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Highlights 

 

 Perpendicular and in-plane hysteresis loops of thin-film elements with surface anisotropy are 

calculated numerically. 

 Buckling nucleation mode determines the nucleation field of elongated thin-film element. 

 The nucleation field is proportional to the absolute value of the surface anisotropy constant. 

 It is also inversely proportional to the element thickness. 

 

 

Abstract. The magnetization reversal process in thin-film ferromagnetic elements with surface 

anisotropy of various shapes and sizes is investigated by means of numerical simulation. The 

dependencies of the perpendicular and in-plane hysteresis loops on the element thickness, and the 

value of the surface anisotropy constant are obtained. For sufficiently large values of the surface 

anisotropy constant the magnetization reversal of thin-film elements is shown to occur due to the 

nucleation of the buckling mode. For an elongated rectangular element the nucleation field of the 

buckling mode is proportional to the absolute value of the surface anisotropy constant, and inversely 

proportional to the element thickness.  
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It is shown that analyzing the magnetization reversal process in thin-film ferromagnetic elements with 

surface anisotropy one can determine the actual value of the surface magnetic anisotropy by means of 

comparison of experimental and numerical simulation data. The properties of thin ferromagnetic films 

with surface anisotropy are promising for applications of such magnetic materials in modern thin-film 

electronics devices. 
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Introduction 

 The properties of thin ferromagnetic films with surface anisotropy are promising for 

applications of such magnetic materials in modern thin-film electronics devices [1-4]. From 

phenomenological point of view, the effect of surface anisotropy on the magnetization distribution in a 

ferromagnet can be described by introducing a special energy contribution to the total sample energy. 

The latter depends on the orientation of the unit magnetization vector (r) at the sample surface. 

Taking into account symmetry considerations, the energy density of the surface magnetic anisotropy in 

a simplest case can be written in the form [5-8] 

 

      2nKw ssa


 ,     (1) 

where Ks is the surface anisotropy constant, n being the unit vector perpendicular to the sample 

surface. If surface magnetic anisotropy constant Ks is negative and large enough in absolute value, a 

reorientation of the unit magnetization vector perpendicular to the film surface is energetically 

favorable, in spite of the increase in the magnetostatic energy of the ferromagnetic sample. The 

reorientation of the unit magnetization vector with a change in the ferromagnetic film thickness was 

observed in the number of experiments with thin films of iron, cobalt, and other ferromagnets [9-12]. 

 Currently, it is supposed that the surface magnetic anisotropy can have various origins. It can 

be related with the specifics of the spin-orbit interaction on the sample surface [13], with the difference 

in the atomic lattices periods of the sample and substrate [14], with the distribution of inhomogeneous 

mechanical stresses near the interface [15], etc. However, from the point of view of the 

Micromagnetics [5] it is important that the energy contribution, Eq. (1), is concentrated in a very 

narrow region near the sample surface. Thus, it is a surface contribution to the total sample energy. As 

a result, its effect on the distribution of the unit magnetization vector in the volume of the ferromagnet 

can be properly described by the corresponding boundary condition acting on the sample surface. 

 This general approach has recently been consistently carried out [16] to study the equilibrium 

magnetization distributions in a thin ferromagnetic film with surface anisotropy by means of numerical 

simulation. It was shown [16] that if the magnitude of surface anisotropy constant Ks is less than a 

certain critical value, then there exists the so-called spin canted micromagnetic state in the 

intermediate range of film thicknesses, Lz,min < Lz  < Lz,max, with average magnetization inclined at some 

angle to the sample surface. For sufficiently small thicknesses, Lz < Lz,min,, the film is magnetized 

perpendicular to the surface (z-state), while for Lz > Lz,max, the magnetization lies in the film plane. On 

the other hand, if the surface anisotropy constant exceeds the critical value, different labyrinth domain 

structures are realized [16] near the surface of the film of sufficiently large thickness. 

