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A B S T R A C T

We theoretically and numerically study spin-dependent Seebeck and Nernst effects in 2D ferromagnetic mate-
rials with the topological spin texture (skyrmion and vortex) ideal gas. From the numerical solution of the matrix
Boltzmann equation for a nonequilibrium distribution function and the Lippmann–Schwinger equation for a T-
matrix we find the strong nonlinear behaviors in the thermoelectric coefficients depending on skyrmion/vortex
diameters and electron concentrations. In particular, the dramatic dependences in the Seebeck and Nernst
coefficients take place at larger magnetic texture sizes where the abrupt sign flip in the vortex Seebeck and
Nernst coefficients occurs in the narrow region of electron concentrations. In this case the normalized Nernst
coefficient changes from + 5 to 7. The spin-dependent thermoelectric coefficients are proportional to T at low
temperatures for all skyrmion/vortex sizes.

The Seebeck and Nernst effects take place when a voltage is induced
by a temperature gradient between the two terminals of a device. If the
device is a 2D (ferromagnetic) film with embedded magnetic moment
textures, Seebeck and Nernst coefficients become spin-dependent. The
Nernst coefficient can exist even in the absence of an applied magnetic
field due to the presence of a constant magnetic moment. Much at-
tention has been recently paid to the anomalous spin Seebeck and
Nernst effects where the uniform magnetic moment causes the voltage
difference along with and in the perpendicular direction to the applied
temperature gradient. [1–8]

With the development of information technology, the energy har-
vesting is a key technology to control energy, through accumulation,
storage, and use of power. Small-scale traditional natural energy
sources such as heat, electromagnetic waves, etc. are known to be basic
for energy harvesting devices. Thermoelectric energy sources can be
useful to generate an electricity because of its clean heat conversion
from ambient thermal sources. Especially it is a promising and chal-
lenging strategy to use magnetism in thermoelectric conversion. Thus,
spin-dependent Seebeck (SDS) and Nernst (SDN) effects could be useful
for future clean environmental technologies. [9,6,10].

Charge SDS and SDN effects take place when conduction electrons
scatter at topological spin textures (skyrmions and vortexes). The pre-
sence of the topological spin textures differs SDS and SDN effects from
the anomalous spin Seebeck and Nernst effects where the latter occur in
a uniform ferromagnetic environment. To describe the topological spin
thermoelectric effects we employ the following Hamiltonian:
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where the first term represents the kinetic energy of conduction elec-
trons, J is an exchange integral, S r( ) is a localized magnetic moment.
Here is a vector with the three Pauli matrix projections for the con-
duction electron spins. We choose the S r( ) texture in the following
form:

= +SS r e S r r( ) · ,z
i

i0
(2)

where S0 is uniform out-of-plane background magnetization and
S r r( )i is a deviation of magnetic moment due to the presence of the
magnetic structure (in this work we only consider skyrmions with the
topological charge =Q 1, and vortexes with the topological charge

=Q 0). The main difference between the skyrmion with =Q 1 and
vortex with =Q 0 is in a magnetic moment in the center of the texture.
Indeed, for =Q 1 the magnetic moment equals the maximum value and
for =Q 0 the magnetic moment is zero. The conduction electrons are a
uniform electron gas embedded into the ferromagnetic/skyrmion en-
vironment. Because of the splitting of the energy for different spin
projections, we can introduce two types of carriers depending on a spin
orientation. For spin and spin we write the following energies

= k m Jk( ) /(2 ), 2 2 .
TSS, , and TSN, Q, coefficients are defined in the following way:

[11]

https://doi.org/10.1016/j.jmmm.2020.167367
Received 22 April 2020; Received in revised form 31 July 2020; Accepted 21 August 2020

⁎ Corresponding author.
E-mail address: yurid@uwyo.edu (Y. Dahnovsky).

Journal of Magnetism and Magnetic Materials 518 (2021) 167367

Available online 17 September 2020
0304-8853/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03048853
https://www.elsevier.com/locate/jmmm
https://doi.org/10.1016/j.jmmm.2020.167367
https://doi.org/10.1016/j.jmmm.2020.167367
mailto:yurid@uwyo.edu
https://doi.org/10.1016/j.jmmm.2020.167367
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2020.167367&domain=pdf


= =e µ
k T

Q
e µ

k T
( )

( )
;

( )
( )

