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Abstract

In a self-consistent semi-empirical numerical approach based on ab-initio calculations for small samples, we evaluate
the GMR effect for disordered (0 0 1)-(3-Fe/3-V)

=
multilayers by means of a Kubo formalism. We consider four different

types of disorder arrangements: In case (i) and (ii), the disorder consists in the random interchange of some Fe and
V atoms, respectively, at interface layers; in case (iii) in the formation of small groups of three substitutional Fe atoms in
a V interface layer and a similar V group in a Fe layer at a different interface; and for case (iv) in the substitution of some
V atoms in the innermost V layers by Fe. For cases (i) and (ii), depending on the distribution of the impurities, the GMR
effect is enhanced or reduced by increasing disorder; in case (iii) the GMR effect is highest, whereas finally, in case (iv),
a negative GMR is obtained (‘inverse GMR’). ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 75.50R; 72.15G
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1. Introduction

The so-called giant magnetoresistance effect
(GMR-effect) is well-known; meanwhile, Ref. [1],
and several overviews exist on theoretical inter-
pretations, [2—4]. The effect exists in thin film sys-
tems made of metallic ferromagnets separated by
nonmagnetic or antiferromagnetic metallic spacers,

and consists in the fact that, e.g. in such a trilayer or
multilayer system, if one starts from a state, where
the ferromagnetic films have mutually antiparallel
magnetization, one can switch the magnetization
directions, by application of a magnetic field, to
parallel orientation, which — as a consequence
— generally implies a decrease of the electrical resist-
ance. This amounts typically to values around 10%
or so, which is already interesting for applications,
but in the case of Fe/Cr/Fe trilayers the effect can
be as large as 200% [5].

Thus, the GMR-effect is given by the simple
formula

GMR"

C
­­

C
­¬

!1, (1)
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where the C
­­

and C
­¬

are the conductances for
mutually parallel (resp. antiparallel) magneti-
zations. Here one distinguishes between the CPP
and CIP geometries, where the current is perpen-
dicular to the planes, or in the plane, respectively.

Considering Eq. (1), we would like to stress at
this juncture that in a numerical calculation not
C
­­

and C
­¬

separately, but only their ratio C
­­

/C
­¬

must come out correctly.
A considerable GMR effect can already exist in

the ballistic regime, i.e. without any impurities, due
to the fact that the reflectivity of the electrons at
the interfaces changes with the above-mentioned
switch. This is shown by the ab initio calculation of
Schep et al. for Co/Cu-multilayers in Refs. [6,7],
and by recent model calculations of Krompiewski
et al. [8,9]. But one of the main problems, namely
the question, how impurities and disorder influence
the strength and perhaps even the sign of the GMR
in a realistic system with non-ideal interfaces and
significant impurity scattering, is not answered by
theories for the ballistic case. For example, it seems
almost natural to state that an increase of spin-
dependent scattering at the interface should lead to
an enhancement of the GMR; on the other hand,
one can also imagine that too much disorder at the
interface should reduce the difference of the spin-
dependent reflection properties for the two cases
considered above: Thus, without detailed calcu-
lations for different systems it remains an open
question, whether the GMR is enhanced or reduced
by an increasing amount of impurities. Moreover,
the answer on this question may depend on the
arrangement of the impurities.

In the present communication, we study the in-
fluence of disorder on the GMR for BCC-(0 0 1)-
(Fe-3/V-3)

=
multilayers, both for CPP and CIP

geometry, with four different situations (see below).
Our extensive numerical calculations employ a
self-consistent semi-empirical approach, which also
works for non-ideal systems with impurities. We
have applied a similar approach earlier for almost-
ab-initio calculations of the magnetic and transport
properties of strongly disordered or even amorph-
ous systems. Both the electronic structure, [10—12],
and the transport properties of the systems [12,13]
have been calculated, the transport properties dir-
ectly from the Kubo formula, and separated into

contributions from the up-spin and down-spin car-
riers. We stress that the Kubo approach is rigorous
in principle, and does not invoke the usual
Boltzmann approximations. Instead, from the be-
ginning, the disorder of the system is fully taken
into account: In particular, in our paper the eigen-
values and eigenvectors of the electronic Hamil-
tonian are always calculated for the disordered
system, before the Kubo formula is applied (see
below); in the language of diagrammatic theories
this means that the vertex corrections are automati-
cally included.