 In this paper the magnetization reversal process in thin-film ferromagnetic elements with 

surface anisotropy is studied by means of numerical simulation. Both in-plain and out of plane quasi-
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static hysteresis loops of thin film elements of various shapes, thickness and in-plane dimensions are 

calculated. By comparison with the experimental data, the numerical results obtained would allow one 

to determine the value of the surface anisotropy constant of thin ferromagnetic film under 

investigation. 

 

Numerical simulation 

 The numerical simulation is carried out for thin ferromagnetic nano elements of thicknesses Lz 

= 4 - 6 nm. We consider samples of circular and rectangular shape with different in-plane aspect ratios, 

Lx/Ly = 1.0 - 3.0, the in-plane dimensions of the elements being of the order of 100 - 400 nm. The 

elements are assumed to be cut out of a thin amorphous ferromagnetic CoSiB film [1, 2], with surface 

anisotropy, and with induced volume magnetic anisotropy in the plane of the film. The saturation 

magnetization of the CoSiB film is given by Ms = 500 emu/cm
3
, the exchange constant C = 210

-6
 

erg/cm, the anisotropy constant of the induced volume anisotropy is assumed to be KV
 
= 10

4
 erg/cm

3
. 

In the calculations performed the surface anisotropy constant varies within the range Ks = - (0.6 - 1.2) 

erg/cm
2
.  

 For simplicity, it is further assumed that the surface anisotropy is present only at the upper 

boundary of the film. In this case, the micromagnetic boundary condition for the unit magnetization 

vector at z = Lz has the form [5] 

 

xzs
x K
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The usual boundary condition, 0 n


, acts on other surfaces of the film. 

 The magnetization reversal process in thin-film elements with surface anisotropy is studied by 

solving the Landau-Lifshitz-Gilbert equation 
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where  is the gyromagnetic ratio, and  is the phenomenological damping constant. The total effective 

magnetic field in the volume of the film takes into account the exchange, anisotropic, and magneto- 

dipole interactions 
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Here 0H


 is the external applied magnetic field, H

  is the demagnetizing field,  22

zyVa Kw    is 

the energy density of the induced magnetic anisotropy with the easy anisotropy axis lying in the plane 

of the film and oriented along the x axis. 

 For numerical simulation the ferromagnetic film is approximated by small cubic numerical 

cells with an edge b = 1.5-3 nm, sufficiently small in comparison with the exchange length of the 

ferromagnet, sex MCL    28 nm. In the calculations performed the thin-film elements were 

approximated by a sufficiently large number of numerical cells, N ~ 10
5
, in order to maintain an 

accuracy of the numerical results obtained. To approximate numerically the boundary condition, Eq. 

(2), at the sample surface, the usual numerical method is to introduce additional auxiliary layer of the 

numerical cells outside the sample surface. 

 The calculation of the quasi-static hysteresis loop of a thin film element begins with the 

calculation of a quasi-homogeneous micromagnetic configuration in a sufficiently strong external 

magnetic field applied in-plane, or perpendicular to the film plane, respectively. Then, the external 

magnetic field decreases by a small value, dH0 = 1 - 2 Oe, and the evolution of the unit magnetization 

vector (r) is calculated in accordance with Eqs. (2) - (4), until a new equilibrium micromagnetic state 

is reached. The magnetization distribution in applied magnetic field is considered to be stable when the 

criterion  

    6

,,1 10,max 

 iefiefiNi HH


    (5) 

is fulfilled. This means that the maximum deviation of the unit magnetization vector from the direction 

of the effective magnetic field in the same numerical cell does not exceed a small predefined value. 

 

Results and discussion 

In-plane hysteresis loops 

 Fig. 1 shows the in-plane quasi-static hysteresis loops of rectangular thin-film elements with 

different aspect ratios calculated numerically for various values of the surface anisotropy constant. The 

numerical cell size in these calculations is given by b = 3.0 nm. The decrease of the numerical cell size 

up to b = 1.5 nm does not change the numerical results obtained more than by 1-3%. One can see that 

the remanent magnetization of the elements studied decreases with increasing of the absolute value of 

the surface anisotropy constant. Moreover, the larger the absolute value of this constant, the greater the 

magnetic saturation field of the element. In addition, with an increase in |Ks| the area of the hysteresis 

loop decreases substantially. The existence of in-plane remanent magnetization for the hysteresis loops 

