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gularity in the Ruderman–Kittel perturbation theory in 1D is described.
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1. Introduction

Some years after the discovery of Ruderman–Kittel–Kasuya–Y
oshida (RKKY) interaction between localized magnetic moments
in three dimensions [1], Kittel considered an extension of this
interaction to lower dimensional system [2]. In the late 1980’s
and beginning of the 1990’s the RKKY interaction was recognized
as one of the mechanisms of coupling between magnetic layers
in metallic superlattices [3], and the energy of RKKY interaction
in quasi 1D systems was determined experimentally by Parkin
and Mauri [4]. A review of these efforts is summarized in Ref.
[5]. Later, the RKKY interaction in 1D or quasi-1D systems was
investigated in many other works, see e.g. [6], and this subject is
of actuality until present days, see e.g. [7]. For this reason, all sub-
tleties of this problem should be clarified.

In his work, Kittel calculated the energy of RKKY interaction in
one dimension between two localized magnetic moments embed-
ded in a free electron gas [2]. He calculated first the magnetic sus-
ceptibility vðqÞ of the electron gas in the presence of magnetic
moments and then the range function was obtained as the Fourier
transform of vðqÞ. In the appearing integral Kittel changed the
order of integration which lead to erroneous results predicting a
finite interaction energy at infinite distance between localized
moments. This error was corrected in the Erratum to Ref. [2], and
the correct result was obtained with a reverse order of integration.
Some time later Yafet [8] showed that the problem reported by
Kittel is caused by the presence of a strong singularity of the
double integral at k ¼ q ¼ 0 and, because of the singularity, it is
not allowed to change the order of integration over k and q vari-
ables. To show this, Yafet calculated twice the range function tak-
ing different orders of integrations and obtained different results.
Then he determined the correct order of integrations. Further sub-
tleties of this problem were discussed by Guliani et al. [9]. Litvinov
and Dugaev [10] showed that an application of Green’s function
formalism allows one to avoid singularities at k ¼ q ¼ 0.

There exists an alternative method to calculate the RKKY inter-
action proposed in the original approach of Ruderman and Kittel
(RK) to the 3D case [1]. This method is based on a direct calculation
of the second order correction to the energy of free electron gas in
the presence of two localized magnetic moments. In 3D one
obtains a double integral over jk0j > kF and jkj 6 kF domain, which
does not contain the strong singularity. This integral is then
replaced by a difference of two integrals. Applying this procedure
to 1D gas one finds that, surprisingly, each of the two integrals con-
tains a strong singularity at k ¼ k0 ¼ 0. This singularity does not
exists in 2D or 3D cases. But in the 1D case there appears a singu-
larity which is analogous to that appearing in the calculation of the
range function in one dimension with the use of susceptibility vðqÞ
discussed by Yafet [8].

In the present note we analyze the effect of strong singularity at
k ¼ k0 ¼ 0 on the range function of the RKKY interaction in 1D cal-
culated with the use of RK approach. Our results extend previous
analyzes of singularities appearing in the calculations of the range
function with use of susceptibility vðqÞ in 1D, as described in Refs
[2,8,9]. Then we show the effect of the order of integration over the
singular part of the integral in the 1D case and determine the cor-
rect order of integration. Finally we propose another way to calcu-
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late the range function using a domain that is free of strong
singularities.

2. Theory

Let us consider a one-dimensional free electron gas. Let the two

spins Ŝi be located at Ri, where i ¼ 1;2. A coupling between the
conduction electrons and the localized spins is assumed in the
form of s-d interaction

bHsd ¼ Jsd
N1D

X
i¼1;2

dðR� RiÞŜir̂; ð1Þ

where r̂ is electron spin operator, Jsd is the energy of s-d coupling,
and N1D is the one-dimensional density of magnetic atoms. Note
that Jsd=N1D has the dimensionality of [energy] � [length]. Following
Ruderman and Kittel, the second order correction to the energy of
electron gas perturbed by localized spins is [1]

DEð2Þ ¼ J2sd
ð2pÞ2N2

1D

2m�

�h2 ŜiŜjF1DðrÞ ð2Þ

where

F1DðrÞ ¼
Z kF

�kF

dk
Z �kF

�1
þ
Z 1

kF

 !
cosðkrÞ cosðk0rÞ

k02 � k2
dk0

" #
; ð3Þ

in which m� is the electron effective mass, kF is the Fermi vector,
r ¼ Ri � Rj, and F1DðrÞ is the so-called range function. The order of
integration in Eq. (3) follows from the method of calculation of
DEð2Þ: first one selects the wave vector k, calculates the second order

correction DEð2Þ
k to the electron’s energy Ek [square bracket in Eq. (3)],

and then sums DEð2Þ
k over k within the 1D Fermi sphere. Considering

Eq. (3) one concludes that, since the k vectors are inside the 1D Fermi
sphere and the k0 vectors are outside the sphere, the denominators in
Eq. (3) are always nonzero and no singularity occurs.