However, all this is possible only for rather small
systems: Our computer samples comprise stacks of
12 non-equivalent, partially disordered Fe- or V-
monolayers with 4]4 atoms per layer, and with
periodic boundary conditions in all three direc-
tions. Thus, altogether we have 192 atoms, with
9 orbitals per atom (five 3d-, three 4p-, and one
4s-orbital), i.e. for fixed spin projection s"$1 of
the electron we diagonalize a Hamiltonian with
1728 lines and columns. After each diagonalization,
the expectation values of the local occupations and
local moments for every orbital are calculated, and
the Hamiltonians are updated, until finally, after
a lot of iterations of the procedure, self-consistency
is obtained with respect to all local charge and spin
expectations (see below). Also the Fermi energies
E
&
(s) are determined self-consistently. However, in

view of the smallness of our systems, the results
suffer from the fact that in the numerical calcu-
lation we have a discrete spectrum and not a con-
tinuum, so that evaluation of histograms instead of
continuous functions becomes necessary. (This is
different from the technique of Asano et al. [14],
which is however not applicable to our system, see
below.) Furthermore, one should also be aware of
the fact that the ¹"0 conductance of a me-
soscopic physical system is not self-averaging: One
needs to average over different samples to obtain
significant ‘typical results’, although with large er-
ror bars. But even for these small systems, such
results can be obtained, as seen below. This has also
been exemplified in former calculations of the resis-
tivity in the magnetic state of disordered systems
[12,13].

In the following sections we describe at first our
formalism, and then our results for (0 0 1)-(3-Fe/
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3-V)
=

-multilayers with four different types of
disorder: In cases (i) and (ii), we consider inter-
changes of some nearest-neighbour Fe and V atoms
at the interface, whereas in the particular case (iii)
we deal with the effect of small Fe ‘islands’ of three
Fe atoms in a V interface layer and vice versa;
finally, the case (iv) of a substitutional Fe impurity
in an inner V layer is considered.

In case (i), we treat the standard situation that
the impurities are randomly distributed among all
four nonequivalent interfaces, whereas in case (ii)
we assume that the impurities are concentrated at
only one of the interfaces. Concerning (i), we find at
first — as expected — an increase of the GMR with
increasing impurity concentration, namely from
GMR&60% for an impurity concentration of
n
*.1

+1% to GMR&120% for n
*.1

+3% and
+4%, whereas in case (ii) a reduction of
the GMR from &60% (for n

*.1
+1%) to&0% (for

n
*.1

+5%) is obtained. Also in case (i) the GMR
decreases again, if n

*.1
becomes as large as +5%.

This different behaviour is discussed below.
For the particular case (iii), see above, we get the

largest values of the GMR (&250—300%). Finally,
in case (iv), the Fe impurity in the inner V layer is
significantly magnetized by !0.5 l

B
, i.e. antiparal-

lel to the Fe layers, if these are aligned in parallel
(see below), whereas the Fe impurity is nonmag-
netic, if the magnetization directions of the Fe films
are mutually antiparallel. In the first-mentioned
case the impurity scattering is stronger, which im-
plies that in case (iv) we have a negative GMR
(‘inverse GMR’) of &(!50%). This is true for both
the CPP and the CIP geometries, although quantit-
atively the results are somewhat different for these
geometries (see below).

A negative GMR has already been observed in
Ref. [15], but for ternary systems, whereas the
present system is binary.

2. Formalism

We use our realistic self-consistent semi-empiri-
cal LCAO approach already described in Refs.
[16,12] i.e. with nine orthogonalized orbitals
per atom (five 3d-, three 4p- and one 4s-orbital)
and a collinear magnetic state described by

the equations

+
mb

H
la,mbc(l)mb,s#

º
la

2
Sn

la­#n
la¬!2npara

la Tc(l)
la,s

!