1)-3) in Fig. 1 corresponds to the spin canted magnetization state. The remanent magnetization is zero 

for perpendicular magnetized z-state. This case is exemplified by the curve 4) in Fig. 1b. In principle, 

such behavior of the hysteresis loops is expected, since the presence of surface anisotropy with Ks < 0 
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promotes the deviation of the unit magnetization vector perpendicular to the film plane, while the 

external magnetic field tries to orient the magnetization vector along the film surface.  
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Fig. 1 Quasistatic hysteresis loops of rectangular CoSiB elements with different aspect ratios: a) Lx/Ly 

= 1.0; b) Lx/Ly = 3.0. The magnetic field is applied in the plane of the elements along the x axis. The 

calculations are carried out for different values of the surface anisotropy constant: Ks = - 0.7 erg/cm
2
; 

2) Ks = - 0.9 erg/cm
2
; 3) Ks = - 1.0 erg/cm

2
; 4) Ks = - 1.25 erg/cm

2
. 

 

In general, the calculation of the in-plane hysteresis loop for a thin-film element with surface 

anisotropy can be performed only by numerical simulation. At the same time, in the case of a 

perpendicularly magnetized z-state, the magnetization curve of a thin ferromagnetic film in a magnetic 

field H0 applied along the film surface can be calculated analytically. Assuming the uniform rotation of 

the unit magnetization vector in this case, the total energy of the film per unit area can be written as 

[16] 

       sincos 0

2

zsszef LHMKLKw  ,    (6) 

where Kef  = KV + 2πMs
2
,  is the angle of the unit magnetization vector with respect to the z axis.   

 Minimizing Eq. (6) as a function of , one obtains the equilibrium value of the x-component of 

the unit magnetization vector as a function of the applied magnetic field H0 
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s
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HHHH
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,
sin ,    (7) 

where   sefzss MKLKH  2  is the corresponding saturation field of the film. 

 As an example, Fig. 2 shows the magnetization curves of perpendicular magnetized z-state in a 

thin-film element with thickness Lz = 4 nm calculated numerically (dots) for different values of the  
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Fig. 2. Magnetization curves (dots) of the perpendicular magnetized z-state in rectangular element with 

thickness Lz = 4 nm and in-plane sizes Lx = 240 nm, Ly = 80 nm as the function of in-plane magnetic 

field for various values of the surface anisotropy constant. The solid lines are drawn in accordance 

with Eq. (7). 

 

surface anisotropy constant. The numerical cell size in these calculations is given by b = 2 nm. The 

solid curves in Fig. 2 are drawn according Eq. (7). Some deviation of numerical results from Eq. (7) is 

explained by the influence of the demagnetizing field of the element of finite in-plane size. The in-

plane demagnetizing field is created by magnetic charges that arise at the side ends of the element 

under the influence of in-plane magnetic field. This effect is not taken into account in Eqs. (6) and (7), 

which are valid for an infinite film. At the same time, as can be seen from Fig. 2, the slope of the 

magnetization curves in small magnetic fields is in satisfactory agreement with Eq. (7). 

 

Perpendicular hysteresis loops 

 Let us now consider the magnetization reversal process in a thin-film element in magnetic field 

applied perpendicular to the film plane. In this case, the study of the magnetization reversal of the z- 

state is of the greatest interest, since the numerical results obtained can be compared with the 

analytical theory of the nucleation fields [5]. It is well known [5], that the magnetization reversal of a 

homogeneously magnetized ferromagnetic sample is initiated in a reversed applied magnetic field, 

which is called the nucleation field. The value of the nucleation field and the mode of the 

magnetization reversal can depend on various factors, in particular, on the shape, size and in-plane 

aspect ratio Lx/Ly of a rectangular element. 
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Fig. 3. a) Perpendicular hysteresis loops of rectangular CoSiB element with dimensions Lx = 360 nm, 

Ly = 120 nm, Lz = 6 nm, depending on the value of the surface anisotropy constant: 1) Ks = - 1.2 

erg/cm
2
; 2) Ks = - 1.15 erg/cm

2
; 3) Ks = - 1.1 erg/cm

2
; 4) Ks = - 1.0 erg/cm

2
; 5) Ks = - 0.9 erg/cm

2
; 6) Ks 

= - 0.8 erg/cm
2
. b) Nucleation field and coercive force of the element with Ks = - 1.0 erg/cm

2
. 

