. (32), using the data points with (a)

⎧⎨⎩
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2
5
2

7
2

9
2

, and (b)
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described by these simple high-spin forms. Table 2 also shows that
the leading-order coefficient for the magnetic order parameter, μ1,
as extracted from our extrapolated CCM results for M(s), is in very
good agreement with that from SWT, and that the next-to-leading
coefficient, μ2, is small. Fig. 3(b) shows too that simple ( )O s1/ n fits
with =n 1, 2 or 3 to the CCM data points for ( )M s s/ with

⎧⎨⎩
⎫⎬⎭=s 3, , 4,7

2
9
2
, once again agree well with both the corresponding

SWT(1) result and the unfitted CCM data points with ≤ ≤s1 5
2
.

However, by contrast with the GS energy result, all of the fits lead
to values for the spin- 1

2
case of rather limited accuracy. Perhaps

somewhat counter-intuitively, the spin- 1
2
model is actually more

ordered than the (relatively low-order) high-spin expansions
would predict.

Turning to the spin stiffness, ρs, we see from Table 2 that the
leading quantum correction coefficient, ρ1, agrees extremely well
with the SWT(1) result. It is also clear that the second-order
quantum correction coefficient, ρ2, is small and negative. Our best
estimates are obtained from the fits to the higher-spin values, all of
which are consistent with a value ρ ≈ − ±0.025 0.0042 . Fig. 4
(b) shows that the quadratic and cubic fits to the data points with

⎧⎨⎩
⎫⎬⎭=s 3, , 4,7

2
9
2

give very good agreement with the unfitted CCM

data points with
⎧⎨⎩

⎫⎬⎭=s 1, , 2,3
2

5
2
, with only the =s 1

2
point not

fitted well by the high-spin expansion.
Finally, the results shown in Table 2 lead to the observation that

the low-energy parameter with the greatest uncertainty asso-
ciated with its high-spin expansion is the transverse magnetic
−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7
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eycomb-lattice HAF with NN interactions only as a function of s1/ , compared with
quadratic and cubic fits are based on least-squares fits to the first two, three or four⎧⎨⎩

⎫⎬⎭=s 3, , 4,7
2

9
2

.
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2

9
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susceptibility, χ. While all of the values obtained for the leading-
order quantum correction coefficient, χ1, are in reasonable agree-
ment with the corresponding SWT(1) result, the spread in the
values is greater than that for any of the other low-energy para-
meters. Similarly, while we can conclude that the magnitude of the
second-order coefficient χ2 is probably smaller than (or, at most,
comparable to) that of χ1, our CCM fits do not allow us to predict
the sign of χ2 with any real degree of certainty. It is interesting to
note that this is exactly what was also observed in a corresponding
set of fits of the low-energy parameters of the triangular-lattice
HAF [55] to their high-spin asymptotic expansions. Fig. 5(b) shows
that the quadratic and cubic fits to the CCM data points for χ with

⎧⎨⎩
⎫⎬⎭=s 3, , 4,7

2
9
2

now give good agreement only with the unfitted

data points with
⎧⎨⎩

⎫⎬⎭=s 2, 5
2
, with a discrepancy already opening up

at the value =s 3
2
.

5. Summary

In two dimensions the honeycomb lattice has the smallest co-
ordination number (z¼3), and the effects of quantum fluctuations
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are hence the greatest. Thus, the HAF on the honeycomb lattice
occupies a special place in the field of theoretical quantum mag-
netism. Nevertheless, there exist very few studies of this model
that examine within a coherent and unified framework the role of
the spin quantum number s on its low-energy properties. Fur-
thermore, there also exists a rather large number of experimental
realizations of quasi-2D honeycomb-lattice systems with AFM in-
teractions and with various values of s.

For example, the magnetic compounds InCu2/3V1/3O3 [59],
Na3Cu2SbO6 [60], β-Cu2V2O7 [61] and Cu5SbO6 [62] all contain

=s 1
2
Cu2þ ions situated on the sites of weakly coupled honey-

comb-lattice layers. Similarly, the iridate family of compounds
A2IrO3 (A¼Na, Li) [63–66] are believed to be magnetically ordered
Mott insulators in which the Ir4þ ions, that are also arrayed on
weakly coupled honeycomb-lattice layers, form effective =s 1

2
moments. The families of compounds BaM2(XO4)2 (M¼Co, Ni;
X¼P, As) [67] and Cu3M2SbO6 (M¼Co, Ni) [68] also comprise si-
milar honeycomb-lattice materials. The magnetic M2þ ions in both
families again occupy the sites of a honeycomb lattice in layers
that are weakly coupled. For both families, when M¼Ni, the Ni2þ

ions appear to take the high-spin value (viz., s¼1) in both cases. By
 0
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contrast, when M¼Co, whereas the Co2þ ions appear to take the

low-spin value
⎛
⎝
⎜⎜

⎞
⎠⎟=sviz., 1

2
in the former family BaCo2(XO4)2, and

the high-spin value
⎛
⎝
⎜⎜

⎞
⎠⎟=sviz., 3

2
in the latter compound

Cu3Co2SbO6. Another example of a spin- 3
2
honeycomb-lattice AFM

material is the layered compound Bi3Mn4O12(NO3) [69,70] in
which the Mn4þ ions occupy the sites of the honeycomb-lattice
layers and take the value =s 3

2
.

We have presented here large-scale, high-order CCM calcula-
tions for the complete set of low-energy GS parameters (viz., the
energy per spin E N/ , sublattice magnetization M, spin stiffness ρs

and transverse zero-field magnetic susceptibility χ) for the hon-
eycomb lattice HAF, for values of the spin quantum number s in
the range ≤ ≤s1

2
9
2
. The only approximation made in our CCM

calculations has been the truncation of the resulting coupled sets
of equations for the GS correlation coefficients that completely
determine all GS properties, within a systematic SUBn–n hierarchy
of approximations that becomes asymptotically exact as the
truncation parameter → ∞n . We have performed calculations for
arbitrary spin quantum number s to high orders in n (viz., for

≤n 10 for calculations of the parameters E N/ and M, and ≤n 8 for
calculations of the parameters ρs and χ), and have extrapolated
these to the exact → ∞n limit in each case, using well-tested
extrapolation schemes, thereby obtaining results of proven high
accuracy. We have used the CCM results with the larger values of s
to derive high-spin asymptotic series for the low-energy para-
meters, and have compared these with corresponding results from
SWT, where available. We have also shown explicitly how the
extreme quantum cases =s 1

2
and s¼1 can deviate appreciably

from the behaviour predicted by such large-s expansions.
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