º
la

2
Sn

la­!n
la­Tsc(l)

la,s"el(s)c(l)la,s. (2)

In Eq. (2), c(l)
la,s are the probability amplitudes for

the event that an electron with spin s ("$1) and
single-particle energy el(s) occupies an orbital
a ("1,2,9) at the site l. Here l"1,2, N

l
Na,

where the number of atoms is N
l
"192 and the

number of orbitals per atom Na"9. The orbitals
are assumed to be orthonormalized, and the real-
symmetric matrix H

la,mb describes the paramag-
netic state of the disordered system. Altogether 26
neighbors, i.e. upto the third shell, are taken into
account for each site. The matrix elements are de-
rived from Papaconstantopoulos [17], in the ap-
proximation with two-center integrals: We assume
that we have a BCC-structure with an averaged
lattice constant, a"(a

F%
#a

V
)/2, with a

F%
"2.87 A_

and a
V
"3.02 A_ . Thus, it is only necessary to mod-

ify the hopping matrices of Papaconstantopoulos
according to the modified positions, i.e. for the
two-center integrals one uses relations as
I
dd
(r)Jr~5, see Refs. [16,12]; additionally, if site l is

occupied by a Fe atom, but site m by V, we assume
as usual HF%,V

la,mb"(HF%,F%
la,mbHV,V

la,mb)1@2. Finally, to agree
with ab initio calculations, see below, we have used
a common shift of *E"0.5 eV for the Fe d-levels
with respect to the values in Ref. [17], whereas for
V no shift was assumed, and for the Hubbard
energies we have taken º

la"5.8 and 2.58 eV
for the Fe and V d-orbitals, respectively, º

la"0
otherwise.

Concerning the expectation values in Eq. (2),
we require self-consistency in the magnetic state,
again for the disordered system, namely for every
site and every d-orbital we demand that Sn

la,sT,
+l&(s)l/1

Dc(l)
la,sD2. Here l

&
(s) counts the highest

occupied single-particle eigenstate for s"$1,
respectively.

In Fig. 1, the results for the magnetic moments of
the different layers for an ideal sample of our sys-
tem are presented, in comparison with similar re-
sults obtained by us for the same system with an
ab-initio LMTO method [18]. Obviously, the

274 A. Moser et al. / Journal of Magnetism and Magnetic Materials 183 (1998) 272—282



Fig. 1. Comparison of the magnetic moments of the pure
(0 0 1)-(3-Fe/3-V)

=
multilayers with (a) mutually parallel resp.

(b) antiparallel magnetization of the Fe moments, obtained with
the ab-initio LMTO program (empty squares) and our self-
consistent semi-empirical LCAO approach (full squares). Our
elementary cell consists of altogether 12 planes with 16 atoms
each, and periodic boundary conditions in x-, y-, and z-direc-
tion.

agreement obtained is quite convincing and should
give confidence to the reliability of our self-consis-
tent semi-empirical method. Moreover, the follow-
ing results from Fig. 1 deserve attention: In the
central Fe layers, the Fe moments are enhanced to
2.8 l

B
with respect to the bulk value of 2.2 l

B
,

whereas at the interface they are reduced to 1.6 l
B
.

On the other hand, vanadium, which is nonmag-

netic in the bulk, has at the interface layers a
moment of (!0.5 l

B
), i.e. antiferromagnetically

coupled to Fe. Already the second V layer, how-
ever, is practically nonmagnetic. These results are
similar to those obtained by the first-principles
LMTO calculations of Süss [19,20].

3. The Kubo formalism

The resistivity is calculated by means of the
Kubo formula [21], namely

p(s)
xx
"

e2p

+X
(g(s)(E

&
))2(*E(s))2DS f, sDxDi, sTD2. (3)

Here X is the volume of the elementary cell of 192
atoms, p(s)

xx
the contribution of electrons with spin

direction s"$1 to the conductivity in x-direction,
g(s)(E

&
) the value of the spin-dependent density of

states of the disordered system at the Fermi energy
E
&
(s); Di, sT and D f, sT are the exact eigenstates of the

full Hamiltonian, again with impurities, with
single-particle eigenvalues just above above and
below E

&
(s), respectively, see below; S2T denotes

the quantum mechanical expectation value, and the
overline denotes an average over 10 samples. *E(s)
is a typical energy difference involved in the
transition from i to f. To be precise, we choose
*E(s)"el&`1(s)!el&~1(s), if the highest occupied
single-particle eigenstate of spin s has single-par-
ticle energy el&(s). Furthermore, although the eigen-
states of our Hamiltonian have been calculated
with periodic boundary conditions in x, y, and
z-direction, we assume in Eq. (3), for the calculation
of the resistivity, that the resistance is measured
with parallel planar contacts of a distance as small
as our cluster sizes *x"*y"4a"11.78 A_ and
*z"12 (a/2)"17.67 A_ , respectively. Thus, even
without impurities we assume an inelastic dephas-
ing-length of this short size, i.e. by a factor 2