 

 Fig. 3a shows the perpendicular hysteresis loops of the rectangular thin-film element with 

aspect ratio Lx/Ly = 3.0, depending on the value of the surface anisotropy constant. With the numerical 

cell size b = 1.5 nm there are 240 numerical cells along the longest size of the element studied. As Fig. 

3a shows, the coercive force of the perpendicular hysteresis loops of this element increases with 

increasing of |Ks|. For sufficiently large absolute values of |Ks|  1.15 erg/cm
2
 the hysteresis loops 1) 

and 2) in Fig. 3a are strictly rectangular. This means that for |Ks|  1.15 erg/cm
2
 the magnetization 

reversal process occurs in a strong negative magnetic field by a single Barkhausen jump. On the other 

hand, for |Ks| in the interval 1.0  |Ks|  1.15 erg/cm
2
 (loops 3) and 4) in Fig. 3a), a nonlinear 

stabilization of the nucleation mode occurs in a certain range of magnetic fields just after the mode 

nucleation, where an intermediate non-uniform micromagnetic state exists. At the end of this interval 

the complete reversal of the element take place by single Barkhausen jump. Finally, for the values |Ks| 

 0.9 erg/cm
2
, the magnetization of the element is nonuniform even in zero magnetic field. Actually, it 

follows from an earlier analysis [16] that with a decrease in |Ks| the perpendicularly magnetized z-state 

of the element transforms into the spin canted state. The hysteresis loops 5), 6) in Fig. 3a correspond to 

the spin canted micromagnetic state. For this state, in the absence of external magnetic field the 

average value of the unit magnetization vector is inclined at some angle to the surface of the element. 

 Fig. 3b shows in detail the magnetization reversal process of the same thin-film element with 

surface anisotropy constant Ks = - 1.0 erg/cm
2
. For this element the nucleation field is given by Hn = - 

450 Oe, whereas the Barkhausen jump that determines the coercive force of the element occurs in the 

field H0 = -570 Oe. Consequently, a stable inhomogeneous micromagnetic state in this element exists 

within the interval -570 < H0 < -450 Oe. 
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 Fig. 4 shows the perpendicular hysteresis loops of a circular thin-film element with diameter D 

= 180 nm and thickness Lz = 6 nm, depending on the value of the surface anisotropy constant. The 

numerical cell size in these calculations is given by b = 1.5 nm. Thus, there are 120 numerical cells 

along the diameter of the element, so that its circular shape approximates with a reasonable accuracy. 

One can see that the behavior of the perpendicular hysteresis loops is similar to that of Fig. 3, but the 

numerical values of the nucleation fields for circular element differ from that of the rectangular 

sample. Similar results were also obtained for circular element of larger diameter, D = 240 nm.  
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Fig. 4. Perpendicular hysteresis loops of a circular CoSiB element with diameter D = 180 nm and 

thickness Lz = 6 nm depending on the value of the surface anisotropy constant: 1) Ks = - 1.2 erg/cm
2
; 2) 

Ks = - 1.1 erg/cm
2
; 3) Ks = - 1.0 erg/cm

2
; 4) Ks = - 0.9 erg/cm

2
. 