The difficulty in Eq. (3) is that the integral over dk0 can not be
calculated analytically. To overcome this problem RK [1] proposed
to replace the integral in Eq. (3) over the domain

DRK : ðk; k0Þ 2 ½�kF ; kF � � R n ½�kF ; kF �; ð4Þ
by the difference of two integrals over domains

Da :ðk; k0Þ 2 ½�kF ; kF � � R; ð5Þ
Db :ðk; k0Þ 2 ½�kF ; kF � � ½�kF ; kF �; ð6Þ
see Fig. 1. In the above expressions we used the notation of the set
theory. As an example, if k is a member of set A, the notation k 2 A
Fig. 1. Schematic visualization of integration domain defined in (4)–(6). Left side of
equation: domain of integration in Eq. (3) (grey), right side: two domains of
integration proposed in Ref. [1], gray and dotted. Grey areas give nonzero
contribution to the range function while integral over dotted areas vanishes due
to symmetry.
is used. Similarly, � denotes the cartesian product of two sets, A n B
denotes difference between the two sets, and A [ B means the
union of the two sets. For more detailed description of set notion
see Ref. [11].

From (4)–(6) we have

F1DðrÞ ¼
Z

DRK ¼
Z

Da �
Z

Db; ð7Þ

in which we use the notationZ
Da ¼

Z Z
ðk;k0 Þ2Da

cosðkrÞ cosðk0rÞ
k02 � k2

dk0
� �

dk; ð8Þ

and similarly for Db and DRK . This method works correctly for 3D.
However, doing so for 1D requires caution due to the presence of
strong singularity at k ¼ k0 ¼ 0 in Eq. (8) for the domains Da and
Db. We show below that this method may not be directly applied
to the 1D case since the singularity at k ¼ k0 ¼ 0 gives a nonzero
contribution to the integrals.

Consider first
R Da, as given in Eqs. (5) and (8). The integral over

k0 is obtained with the use of formula 3.723.9 in [12]Z 1

�1

cosðrk0Þ
k2 � k02

dk0 ¼ p
k
sinðrkÞ; ð9Þ

which is valid for jrj; jkj > 0. ThenZ
Da ¼ �p

Z kF

�kF

cosðkrÞ sinðkrÞ
k

dk ¼ �pSið2kFrÞ; ð10Þ

where SiðxÞ ¼ R x
0 ðsinðtÞ=tÞdt is the sine-integral in the standard

notation, see [12].
The subtle point in the derivation of Eq. (10) is that the integral

on the left hand side of Eq. (9) does not exist at k ¼ 0, since for

k ¼ 0 and jk0j ! 0 the integrand diverges as 1=k02. Therefore Eq.
(9) in valid for all Da except in the small domain

D� : ðk; k0Þ 2 ½��; �� � ½��; ��; ð11Þ
with �! 0, for which the identity (9) can not be used. To overcome
this problem we isolate the domain D� out of the integration
domain:

R Da ¼ R Da� þ R D�, in which: Da� ¼ Da n D�. The contribu-
tion to the range function coming from D� has to be calculated
separately.

Turning to
R Db we note that there is a similar problem with the

singularity at k ¼ k0 ¼ 0, so that we again isolate D� out of the inte-
gration domain:

R Db ¼ R Db� þ R D� in which: Db� ¼ Db n D�. Let us
assume that the integral D� is finite, which is crucial for the calcu-
lations. Then from Eq. (7) we have (see Fig. 2)
Fig. 2. Schematic visualization of difference of the two domains shown in Eq. (12).
Grey and dotted areas have the same meaning as in Fig. 1. Black squares: strong
singularity at k ¼ k0 ¼ 0. Note that the two domains on the rhs still do not include
strong singularity.
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F1DðrÞ ¼
Z