3
shorter

in x- and y-directions than for the z-direction. As
a consequence of this factor 2

3
, our in-plane conduc-

tivities should be scaled by a factor (3
2
)2"2.25, if

a direct comparison with the perpendicular con-
ductivity is desired. In any case, these correction
factors do not enter the GMR, since the ratio
C
­­

/C
­¬

in Eq. (1) does not depend on them.
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Fig. 2. Conductivities of the pure (001)-(3-Fe/3-V)
=

multilayers,
with contacts as described in the text. ‘Ferromagnetic’ (resp.
‘antiferromagnetic’) means that the magnetization directions of
the Fe layers are mutually parallel resp. antiparallel. The num-
ber (2n#1) of contributing states for given s, in the vicinity of
the spin-dependent Fermi-energy E

&
(s), ranges from 3 to 11. The

dotted lines represent the averages of the five cases of (2n#1).
The apparent difference between the CPP and CIP conductivi-
ties (‘current perpendicular to the planes’ and ‘current in the
planes’) is not realistic: It results simply from the different distan-
ces of the contacts for CIP and CPP, and can be scaled away (see
the text). Finally, within our accuracy, the GMR is zero for the
present pure system, i.e. the results for the different mutual
magnetizations are practically identical. For further details see
the text.

Concerning the average of Eq. (3), for Di, sT and
D f, sT we take the (n#1) highest occupied and
n lowest unoccupied states, respectively, for given s,
with n"1,2,5 in Fig. 2; n"1 otherwise. Addi-
tionally, as usual with the Kubo formalism for
DC-conductivity, although it would be rigorous
only in the thermodynamic limit, we also include
the case i"f in Eq. (3), so that the average in this
equation is dominated by the 2n#1 diagonal

terms. Finally, the origin of our coordinates is fixed
in such a way that the matrix element Si, sDx

k
Di, sT

would give the actual length of our elementary cell
in k-direction (k"x, y, z), i.e. the distance of the
contacts, for constant D i, sT.

4. Results for the GMR

4.1. Pure sample, cases (i) and (ii), and some remarks

In Fig. 2, which only should be considered as
a check of the accuracy of our method and also
serves for the statement (see below) that without
impurities we obtain GMR+0, we present our
(fictitious) results for the CPP- (resp. CIP-) conduc-
tivities of pure samples obtained with the different
dephasing lengths of *z"17.67 A_ and *x"
*y"11.78 A_ , corresponding to our sample size,
see above. Taking the average over the five cases of
(2n#1), one gets the dotted lines, from which
one concludes o

CIP
/o

CPP
&2, as expected from

(*z/*x)2"2.25. The error bars of our results
amount to &$20%. Since these results apply
both to the cases of mutually antiparallel (resp.
parallel) magnetizations of the Fe films, we con-
clude that in our case the GMR-effect in the pure
systems vanishes within our accuracy. For the dis-
ordered systems this will be different, see below.

Additionally, at this place the following remarks
are in order:

(1) It is not important that due to our short
dephasing length our values for o

CPP
and o

CIP
are

&2 (resp. &4) times larger than the ‘experimental
estimates’, which one would expect at room tem-
perature [22,23]. Since these rescaling factors of
&2 (resp. 4) do not depend on whether one con-
siders C­­ or C­¬, the GMR itself should be insensi-
tive against these rescalings, as already mentioned
in connection with Eq. (1).

(2) This is supported by the observation that the
numerical results for the resistivities in the mag-
netic state of disordered Fe/Ni/Mn alloys in our
former paper [12] have also come out too large just
by a constant factor &5, in spite of the fact that
with increasing Mn concentration the conductance
decreased considerably. However again, apart from
the constant factor, the concentration dependence of
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Fig. 3. CIP- and CPP-GMR (see Eq. (1)) for impurity distribu-
tions of class (i). This class corresponds to ‘interchange impu-
rities’ concentrated at upto four different interfaces, n with 16
sites per plane. For concentrations of upto 4.16%, every (Fe—V)
pair of interchanged atoms has its own interface, whereas in case
of 5.2% impurities, at one of four interfaces there are not one,
but two of such (Fe—V) pairs. Note that for this class the GMR is
mainly increasing with the impurity concentration.

the experimental values was well-reproduced in
Ref. [12] with our formalism.