 

Nucleation mode 

 In general, the study of the nonlinear stabilization of the nucleation mode and the evaluation of 

the coercive force of the thin-film element can be performed only by numerical simulation. As an 

example, Fig. 5 shows successive steps 1) - 3) of the magnetization reversal process for rectangular 

and circular thin-film elements during the corresponding Barkhausen jumps. In Fig. 5 the areas where 

the z component of the unit magnetization vector is positive or negative are shown in red and in blue, 

respectively. Fig. 5a corresponds to the Barkhausen jump on curve 1) in Fig. 3a, whereas Fig. 5b show 

the evolution of the element magnetization during the Barkhausen jump on curve 3) in Fig. 4, 

correspondingly. As Fig. 5 shows, for both elements after the loss of stability of the homogeneous state 

the magnetization reversal proceeds owing to the formation and rapid propagation of the domain walls 

along the sample. 
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Fig. 5. Dynamics of magnetization reversal in thin-film elements: a) rectangular element with 

dimensions Lx = 360 nm, Ly = 120 nm, Lz = 6 nm and surface anisotropy constant Ks = -1.2 erg/cm
2
 in 

magnetic field Hc = -1580 Oe; b) circular element with diameter D = 180 nm and thickness Lz = 6 nm, 

with a surface anisotropy constant Ks = - 1.0 erg/cm
2
 at Hc = -700 Oe. 

 

It is worth of mentioning that Fig. 5 shows only the late, nonlinear stage of magnetization reversal of 

the elements during the irreversible Barkhausen jumps. The latter occurs in a magnetic field 

corresponding to the coercive force of the element H0 = Hc. At the same time, when the instability 

mode is just nucleated in the nucleation field, H0 = Hn, the amplitude of the mode is very small. In this 

case the general nonlinear micromagnetic equations allow linearization [5]. The investigation of the 

nucleation fields of uniformly magnetized small ferromagnetic samples is one of the most important 

micromagnetic problems [5]. Unfortunately, the analytical investigation of the problem is possible [5] 

only for samples of high symmetry (sphere, long cylinder). Nevertheless, the value of the nucleation 

field and the shape of the corresponding lowest nucleation mode of the ferromagnetic element in the 

reversed magnetic field can be determined by means of numerical simulation. 
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Fig. 6. The evolution of the magnetization distribution in the rectangular thin-film element with 

dimensions Lx = 360 nm, Ly = 120 nm, Lz = 6 nm and surface anisotropy constant Ks = -1.2 erg/cm
2
 

along the line y = Ly/2, z = Lz during magnetization reversal in applied magnetic field Hc = -1580 Oe: 

a) the shape of the buckling nucleation mode at the initial stage of the process, b), c) the transient 

inhomogeneous magnetization distributions at the subsequent stages of the process. 

 

Fig. 6a shows the shape of the nucleation mode for the rectangular element with dimensions Lx = 360 

nm, Ly = 120 nm, Lz = 6 nm and surface anisotropy constant Ks = -1.2 erg/cm
2
 at the initial stage of the 

magnetization reversal process in the magnetic field Hc = -1580 Oe. The magnetization distribution 

shown in Fig. 6a corresponds to the well known buckling mode, which exists in elongated small 

ferromagnetic samples [5]. The numerical cell size in the calculation of the buckling mode equals b = 

1.5 nm. For the rectangular element with the aspect ratio Lx/Ly = 3.0, the buckling nucleation mode can 

be approximated with a good accuracy by the equations 

 

   xx LxA  sin ;  0.0y ; 
221 yxz   ,   (8) 
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Fig. 7. The nucleation field of the buckling mode in rectangular samples with the aspect ratio Lx/Ly = 

3.0: a) as a function of |Ks| for different film thickness Lz; b) as a function of Lz for fixed values of the 

surface anisotropy constant. The solid lines are drawn according to Eq. (12). 

 

where A is the mode amplitude, small at the initial stage of the reversal. Fig. 6b, 6c show the nonlinear 

evolution of the buckling mode at the late stages of the development of this instability (see also Fig. 

5a). 

 Figs. 7a, 7b show calculated numerically (dots) the dependence of the nucleation field of 

rectangular thin-film elements with aspect ratio Lx/Ly = 3.0 on the value of the surface anisotropy 

constant, and on the thickness of the element, respectively. For thickness Lz = 6 nm the in-plane 

dimensions of the element are given by Lx = 360 nm, Ly = 120 nm, the numerical cell size being b = 

1.5 nm. For smaller thickness the in-plane dimensions and numerical cell size are scaled accordingly. 

Since the shape of the nucleation mode for this element is known (see Eq. (8)), the value of the 

corresponding nucleation field can be approximately determined by means of a variational estimate 

[5]. 