,x

x B

y

x B (3)

where is voltage, µ is chemical potential, and T is a temperature.
To find and Q, we solve the Boltzmann equation for a none-

quilibrium distribution function, = +f f fk k( ) ( )s s
0 1

=f fk k k( ), ( ) ( / ) ( )·s s
1 0 , where f0 is the Fermi equilibrium dis-

tribution function, f1 is the nonequilibrium part, and s is an unknown
vector function depending on the electron energy. [11] The scattering
mechanism is due to the interaction of the spins of the conduction
electrons with the localized magnetic moment. Therefore, we consider
an ideal gas of skyrmions. The stationary, time-independent Boltzmann
equation appears to be ×4 4 matrix equation,[12–14] which dimension
is determined by x and y projections of s and the two electron spin
projections, , . The right-hand-side of the Boltzmann equation can be
presented by the ×2 2 transition probability per unit time matrix:
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t
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pp pp

2

(4)

which due to the radial symmetry only depends on the angle between
the incident and scattered directions. In Eq. (4) nt is a 2D density of
magnetic structures (skyrmions or vortexes). The transition matrix T
can be found from the Lippmann–Schwinger integral equation, [15]

= +T V VG T0 , where G0 is a retarded free electron Green’s function,
= ±G k m Jk k k k( ) [ /2 ] ( )ss

ss0
2 2 1 . In the Lippmann–Sch-

winger equation, V is a ×2 2 matrix determined by the localized
magnetic moment texture:[16]
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Here + + =n n n 1x y z
2 2 2 . For the calculations, we select the following

analytic forms for the skyrmions and for vortexes:
=n r exp r a( ) cos[ (1 ( / ))]z

2 2 (the topological charge equals ± 1),
=n r exp r a exp c r a c( ) cos[ ( ( / ) ( ( ) / )) ]z

2 2
1

2 2
2 (the topological

charge equals 0). The coefficients c1 and c2 allow us to change the
minimum location and normalize the spin distribution function. For the
calculations we choose =c 3.21 , that places minimum approximately at

=r a0.5 , and c 1.42552 . For both skyrmion and vortex, the x- and y-
components of the spin textures are determined as =n ncos( ) 1x z

2

and =n nsin( ) 1y z
2 , respectively. Here is a polar angle.

The T-matrix has been determined numerically in all orders of V by
applying the Fourier transform with respect to the angle between in-
cident and scattered waves. The unknown Fourier coefficients have
been found from the Lippmann–Schwinger integral equation. As soon as
the transition matrix is calculated, and, therefore the transition prob-
abilities (see Eq. (4)), we substitute W ss

pp into the collision integral
matrix for x-, y-components of ( ), , which determines the none-
quilibrium part of the total distribution function, which has been cal-
culated using the original codes. As soon as the nonequilibrium part of
the distribution function is numerically detremined, the electric current
can be easily found and presented in the following way (the derivations
are given in Supplementary Materials): [11]
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where coefficients a and b have been found from the solution of the
Boltzmann equation in the low temperature limit. Then, we express
SDS, , and SDN, Q, coefficients defined by Eq. (3) in terms of a and b
coefficients from Eq. (6) under the following conditions:

= + = = + = =j j j j j j k T 0x x x y y y y B . Solving the system of equa-

tions we obtain the following expressions for and Q:
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where = +a a aij ij ij and = +b b bij ij ij . and Q are presented in
Figs. 1–5 for different skyrmion/vortex sizes a and . Here and are
defined as = mJ2 / , and = J/F . It is known that for a 2D free
electron gas Fermi energy, F , is proportional to a carrier concentration,
i. e. can be regulated using gate voltage or doping concentration. In
addition, we have derived that and Q are proportional to T at low
temperatures ( ±k T J k T J/ 1, /( ) 1B B F ). The proof of this with the
detailed derivations is given inSupplementary Materials. In Fig. 1

=a 0.05, the size of the magnetic structure is very small. In this case,
the spin-dependent Seebeck coefficient is of the same order as for other
sizes, but the spin-dependent Nernst coefficient is extremely low: it is
five orders of magnitude smaller than . The Seebeck coefficient de-
pendencies for different topological charges (i. e., for the skyrmion and
vortex) are graphically indistinguishable, and the Nernst coefficients

(a) (b)
Fig. 1. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes =a 0.05.
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are also very close. The indistinguishability of the the Seebeck and
Nernst coefficients for the skyrmions and vortexes can be explained by
the small size with respect to the electron de Broglie wavelength, which
is much larger than the magnetic texture size. In this case the scattering
is insensitive to the internal spin structure of the texture. Both coeffi-
cients decrease with . The Nernst coefficient exhibits the peak at

1.1 for both skyrmion and vortex.
For =a 1.0 the thermoelectric coefficients are presented in Fig. 2.