(3) Asano et al. [14] have performed a schematic
model calculation for pure and impure systems
with only s-bands, only nearest-neighbor hopping
in simple-cubic arrays, and where the magnetism
was not treated self-consistently, but replaced by
a spin-dependent constant potential »

­
"!0.5,

»
¬
"#0.5 for the magnetic atoms, whereas for the

nonmagnetic atoms, »,#0.5 was chosen. Finally,
even the Fermi energy was arbitrarily fixed at
E
&
"0. (Here the magnitude of the nearest-neigh-

bor hopping integral has been used as energy unit.)
Due to these simplifications, Asano et al. could
use a recursive technique, where planes with
12]12 atoms could be treated, and ‘perfect
leads’ could be attached to the sample in the cur-
rent direction. Although within our group this
powerful technique has already been extended
to extremely accurate model calculations of the
CPP-GMR and of a corresponding Giant Mag-
neto-Thermopower in pure s-band tight-binding
samples with infinite planes [8], the method is not
applicable to the present system, since s-, p-,
and d-bands, self-consistency, and interactions
upto third-nearest neighbors, are needed. However,
at the end we will discuss our results in the light of
Ref. [14].

After these preparations we now consider the
impure systems: In Fig. 3, we present the results for
the GMR obtained with Eqs. (3) and (1) for case (i),
i.e. impurities distributed randomly across the four
interfaces (see below). The concentrations con-
sidered correspond to 1, 2,2, 5 interchanged im-
purity pairs, e.g. V impurities in a Fe plane and vice
versa. Since the volume corresponds to 192 sites,
and since to every V impurity position in a Fe plane
there is a neighboring Fe impurity in the adjacent
V plane, the impurity concentrations range from
1.04 to 5.2%, and we have produced our random
samples in such a way that for n

*.1
)4.16% the

impurity pairs are situated at different interfaces,
whereas for n

*.1
"5.2% (resp. 6.24%) at one of the

four interfaces (resp. two of them) two pairs are
situated. The error bars in Fig. 3 result from the
average over 10 samples, and the evaluation of
Eq. (3) has been performed as in Fig. 2, but with
(2n#1)"3, separately for s"$1.

It is essential that in spite of the large error bars
there is a clear trend in the concentration depend-
ence in Fig. 3, namely at first a roughly linear
increase from GMR&60% at n

*.1
+1% to

GMR&120% at n
*.1

+4%, which is then
followed by a decrease to GMR&50% for
n
*.1

+5%. (Almost the same results, GMR"32
and 53% for the CIP and CPP cases, respectively,
are obtained with 6% impurities.) The small differ-
ence of the CPP-GMR with respect to the CIP-
GMR is insignificant; what is of only importance is
that the behavior of the GMR with increasing con-
centration is the same for both cases.
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Fig. 4. Same as Fig. 3, however for impurity distributions of
class (ii). This class corresponds to ‘interchange impurities’ con-
centrated at only one of four interfaces with 16 sites per plane,
i.e. for (Fe—V)-pairs at the ‘impure interface’, the Fe-atoms are
substituted by V and vice versa. Note that for this class the
GMR is decreasing with increasing impurity concentration.

The increase observed upto n
*.1

"4.2% is what
one would expect by an incoherent superposition of
the effects from single impurities. However, for
n
*.1

"5.24%, as already mentioned, one of the
interfaces must host two impurity pairs. That this
fact leads to a decrease of the GMR, is in agreement
with the behavior in case (ii), which is presented in
Fig. 4: In this case, where — as discussed above — the
impurities are concentrated at only one of the
four interfaces, the GMR decreases from &60%
for +1% impurities down to GMR&0% at
n
*.1

+5%.
The different behavior of cases (i) and (ii) is not

easily understood, since it involves the ratio
C­­/C­¬ of two conductances: According to details

of our results, which we do not present as plots
[24], both C­­ and C­¬ decrease significantly with
increasing n

