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Abstract

We study the "nite-size and surface e!ects on the thermal and spatial behaviours of the magnetisation of a small
magnetic particle. We consider two systems: (1) A box-shaped particle of simple-cubic structure with either periodic or
free boundary conditions. This case is treated analytically using the isotropic model of D-component spin vectors in the
limit DPR, including the magnetic "eld. (2) A more realistic particle (c-Fe

2
O

3
) of ellipsoidal (or spherical) shape with

open boundaries. The magnetic state in this particle is described by the anisotropic classical Dirac}Heisenberg model
including exchange and dipolar interactions, and bulk and surface anisotropy. This case is dealt with by the classical
Monte Carlo technique. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

From the physical point of view, nanoparticles
exhibit such interesting features as superparamag-
netism and exponentially slow relaxation rates at
low temperatures due to anisotropy barriers. How-
ever, the picture of a single-domain magnetic
particle where all spins are pointing into the same
direction, leading to coherent relaxation processes,
ceases to be valid for very small particles where
surface e!ects become really crucial. For instance,
in a particle of radius &4 nm, 50% of atoms lie on
the surface. Therefore, it is necessary to understand
the e!ect of free boundaries, "rst on the static and

then on the dynamical properties of nanoparticles.
However, one of the di$culties which is inherent
to systems of round (spherical or ellipsoidal) geo-
metries, consists in separating surface e!ects due
to symmetry breaking of the crystal "eld on the
boundaries and the unavoidable "nite-size e!ects
caused by using systems of "nite size. In hypercubic
systems, this problem is easily handled by using
periodic boundary conditions, but this is not pos-
sible in other topologies, and thus surface and
"nite-size e!ects are mixed together.

In this article, we discuss surface and "nite-size
e!ects on the thermal and spatial behaviours of the
intrinsic magnetisation of an isolated small particle.
We consider two di!erent systems: (1) A cube of
simple-cubic structure with either periodic or free
boundary conditions. This system is treated ana-
lytically by the isotropic model of D-component
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spin vectors in the limit DPR, in magnetic "eld
[1]. (2) The second system, which is more realistic,
is the maghemite particle (c-Fe

2
O

3
) of ellipsoidal

(or spherical) shape with open boundaries. The
appropriate model is the anisotropic classical
Dirac}Heisenberg model including exchange and
dipolar interactions, and taking account of bulk
and surface anisotropy. On the contrary, this
system can only be dealt with using numerical
approaches such as the classical Monte Carlo
technique [2]. In the case of a cubic system we
obtain the thermal behaviour of local magnetisa-
tions at the center of faces, edges and corners. An
exact and very useful relation between the intrinsic
magnetisation and the magnetisation induced by
the magnetic "eld, valid at all temperatures and
"elds, was obtained in Ref. [1]. It was shown that
the positive contribution of "nite-size e!ects to the
magnetisation is lower than the negative one ren-
dered by boundary e!ects, thus leading to a net
decrease of the magnetisation with respect to the
bulk. For maghemite, this study has been per-
formed in a very small and constant magnetic "eld;
the surface shell is assumed to be of constant thick-
ness and only the particle size is varied. So, the
thermal behaviour of the intrinsic magnetisation is
obtained for di!erent particle sizes [2]. This behav-
iour is compared with that of a cubic maghemite
particle with periodic boundary conditions but
without anisotropy. In this case the contributions
of "nite-size and surface e!ects lead to the same
results as for the cube system, but the di!erence
between them is now much larger, due to surface
anisotropy. In addition, we show that the magnet-
isation pro"le is temperature-dependent.

2. Cubic system: DPPRR spherical model

We consider an isotropic box-shaped magnetic
system of volume N"¸3, with simple-cubic lat-
tice structure, and nearest-neighbour exchange
coupling, in a uniform magnetic "eld. For this
we use the Hamiltonian of the isotropic classical
D-component vector model [3}5], that is
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diagram technique for classical spin systems [3}5]
in the limit DPR, generalizing it so as to include
the magnetic "eld and adopting a matrix formalism
[1], one ends up with a closed system of equations
for the average magnetisation component m
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is the Dyson matrix of the
problem, and G

i
is a local function to be deter-

mined from the set of constraint equations on all
sites i"1,2,Nof the lattice
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Now, we de"ne the induced average magnetisa-
tion per site by

m"

1

N
+
i

m
i
, (4)

which vanishes for "nite-size systems in the absence
of magnetic "eld due to the Golstone mode asso-
ciated with global rotations of the magnetisation.
On the other hand, it is clear that at temperatures
h;1 the spins in the system are aligned with re-
spect to each other and there should exist an intrin-
sic magnetisation. The latter is usually de"ned for
"nite}size systems as
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where the second equality is valid in the limit
DPR. Note that M*m and that M remains non
zero for h"0; in this case in the limit h P0, s

ij
"1

for all i and j, and MP1. For hPR the spins
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Fig. 1. Temperature dependence of the intrinsic magnetisation
M, Eq. (5), and local magnetisations of the 143 cubic system with
free and periodic boundary conditions in zero "eld.

become uncorrelated and MP1/JN. In the limit
of NPR, the intrinsic magnetisation M ap-
proaches that of the bulk system. In the presence of
a magnetic "eld, the Goldstone mode is suppressed
and the magnetisation m of Eq. (4) no longer van-
ishes, this is why we call it the supermagnetisation, in
contrast with the intrinsic magnetisation M. If the
"eld is strong the magnitude of the supermagnetisa-
tion approaches the intrinsic magnetisation.