Da� [ D�ð Þ �
Z

Db� [ D�� � ¼ Z Da� �
Z

Db�: ð12Þ

Thus, if the integral
R D� is finite, the contribution arising from

the two integrals
R D� in Eq. (12) cancels out. However, in order to

apply Eq. (10) one has to calculate the integral over the domain Da

instead of Da�. Assuming that
R D� is finite we can rewrite Eq. (12)

as

F1DðrÞ ¼
Z

Da �
Z

Db� �
Z

D�; ð13Þ

in which
R Da is given in Eq. (10), see Fig. 3. This is the final result of

our manipulations. Since there is no strong singularity in Db�, we
may apply the method proposed in Ref. [1] and show thatR Db� ¼ 0, see Appendix A. Comparing Eq. (13) with Eq. (4) we note
the additional contribution in 1D from

R D� to the range function,
which does not exist in 3D, see Figs. 1 and 3.

To calculate
R D� we use a similar approach to that applied by

Yafet [8]. We first approximate in Eq. (8): cosðkrÞ ’ 1 and
cosðk0rÞ ’ 1, which is valid for sufficiently small jkj and jk0j. Then
we haveZ

D� ¼
Z �

��
dk
Z �

��

dk0

k02 � k2
: ð14Þ

Using the identity: 1=ðk02 � k2Þ ¼ ð1=2kÞ½1=ðk0 � kÞ � 1=ðk0 þ kÞ�
and integrating in Eq. (14) over k0 we find that

R D� is nonzeroZ
D�¼

Z �

��

ln j��kj
k

� ln j�þkj
k

� �
dk¼

Z 1

�1

ln j1�uj
u

� ln j1þuj
u

� �
du

¼¼�2Li2ð1Þþ2Li2ð�1Þ¼�p
2

2
: ð15Þ

This is the peculiarity of 1D case, which does not appear in 2D
and 3D, see Appendix B. In the above equation:
Li2ðxÞ ¼ � R x

0 du ln j1� uj=u is the dilogarithm function, see [12–
14], and we have used: Li2ð1Þ ¼ p2=6 and: Li2ð�1Þ ¼ �p2=12, see
[12]. Collecting the results from Eqs. (10), (13) and (15) we have

F1DðrÞ ¼ p p
2
� Sið2kFrÞ

h i
; ð16Þ

which agrees with the results reported in the literature [8–10]. The
range function in Eq. (16) oscillates with the period: Tr ¼ p=kF and
decays to zero at large distances between spins. Note that neglect-
ing the contribution from

R D� one erroneously obtains:
F1DðrÞ ¼

R Da / Sið2kFrÞ, see [2], which for large r tends to a finite
value.
Fig. 3. Schematic visualization of difference of the three domains shown in (13).
Grey and dotted areas have the same meaning as in Fig. 1. Note that on the rhs the
strong singularity (black square) is added to Da and explicitly subtracted. This is the
main difference between the 3D case in which the strong singularity does not exist,
see text.
In order to illustrate F1DðrÞ we plot this function in Fig. 4a, and
compare it with the widely-known range function in 3D:
F3DðzÞ ¼ ½sinðzÞ � z cosðzÞ�=z4 with z ¼ 2kFr, see Fig. 4b. As seen in
the Figures, both functions have the same oscillation period, and
both vanish at kFr ! 1, but the function F1DðrÞ decays as r�1, i.e.
much slower than F3DðrÞ.

In the calculation of
R D� it is not allowed to change the order of

integration over k and k0 variables. To show this we calculate an
integral

R D�
R in analogy to that in Eq. (14), but with the reversed

order of integration over k and k0. Using the identity:

1=ðk02 � k2Þ ¼ ð1=2k0Þ½1=ðk0 � kÞ þ 1=ðk0 þ kÞ� one obtainsZ
D�

R ¼
Z �

��

� ln j��k0 j
k0

þ ln j�þk0j
k0

� �
dk0 ¼¼2Li2ð1Þ�2Li2ð�1Þ¼þp

2

2
: ð17Þ

D f :DA n Dþþ [ Dþ� [ D�þ [ Dð Þ; ð18Þ
DA :ðk; k0Þ 2 R� ½kF ;1Þ [ ½kF ;1Þð Þ; ð19Þ
Dþþ :ðk; k0Þ 2 ½kF ;1Þ� ½kF ;1Þ: ð20Þ