*.1
. Concerning C­¬, we find that this

decrease is roughly the same for the cases (i)
and (ii), respectively: E.g. p­¬

CIP
decreases from

&11]10~5 () cm)~1 at n
*.1

+1% to &6]10~5

() cm)~1 at n
*.1

+5%, both for (i) and (ii), in spite
of the different spatial impurity distributions of
these cases. In contrast, C­­ is found to be quite
sensitive to the spatial distribution of the impurities
and thus essentially responsible for the different
behavior of the GMR: In case (i) the decay is rather
weak, e.g. p­­

CIP
decays in a ‘sub-Boltzmannian

way’, namelyJ(7.67#9.33n~1
/*.1

), from 17]105
() cm)~1 at n

*.1
+1% to 10]105 () cm)~1 at

n
*.1

+4%, whereas in case (ii), where the impurity
pairs are randomly concentrated at one of our four
interfaces, the decay is much faster, namely from
17]105 () cm)~1 down to 5]105 () cm)~1, and
essentially ‘non-Boltzmannian’, namely linear in
n`1
*.1

instead of n~1
*.1

. This means that vertex correc-
tions and multiple scattering could play an essen-
tial role for C­­ in case (ii), which is not
unreasonable in view of the essentially two-dimen-
sional nature of the scattering for that case, and the
erratic magnetization profiles obtained in Fig. 6.

4.2. Magnetic-moment profiles

In Figs. 5 and 6 we present the distribution of
magnetic moments in disordered Fe and V inter-
face planes with one (resp. five) (non-neighboring)
interdiffusions at the same interface. As one can see
from these plots, there is a significant reduction of
the Fe moments in the vicinity of the V impurity.
Also the V impurities in the Fe planes have a con-
siderable magnetic moment of &!0.8 l

B
, much

higher than in the pure V interface plane, where the
V moment is only &!0.25 l

B
. This agrees with

first-principles calculations of Coehoorn [25].

4.3. Cases (iii) and (iv)

We get a much larger GMR effect than that
obtained with cases (i) and (ii) by replacing the
interchange process of Fe and V neighbors at the
interface by the following particular ‘island substitu-
tion’ process (iii): We substitute randomly three
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Fig. 5. The spatial distribution of the magnetic moments is
presented for a Fe interface plane with one V impurity (b) and
for a V interface plane with one Fe impurity (c). The relation
between the numbers 1, 2,2, 16 given to the atoms and their
positions in space follows from (a).

Fig. 6. Same as in Fig. 5, however for interface planes with five
impurities (out of 16 sites).

neighbouring V atoms in a V interface layer by Fe,
and at a different interface in a Fe layer indepen-
dently three neighboring Fe atoms by V, which
corresponds to &3.12% impurities. Of course,

there are many possibilities of such a simultaneous
random substitution of a small ‘island’ of three
neighboring Fe interface atoms by V and three
neighboring V atoms at a different interface by Fe,
e.g. atoms 1, 2, 3 or 2, 5, 6 or 2, 6, 10 or 2 in
Fig. 5a. Averaging over 10 random samples, we
obtain a CIP-GMR as large as (265$120)% and
a CPP-GMR as large as (300$170)%. These high
values with large scatter, which should be contras-
ted to GMR&120% obtained for n

*.1
+3% in

case (i), are not yet understood at present, however
it is clear that the differences point again to ‘non-
Boltzmannian’ behavior and the possible role of
vertex corrections. Probably, it is important that
the interfaces become more ‘diffuse’ for ‘interchange
impurities’ of type (i) and (ii), whereas in case (iii),
although the width of the Fe films (V films) varies
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Fig. 7. Same as in Fig. 5, but for case (iv), i.e. there is now only
one Fe impurity in a central V plane. The Fe films are magnet-
ized in parallel (‘ferromagnetic coupling’). In this case there
results a negative GMR, see the text.

locally, the interface remains well-defined in a
sense.

Finally, in case (iv), we discuss the situation that
there is just one Fe substitutional impurity (i.e.
a concentration of 0.5%) in one of the two central
V planes of our sample. In this case, if adjacent Fe
films are magnetized in opposite direction, the Fe
moment at the central V layer vanishes on sym-
metry grounds; but if the Fe films are aligned in
parallel, there is a considerable moment induced at
the Fe impurity.