An important exact relation was established in
Ref. [1] between M and m:

m"M
2NMh/h

1#J1#(2NMh/h)2
"MB(NMH/¹),

(6)

where B(m)"(2m/D)/[1#J1#(2m/D)2] is the
Langevin function for D<1. Note that Eq. (6) is
usually applied to superparamagnetic systems with
the spontaneous bulk magnetisation m

"
(¹) in place

of M(¹,H). However, unlike m
b
(¹), the intrinsic

magnetisation M of Eq. (5) is a pertinent character-
istic of a "nite magnetic system and depends on
both "eld and temperature.

Solving the above model consists in determining
m

i
and s

ij
as functions of G

i
from the linear equa-

tions (2), and inserting these solutions in the con-
straint equation (3) in order to obtain G

i
. Two types

of boundary conditions are considered, free bound-
ary conditions (fbc) and periodic boundary condi-
tions (pbc). In the case of fbc, m

i
and G

i
are

inhomogeneous and s
ij

nontrivially depends on
both indices due to boundary e!ects. In this case
the exact solution is found numerically, though
some analytic calculations can be performed at low
temperature and "eld. Whereas in the pbc case the
solution becomes homogeneous and the problem
greatly simpli"es. Although the model with pbc is
unphysical, it allows for an analytical treatment
and study of "nite-size e!ects separately from
boundary e!ects.

At low temperature, the intrinsic magnetisation
in the fbc case, including only the contributions
from faces, reads [1]
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where W is the well}known Watson's integral and
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describes the "nite}size e!ects, with *NJ1/¸,
while the last term in Eq. (7) represents the contri-
bution from boundaries. The "rst term, on the
other hand, is the bulk contribution which survives
in the limit ¸PR. In contrast with the "nite-size
e!ects, boundary e!ects entail a decrease of the
intrinsic magnetisation. The contributions to
Eq. (7) from the edges and corners are of order h/¸2

and h/¸3, respectively.
Fig. 1 shows the temperature dependence of the

intrinsic magnetisation M, Eq. (5), and local mag-
netisations of the 143 cubic system with free and
periodic boundary conditions in zero "eld. For
periodic boundary conditions, M exceeds the bulk
magnetisation at all temperatures. In particular, at
low temperatures this agrees with the positive sign
of the "nite-size correction to the magnetisation, as
in Eq. (7). The magnetisation at the centre of the
cube with free boundary conditions is rather close
to that for the model with pbc in the whole temper-
ature range and converges with the latter at low
temperatures. Local magnetisations at the centre
of the faces and edges and those at the corners
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Fig. 2. Temperature dependence of the surface and core mag-
netisations for N

5
"909 and 3766.

decrease with temperature much faster than the
magnetisation at the centre. This is also true for the
intrinsic magnetisation M which is the average of
the local magnetisation M

i
over the volume of the

system. One can see that, in the temperature range
below the bulk critical temperature, M is smaller
than the bulk magnetisation. This means that the
boundary e!ects suppressing M are stronger than
the "nite-size e!ects which lead to the increase of
the latter, and this is in agreement with the low-
temperature formula of Eq. (7).

3. Maghemite particles: Monte Carlo simulations

In this section, we consider the more realistic
case of (ferrimagnetic) maghemite nanoparticles
(c-Fe

2
O

3
) of ellipsoidal (or spherical) shape with

open boundaries, in a very small and uniform mag-
netic "eld. The surface shell is assumed to be of
constant thickness (&0.35 nm) [6], and only the
particle size is varied [2].

To deal with spatial magnetisation distributions
[7,8] one has to consider exchange, anisotropy
and magneto-static energies together. Accordingly,
our model for a nanoparticle is the classical
Dirac}Heisenberg Hamiltonian including ex-
change and dipole}dipole interactions, anisotropy,
and Zeeman contributions. Denoting (without
explicitly writing) the dipole}dipole interaction by
H

$*1
, our model reads
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where Jab are the exchange couplings between
nearest neighbours spanned by the unit vector n,
Sa
i
is the (classical) spin vector of the ath atom at site

i, H is the uniform "eld applied to all spins in the
particle, K'0 is the anisotropy constant and
e
i

the single-site anisotropy axis. In both cases of
a spherical and ellipsoidal particle, we consider
a uniaxial anisotropy in the core along our z refer-
ence axis (major axis for the ellipsoid), and single-
site anisotropy on the surface, with equal aniso-

tropy constant K
4
, and e

i
are de"ned so as to point

outward and normal to the surface [9}11].
Our method of simulation proceeds as follows:

we start with a regular box of spinel structure, then
we cut in a sphere or an ellipsoid that contains the
total number N