The domain Dþþ describes the right upper corner of the k� k0

plane, while domains Dþ�;D�þ and D�� describe its three remain-
ing corners, see Fig. 5. Since there are no strong singularities in any
of the above domains, in each domain of (18)–(20) it is allowed to
change the order of integration over k and k0 vectors. Using similar
arguments to those in Appendix A we obtain:R ðDþþ [ Dþ� [ D�þ [ D��Þ ¼ 0, and then:

R D f ¼ R DA. Changing
the order of integration in DA and calculating first the integral over
k with use of Eq. (9) we find

F1DðrÞ ¼ p
Z 1

kF

sinð2k0rÞ
k0

dk0 ¼ p p
2
� Sið2kFrÞ

� �
; ð21Þ

in which limx!1SiðxÞ ¼ p=2, see [12]. This agrees with Eq. (16). Note
that for DA there is always: jk0j > kF > 0 and the integrand over k on
the left hand side of Eq. (9) exists for all k0 in the domain DA.

Comparing Figs. 1–3 with Fig. 5 we note that the transformed
domains on the right-hand sides of Figs. 1–3 are ‘vertical’ in the
Fig. 4. Upper panel: The range function F1DðrÞ, as given in Eq. (16). Lower panel: The
range function F3DðrÞ, see text. Please note the difference in scales between two
panels.



Fig. 5. Schematic visualization of integration domain defined in (18). Grey and dotted areas have the same meaning as in Fig. 1. Note that on the rhs the domains of
integration do not include the strong singularity, so one can safely change the order of integration over k and k0 , see Eq. (21).
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k� k0 plane, while the corresponding domain in Fig. 5 is ‘horizon-
tal’ one. This seemingly minor change allows one to avoid any sin-
gularity appearing for small values of both k and k0 vectors. Turning
to the initial domain of integration, as indicated on the left-hand
side of Fig. 5, we see that this domain is limited to jkj 6 kF and
jk0j > kF , i.e. it does not include strong singularity at k ¼ k0 ¼ 0.
For sufficiently large kF the existence or no-existence of the singu-
larity at the origin should not alter the integration over the RK
domain. Thus the singularity is only an artefact appearing in 1D
case without an impact on the range function F1DðrÞ. But in the
arrangement proposed by RK, as seen in Figs. 1–3, one replaces
the singularity-free domain by a combination of domains including
the singularity, which requires strict mathematical rigor in han-
dling the problem. In contrast, in the arrangement shown in
Fig. 5 one transforms the singularity-free domain by a combination
of five singularity-free domains, and the correct results are
obtained in a straightforward way, see Eq. (21).

3. Discussion and summary

The problem arising in the calculation of interaction energy
with the use of the perturbation expansion, as expressed in Eqs.
(2) and (3), is to justify a truncation of the expansion to the second
order terms. In general, the perturbation series is convergent if
there exists a ‘small parameter’ a ’ VðrÞ=ðEk � Ek0 Þ � 1. Turning
to Eq. (3) we may suspect that, possibly, the perturbation expan-
sion may not converge for states k0 lying close to the Fermi sphere
kF since in this case E0

k ’ Ek, and the denominator in Eq. (3) is small.
To analyze this effect quantitatively we calculate a contribution

of dEð2Þ to the interaction energy DEð2Þ arising from states k0 belong-
ing to small slices close to the Fermi level:
k0 2 ðkF ; kF þ dk� [ ½�kF � dk;�kFÞ, with dkF � kF . We define the
integration domain

Ddk0 : ðk; k0Þ 2 ½�kF ; kF � � ðkF ; kF þ dk� [ ½�kF � dk;�kFÞð Þ; ð22Þ
and calculate the range function F1DðrÞ on this domain. The calcula-
tions are analogous to those in Eqs. (18)–(21), but with the integra-
tion over k0 limited to �ðkF þ dkÞ instead of �1, respectively. Then
we obtain from Eq. (21)

dEð2Þ / p
Z kFþdk

kF

sinð2k0rÞ
k0

dk0 ’ p sinð2kFrÞ
kF

dk: ð23Þ

The Fermi vector kF ¼ 2p=kF entering into the RKKY range func-
tion in Eqs. (21) and (23) was first measured directly by Parkin and
Mauri in Ni80Co20=Ru superlattices [4]. The authors reported

kF ¼ 11:5 Å, which gives kF ¼ 0:55 Å
�1
. Other values found in the

literature are on the order of kF ’ 0:5 Å
�1
—1:2 Å

�1
, see Ref. [5]
and references therein. For such values of kF the energy dEð2Þ in
Eq. (23) does not diverge and the second order perturbation
approach is justified.