In Fig. 7 we present the magnetization profile in
the relevant central V layer for this case of mutually
parallel magnetic polarizations of the adjacent Fe
films. As already mentioned for the pure system, the
V polarization in the central plane is almost neg-
ligibly small, but the Fe impurity moment is not;
instead, it is magnetized antiparallel to the adjacent
Fe films, with &0.5 l

B
, whereas in the Fe films

themselves one has the results of Fig. 1, namely
k&1.5 and 2.5 l

B
at the interfacial (resp. central) Fe

layers. From this large induced negative polariza-
tion, one can imagine that the present Fe impurity
in ‘bulk’ V induces strong scattering effects in the
case of mutually parallel polarization of the Fe
films, which is unusual, since now one expects
a negative GMR. Averaging with respect to the few
different possibilities to place the impurity with
respect to the contacts in Eq. (3), we get in fact
(upto &20% accuracy) the following results: CIP-
GMR&47% and CPP-GMR&!61%.

4.4. Discussion

Although a direct comparison is not possible in
view of the differences discussed above, we discuss
our results in the light of the paper [14] of Asano
et al. As already mentioned, these authors treat
a very simplified s-band model only, but for larger
systems, with attached ideal leads, and with
a powerful recursion method.

At first we stress that the values for the CPP-
GMR in Ref. [14] are of the same order as ours in
case (i), namely &45% (compared to our 60%) for
n
*.1

+1%. This corresponds to the ‘interface
roughness’ j+0.06 in Ref. [14], although these
authors do not generate the impurities by pairwise
interchange, but by simple substitutions in interface

layers, which has a less drastic effect on the local
moments, see Ref. [26]. But with increasing inter-
face roughness, in Ref. [14], the CPP-GMR only
decreases rather slowly, e.g. down to &35% at
j+0.3, while the CIP-GMR, which vanishes for
the pure system, increases still more slowly. Only, if
at all sites i the potentials »

4
(i) are additionally

randomized by addition of terms d»
4
(i), which are

uniformly and independently distributed between
$¼

B
/2; Asano et al. obtain a more drastic

decrease of both GMRs with increasing ¼
B
, which

becomes very rapid for ¼
B
Z1.

Thus, there are two main differences from our
results: (a) Whereas in our case the CIP-GMR is
only slightly lower than the CPP-GMR (see above),
in Ref. [14] it always remains significantly smaller,
e.g. by a factor [0.25 for k+0.2. (b) Concerning
the CPP-GMR, according to Ref. [14], for the pure
samples it is even somewhat higher than with impu-
rities, whereas in our case it practically vanishes for
pure samples (see above). These differences are due
to the fact that in Ref. [14] the sample is attached to
perfect leads, i.e. the dephasing length is R and the
energy spectrum continuous, and the extension of
the samples in x- and y-direction is rather large,
whereas in our case we assume periodic boundary
conditions, but an inelastic dephasing length as
short as our sample sizes, and similarly small
widths *x and *y.
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Therefore, our case n
*.1

"0 does not correspond
to the usual ‘ballistic situation’, in contrast to that
in Ref. [14]. However, for our disordered systems
the elastic scattering lengths are as short as (or even
shorter than) the inelastic dephasing length, and for
the GMR of our small and essentially cubic sam-
ples, the distinction between ‘longitudinal’ and ‘per-
pendicular’ may become blurred in the presence of
impurities and short inelastic dephasing.

The essential point however seems to be the
following. According to Ref. [14], disorder and
impurities apparently always reduce the CPP-
GMR, whereas for our small systems with the
strong ‘magnetic contrast’ of Fe and V and the
presence of strongly different local situations, also
an increase can occur, and even a negative GMR
may be possible. Actually however, in cases (i) and
(ii), if there are two or more impurities at an inter-
face plane, i.e. for n

*.1
*1.04% in case (ii), or for

n
*.1

*5.2% in case (i), also in our results the GMR
always decreases with increasing disorder.

Experimentally, it has been found in Ref. [27]
that increasing the interface roughness by Xe` ir-
radiation leads to a significant enhancement of the
GMR; however, beyond a certain irradiation dose
the GMR decreased again, which would fit to our
main scenario (i).