 The second order correction to the total energy of the z-state of the rectangular element due to 

the magnetization perturbation of the first,  0,0,)1(

x 


, and the second,  2,0,0 2)2(

x 


, orders 

of magnitude has the form 
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Here the first term gives the perturbation of the exchange energy of the element, the second term, 

where the integral is taken over the element surface, z = Lz, gives the perturbation of the surface 

anisotropy energy, the third term is the Zeeman energy perturbation, the perturbation of the volume 

magnetic anisotropy, and part of the magnetostatic energy perturbation. The unperturbed 
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demagnetizing field of the element can be expressed through the demagnetizing factor of the sample,  

szz MNH  )0( . Finally, the last term in Eq. (9) is the magnetostatic energy associated with the first-

order magnetization perturbation, )1(


. Due to the small thickness of the element, the main 

contribution to this energy is the self magnetostatic energy of the volume magnetic charges (x), 
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distributed in the volume of the element with the density 

      









xx

s
x

s
L

x

L
AM

dx

d
Mx


 cos .    (10b) 

Taking into account the small thickness of the element, the magnetostatic energy, Eq. (10), can be 

evaluated as follows 
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where V = LxLyLz is the volume of the element, the dimensionless function Q() being 

 

       
   

  22

1

2

22

1

2

1

1

0

1

0

1

1

0

11
lncoscos

yxxy

yxxy
xxdydxdxQ




 




 . 

The maximum value of this function calculated numerically is given by Qmax  0.12 at  = 5.4. Then it 

decreases as the function of parameter , Q ~ 1/. 

 Equating the total energy correction, Eq. (9) to zero, one obtains the nucleation field of the 

buckling mode of the rectangular thin-film element as 
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 For sufficiently large in-plane dimensions of the element, Lx, Ly >> Lz, the main contributions 

to this expression are given by the second term, which describes the effect of surface anisotropy, and 

the third term, which gives a large demagnetizing field of the element magnetized perpendicular to the 

plane, sz MH 4)0(  . For example, for the thin film element with dimensions Lx = 240 nm, Ly = 80 

nm, Lz = 4 nm and surface anisotropy constant Ks = -0.6 erg/cm
2
 the values of the successive terms in 

Eq. (12) are given by 68.5, 6000, - 5950, -40, and 19.5 Oe, respectively. 

 Since the demagnetizing field of a thin-film element is only slightly depended on its thickness 

in the range of small thickness Lz = 4 - 6 nm, the nucleation field of the buckling mode turns out to be 

proportional to the absolute value of the surface anisotropy constant |Ks|, and inversely proportional to 



  

 14 

the thickness of the element Lz. The solid lines in Fig. 7 are drawn in accordance with Eq. (12). As Fig. 

7 shows, the variation estimate of the nucleation field, Eq. (12), is in a qualitative agreement with the 

numerical calculations of the nucleation fields of rectangular thin-film elements with surface 

anisotropy. 

 

Conclusion 

 In this paper the magnetization reversal process in thin-film ferromagnetic elements with 

surface anisotropy of various shapes and sizes is investigated. The dependence of the perpendicular 

and in-plane hysteresis loops on the element thickness, and the value of the surface anisotropy constant 

is studied. It is shown that for sufficiently large values of the surface anisotropy constant, the 

magnetization reversal in elongated thin-film elements is due to nucleation of the buckling mode. For 

the rectangular element the approximate formula is obtained for the dependence of the nucleation field 

of the buckling mode on the element thickness and the magnitude of the surface anisotropy constant. 

The numerical results obtained turn out to be in reasonable agreement with approximate analytical 

calculations of the slope of the element magnetization curve in a small in-plane magnetic field, as well 

as the nucleation field of the buckling mode in magnetic field perpendicular to the element plane. 

 The investigation of the magnetization reversal process in thin-film elements with surface 

anisotropy is important for better understanding of magnetic properties of such elements having vital 

applications in modern thin-film electronics devices. It enables one also to carry out accurate 

determination of the surface anisotropy constant Ks from the experiment. 
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