A contribution of third-order terms to RKKY in 3D was calcu-
lated in Ref. [15] and it turned out that these terms are divergent
at the limit k0 ! 1 of integration over excited states k0. This may
possibly occur also in 1D case. However, as shown in [16], the
motion of atoms due to phonons removes the divergence in the
third-order energy. On the other hand, an approximation of the
realistic energy bands by the parabolic dispersion is valid only up
to a certain value of kmax, which may not exceed edges of the Bril-

louin zone: kBZ ’ 2p=alatt ’ 2:5 Å
�1

for typical values of lattice con-
stants alatt . Therefore, the divergence appearing for k0 ! 1 is not
physical. Introducing a reasonable cut-off in the k0 integration, or
taking more realistic (e.g. tight-binding like) energy dispersion,
one obtains finite results for all dimensions. Thus introducing the
cut-off in the calculation of third-order terms, a strong singularity
at k ¼ k0 ¼ 0 may also be removed by methods discussed in our
paper. The resulting interaction would include higher powers of

Ŝ1Ŝ2 operators, see e.g. [17].
In summary, we analyzed the effect of strong singularity in the

calculation of range function for RKKY interaction in one dimen-
sion using the Ruderman–Kittel method. This approach is comple-
mentary to the more frequently used method based on the
susceptibility of the free electron gas. It is pointed out that, in
the RK method applied to the one-dimensional gas, the initial
singularity-free integral is replaced by two integrals, each of them
including strong singularity at k ¼ k0 ¼ 0. The way of isolating the
singular parts of the two integrals is derived and the method of
handling the singularity is described. It is shown that the integral
over the singularity depends on the order of integration over k
and k0 vectors and the correct order of integration is determined.
The reason for disappearance of the singularity in higher dimen-
sions is explained. Importantly, a possible way of avoiding the sin-
gularity in one dimension is proposed, see Fig. 5. Our analysis
should help to avoid similar difficulties which may occur in other
low-dimensional systems.
Appendix A

We show that
R Db� ¼ 0, see Eq. (15). Let Jb�k0k ¼

R Db�, where the
lower indices define the order of calculation in the integrals. By

changing variables: ðk; k0Þ ! ðk0; kÞ we find: Jb�k0k ¼ �Jb�kk0 , because of
the change of signs in the denominators, see Eq. (15). Since there
is no strong singularity in Db�, the integral

R Db� does not depend
on the order of integration over k and k0 variables. Then we have:
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Jb�k0k ¼ Jb�kk0 which gives the desired result: Jb�kk0 ¼ �Jb�kk0 ()
R Db� ¼ 0.

This also occurs for integrals over any domain Ds symmetric within
k and k0 variables. Using the same arguments one may show thatR Db� ¼ 0 and

R Dþþ þ Dþ� þ D�þ þ D�� ¼ 0, see Eq. (20) and Fig. 5.
Appendix B

The problem with the integration over D� does not exist in two
and three dimensions since in these cases there is no strong singu-
larity at k ¼ k0 ¼ 0. In this Appendix we quote for completeness the
corresponding calculations. In 3D, after integration over angular
variables, one obtains for the range function (see Eq. (6) in [1]),
F3DðrÞ ¼
Z kF

�kF

Z kF

�kF

eirðkþk0Þkk0

k02 � k2
dk0dk; ðB:1Þ
which has no contribution from the singularity at k ¼ k0 ¼ 0
because of the kk0 factor in the integrand. To show this we calculate
the integral in Eq. (B.1) over domain D�, see Eq. (14). For small jkj
and jk0j there is: eirðkþk0 Þ ! 1 and, instead of Eqs. 14 and 15, we have
Z
D�

3D ¼
Z �

��

Z �

��

kk0

k02 � k2
dk0dk ¼ 0; ðB:2Þ

Thus, there indeed is no contribution from the singularity at
k ¼ k0 ¼ 0. The same result is obtained for the reversed order of cal-
culation in the integrals in Eq. (B.2), so that

R D�
3D does not depend

on the order of integration over k and k0. Similar arguments can be
used for calculating the range function in 2D, in which also the vol-
ume element kk0 dkdk0 appears.
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