5
of spins of a given particle. We

distinguish between spins in the core (of number
N

#
) from those on the surface (N

4
) of the particle

according to whether or not their coordination
number is equal to that of a system with periodic
boundary conditions (pbc). All spins in the core and
on the surface are identical but interact via di!erent
couplings; exchange interactions between the core
and surface spins are taken equal to those inside the
core. Our parameters are as follows: the exchange
interactions are (in units of K) J

AB
/k

B
K!28.1,

J
BB

/k
B
K!8.6, J

AA
/k

B
K!21.0. The bulk and

surface anisotropies are k
#
,(K

#
/k

B
)K8.13]

10~3, k
4
,(K

4
/k

B
)K0.5, respectively, where k

B
is

the Boltzmann constant.
In Fig. 2, we plot the thermal variation of the

core and surface contributions to the magnetisation
(per site) as a function of the reduced temperature
q#03%,¹/¹#03%

#
for N

5
"909 and 3766 correspond-

ing to N
45
,N

4
/N

5
"53% and 41% and diameters

of circa 4 and 6nm, respectively. The core and
surface magnetisations are averages over all spins
in the core or on the surface, respectively. For both
sizes we see that the surface magnetisation
M

463&
decreases more rapidly than the core contri-

bution M
#

as the temperature increases, and has
a positive curvature while that of M

#
is negative.
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Fig. 3. Temperature dependence of the surface and core mag-
netisations for N

5
"3766, magnetisation of the bulk system

(N
5
"R), and the magnetisation of the cube with the spinel

structure and periodic boundary conditions (pbc) with N
5
"403.

Fig. 4. Spatial variation of the net magnetisation of a spherical
nanoparticle of 3140 spins, as a function of the normalised
particle radius, for q#03%;1, and q#03%"0.5, q#03% K1~.

Moreover, it is seen that even the (normalised) core
magnetisation per site does not reach its saturation
value of 1 at very low temperatures, which shows
that the magnetic order in the core is disturbed by
the surface (see Fig. 4 below). As the size decreases
the maximum value of M

463&
decreases showing

that the magnetic disorder is enhanced.
In Fig. 3, we plot the core and surface magnetisa-

tions (with N
5
"3766, and N

45
"41%), the

magnetisation of a cube with spinel crystalline
structure and pbc, and the bulk magnetisation as
functions of the reduced temperature q#03%. Apart
from the obvious shift to lower temperatures of the
critical region due to the "nite-size and surface
e!ects, we see that, as was also shown analytically
for the cube system, the "nite-size e!ects give a pos-
itive contribution to the magnetisation with respect
to the bulk, whereas the surface e!ects yield a nega-
tive contribution. Moreover, it is seen that for
nanoparticles the contribution from the surface is
much larger (in absolute volume) than that coming
from "nite-size e!ects. The di!erence between the
two contributions appears to be enhanced by the
surface anisotropy in the case of nanoparticles.

In Fig. 4, we plot the spatial evolution of the
orientation of the magnetic moment from the
centre to the border of the particle, at di!erent

temperatures. At all temperatures, the magnetisa-
tion decreases with increasing particle radial dis-
tance. This obviously suggests that the magnetic
disorder starts at the surface and gradually propa-
gates into the core of the particle. At high temper-
atures, the local magnetisation exhibits a jump of
temperature-dependent height, and continues to
decrease. This indicates that there is a temper-
ature-dependent radius, smaller than the particle
radius, within which the magntisation assumes
relatively high values. This result agrees with that
of Ref. [12] (for spherical nanoparticles with simple
cubic structure) where this radius was called the
magnetic radius. The local magnetisation also de-
pends on the direction of the radius vector, espe-
cially in an ellipsoidal particle.

4. Conclusion

Both in the cube system and the nanoparticle of
the maghemite type, surface e!ects yield a negative
contribution to the intrinsic magnetisation, which
is larger than the positive contribution of "nite-size
e!ects, and this results in a net decrease of the
magnetisation with respect to that of the bulk sys-
tem. In the "rst case we have been able to separate
"nite-size e!ects from surface e!ects by considering
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the same system with periodic and free boundary
conditions. On the other hand, the results for
a spherical or ellipsoidal nanoparticle with free
boundaries have been compared to those of a cube
with a spinel structure and periodic-boundary con-
ditions, but without any anisotropy. In this case, it
turns out that the contributions from surface and
"nite-size e!ects have the same sign as before but
the di!erence between them becomes larger, due to
surface anisotropy. These spin models invariably
predict that the surface magnetisation (per spin) of
systems with free boundaries is smaller than the
magnetisation of the bulk system. However, experi-
ments on layered systems, especially of 3d elements,
have shown that there is enhancement of the mag-
netic moment on the surface, which has been at-
tributed to the contribution of orbital moments
[13]. It is clear that the models presented here do
not account for such e!ect, but they can be general-
ised so as to include orbital as well as spin vectors.
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