5. Conclusions

We have applied a self-consistent semi-empirical
almost ab-initio approach to small samples to cal-
culate the magnetic properties and the CIP- and
CPP-GMR effects for (0 0 1)-(3-Fe/3-V)

=
multi-

layers, with impurities generated by randomly in-
terchanging neighboring Fe and V atoms (i) at all
four interfaces, and (ii) only one of the interfaces, for
impurity concentrations ranging from 1 to 5%
(sometimes 6%). In case (i) we observed an increase
of the GMR from &60% for 1% to &120% at
4% impurities, followed by a decrease back to
&50% for 5 and 6% impurities, whereas in case
(ii), we have found a decrease of the GMR from
&60% for 1% to &0 at 5% impurities. Still much
larger GMR values of &250 to &300% have been
obtained in case (iii) for impure systems with small
‘islands’ of three randomly chosen neighboring Fe

substitutions in a V interface layer and simulta-
neous, but independent V substitutions in a Fe
layer at a different interface, which corresponds to
+3% impurities. Finally, in case (iv), we con-
sidered Fe impurities in ‘bulk’ V, by replacing one
of 16 V atoms in one of two central V layers by Fe.
This leads in our calculation to a negative GMR of
&(!50%). It is remarkable that here a negative
("‘inverse’) GMR has been obtained in a binary
system, whereas hitherto this was observed only in
ternary systems [15].

Of course, our results should be taken with care:
One should be aware of the smallness of the systems
(192 atoms), the small ‘dephasing distances’ between
the voltage contacts (*x"*y+12 A_ , *z+18 A_ ),
the large number of strongly reflecting Fe/V-interfa-
ces (two of three monolayers are interface layers), the
small concentrations of strongly scattering impu-
rities involved (upto 5% only, Fe impurities in V and
vice versa), and the large error bars of the sample
averages. However, in spite of these caveats, the
results seem to justify the statement that the influ-
ence of magnetic impurity scattering on the GMR
may be more complicated than expected.
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References

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F.
Petroff, P. Etienne, G. Creuzet, A. Frederich, J. Chazelas,
Phys. Rev. Lett. 61 (1988) 2472.

[2] P.M. Levy, Shufeng Zhang, J. Magn. Magn. Mater. 164
(1996) 284.

[3] I. Mertig, P. Zahn, M. Richter, H. Eschrig, R. Zeller, P.
Dederichs, J. Magn. Magn. Mater. 151 (1995) 363.

[4] P. Zahn, I. Mertig, M. Richter, H. Eschrig, Phys. Rev. Lett.
75 (1995) 2996.

[5] G. Binasch, P. Grünberg, F. Saurebach, W. Zinn, Phys.
Rev. B 39 (1989) 4828.

[6] K.M. Schep, P.J. Kelly, G.E.W. Bauer, Phys. Rev. Lett. 74
(1995) 586.

A. Moser et al. / Journal of Magnetism and Magnetic Materials 183 (1998) 272—282 281



[7] G.E.W. Bauer, K.M. Schep, P.J. Kelly, J. Magn. Magn.
Mater. 151 (1995) 369.

[8] S. Krompiewski, U. Krey, Phys. Rev. B 54 (1996) 11961.
[9] S. Krompiewski, M. Zwierzycki, U. Krey, J. Phys. CM

9 (1997) 7135.
[10] U. Krey, S. Krompiewski, U. Krauss, J. Magn. Magn.

Mater. 86 (1990) 85.
[11] U. Krey, U. Krauss, S. Krompiewski, J. Magn. Magn.

Mater. 103 (1992) 37.
[12] A. Paintner, F. Süss, U. Krey, J. Magn. Magn. Mater. 154

(1996) 107.
[13] U. Krey, U. Krauss, S. Krompiewski, T. Stobiecki,

J. Magn. Magn. Mater. 116 (1992) L7.
[14] Y. Asano, A. Oguri, S. Maekawa, Phys. Rev. B 48 (1993)

6192.
[15] J. Binder, P. Zahn, I. Mertig, J. Magn. Magn. Mater. 100

(1997) 100.
[16] F. Süss, U. Krey, J. Magn. Magn. Mater. 125 (1993)

351.
[17] D.A. Papaconstantopoulos, Handbook of the Bandstruc-

ture of Elemental Solids, Plenum Press, New York,
1986.

[18] O.K. Andersen, O. Jepsen, D. Glötzel, in: F. Bassani, F.
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