The Seebeck and Nernst coefficients are of the same order now. We note
that the both coefficients change their signs, the Seebeck coefficient at

1.2 for the skyrmion and 1.3 for the vortex and Nernst coeffi-
cient at 1.6 for the skyrmion and 1.9 for the vortex. In addition,
all coefficients demonstrate the abrupt change at 1, the Seebeck
coefficients are increasing while the Nernst coefficients are decreasing
with .

The thermoelectric coefficients with the relatively large values of
the skyrmion size, =a 5.0 are presented in Fig. 3. The spin-dependent
Seebeck coefficient (Fig. 3a) for the vortex has the sharp peak at

= 1.15. It abruptly changes to the minimum at = 1.25. The skyrmion
spin -dependent Seebeck coefficient has the broad minimum at = 1.15
and then reaches the highest point at 2.5. The difference between
the minimum and maximum values is approximately as much as twice
greater the vortex. The picture for the Nernst coefficient (Fig. 3b) is
substantially different. For the vortex it is much sharper at = 1.15, and
it has the larger value than for the skyrmion. The skyrmion demon-
strates the broad peak at = 1.15 and the broad minimum at = 1.9.
We note that the thermoelectric coefficients for both magnetic textures
change the sign in the range < <1 3.

The spin-dependent thermoelectric coefficients for =a 7.0 are
depicted in Fig. 4. In this case, the both vortex Seebeck and Nernst

(a) (b)
Fig. 2. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes =a 1.0.

(a) (b)
Fig. 3. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes =a 5.0.
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coefficients demonstrate the dramatic change sign switch at = 1.0.
The Seebeck coefficient has the peak at = 1.25 and reaches the
minimum at = 1.4. The vortex Nernst coefficient exhibits the sharp
minimum at = 1.2. The skyrmion Seebeck coefficient constantly in-
creases in the whole region. The Nernst coefficient for the skyrmion
demonstrates the slow change withs the maximum at = 1.2 and the
minimum at = 2.6.

The spin-dependent thermoelectric coefficients for the large mag-
netic structure size =a 10.0 are presented in Fig. 5. The Seebeck
coefficient for the vortex rapidly rises from 12.5 at = 1 to 1 at

= 1.2 and then maintains the level of 2.5 starting at = 1.5. The SDS
coefficient for the skyrmion constantly increases from 0 to 2 in this
region. The SDN coefficient for the vortex also dramatically changes
from its very sharp maximum having the value of 6 at = 1.1 to the
minimum with the value of 2 at = 1.2. It also has a local maximum

at = 1.35. The SDN coefficient for the skyrmion behaves in a similar to
the case of =a 7.0. Indeed, it has a very broad maximum of 0.75 at

1.25 and decreases constantly after that, reaches the value of 2.5
at the end of the region.

In conclusion, we have analytically and numerically studied the to-
pological spin-dependent Seebeck and Nernst effects in the presence of
magnetic skyrmions and vortexes of different sizes. The skyrmion size
dependence is nontrivial according to our calculations. First, it depends
on a spin projection, second it depends on the electron concentration,
and third it could increase or decrease depending on a topological
charge.

To explain the independence of the thermoelectric coefficients on a
topological charge we have to introduce an adiabaticity parameter . In
this work the numerical technique allows us to study the whole range of
the adiabaticity, i.e., the = =k a a/ /F (see Ref. [13]). Thus, for

(a) (b)
Fig. 4. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes =a 7.0.

(a) (b)
Fig. 5. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes =a 10.0.
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small sizes ( a) the regime is nonadiabatic. In the adiabatic limit (large
), a is large and is about one. The independence of the SDS and SDN

coefficients on topological charge, Q, can be explained in terms of
adiabaticity. Indeed, in this case < 0.05. Therefore, the scattering spin
weakly interacts with the localized magnetic moment. In this case the
internal magnetic moment structure is irrelevant. Consequently, we
observe indistinguishable Q-dependences for small skyrmion sizes.

The dramatic sign change in both coefficients for the vortex is
shown in Figs. 4 and 5 where the sign switching occurs in the narrow
region of s (or electron concentrations). As shown in Fig. 4b, the
normalized SDN coefficient changes from + 5 to 7. The SDS and SDN
coefficients are proportional to T at low temperatures. Such a behavior
could be useful for a voltage switching in a device where F can be
varied by a gate voltage in the narrow region.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the

online version, athttps://doi.org/10.1016/j.jmmm.2020.167367.
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