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The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million
spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to
magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferro-
magnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are
correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the
random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are pre-
sented that provide an explanation of numerical results. Our findings should be helpful for designing
amorphous and nanosintered materials with desired magnetic properties.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The random anisotropy model was introduced by Harris et al.
[1] to describe magnetic properties of amorphous ferromagnets.
The problem is subtle when local magnetic anisotropy is weak
compared to the exchange interaction, which is usually the case
due to the relativistic nature of the anisotropy. In this case the
exchange interaction creates extended ferromagnetic ordering.

In a crystalline ferromagnet the ordered regions would corre-
spond to ferromagnetic domains separated by thin domain walls,
with the magnetization inside the domains aligned with the di-
rections of the global anisotropy axes. If one neglects the magnetic
dipole interaction, the ground state corresponds to the infinite size
of the domain, that is, to the global ferromagnetic ordering. It is
the magnetic dipole interaction that breaks ferromagnetic crystal
into domains, with the ground state corresponding to zero total
magnetic moment. In practice, however, pinning of domain walls
by disorder results in the magnetic hysteresis that permits per-
manent magnets.

In a random-anisotropy ferromagnet the global directions of
the anisotropy are absent. As one moves along a certain direction
in a solid, the magnetization vector, created by the exchange, feels
weak random kicks from the magnetic anisotropy. This effect re-
sembles a random walk. At large distances, it results in a sig-
nificant deviation of the magnetization from its original direction,
thus creating magnetic domains of a different nature. This problem
or),
novsky).
was first analyzed by Imry and Ma [2,3] in the general context of a
vector field in d dimensions interacting with a weak random field.
They argued that a random field, no matter how weak it may be,
destroys the long range order in less than four dimensions.

This concept was further developed by a number of authors [4–
8] who used the functional renormalization group and replica-
symmetry-breaking methods in application to random-anisotropy
systems. A phenomenological approach had been also suggested
[9–12] along the lines of the Imry–Ma argument which explained
some of the vast amount of experimental data on amorphous
ferromagnets [13]. The same concept was applied to other sys-
tems, such as superfluid 3He-A in aerogel [14]. There has also been
analytical work accompanied by Monte Carlo studies on small
lattices [15–18] which assumed thermal equilibrium.

Some of the conclusions of these studies came into question
after experiments, as well as the early numerical work [19–21],
indicated that random-anisotropy systems exhibited metastability
and glassy behavior [22,23] which is not captured by the Imry–Ma
argument or the replica symmetry breaking method. This was
confirmed by recent numerical work on the three-dimensional
random field XY model on lattices of up to one billion spins
[24,25]. For any practical purpose, this makes random field and
random anisotropy systems not very different from a conventional
ferromagnet, having high metastability and magnetic hysteresis
that only disappears at sufficiently high temperature or ex-
ponentially long times.

Although it was long suspected that random-field systems
formed some kind of a “vortex glass”, the mechanisms of me-
tastability was poorly understood. Most recently, however, a to-
pological argument has been proposed [26] and confirmed by
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large-scale numerical computations showing that reversible Imry–
Ma type behavior of the random-field spin system only emerges
when the number of spin components n exceeds d 1+ , with d
being the dimensionality of space. At n d 1< + , the formation of
the Imry–Ma state requires topological defects, such as hedgehogs
in the n d 3= = Heisenberg model, which leads to metastability. A
similar argument applies to the random-anisotropy model, al-
though there are peculiarities which we will discuss in Section 4.

In this paper we study the random anisotropy Heisenberg
model on lattices in excess of ten million spins. The emphasis is on
measurable quantities, such as magnetic hysteresis, the coercive
field, and their dependence on the anisotropy strength and the
size of the volume inside which the anisotropy axes are correlated.
The latter is relevant to the magnets sintered from randomly or-
iented nanoscopic ferromagnetic grains. We find very strong de-
pendence of the magnetic properties on parameters, which we
believe is important for synthesizing materials with desired
magnetic properties.

The paper is structured as follows: the model is formulated in
Section 2, where some analytical results are also obtained. The
numerical method and results are presented in Section 3. We
begin by analyzing the case of site disorder. Section 3.1 compares
short-range correlations computed numerically with analytical
results, and provides spin–spin correlation functions for different
initial conditions. Section 3.2 presents computed hysteresis curves
and obtains their scaling with the strength of the random aniso-
tropy. The role of hedgehogs in the magnetic state is discussed in
Section 3.3. Section 3.4 presents numerical results and their in-
terpretation in the random anisotropy system that has short range
correlations in the distribution of the anisotropy axes. Section 4
contains some final remarks and suggestions for experiment.
2. Model and analytical results

The three-dimensional Heisenberg model with random aniso-
tropy is described by the Hamiltonian

J
Ds s n s H s

2
( ) ,

(1)i j
i j R

i
i i

i
i

,

2∑ ∑ ∑= − · − · − ·

where the first sum is over nearest neighbors, si is a three com-
ponent spin of constant length s, H is the external field, DR is the
strength of the random anisotropy, and ni is a three-component
unit vector having random direction at each lattice site. We as-
sume ferromagnetic exchange, J 0> . The factor of 1/2 in front of
the first term is needed to count the exchange interaction Js2 be-
tween each pair of spins once. In our numerical work we consider
a cubic lattice. For the real atomic lattice of cubic symmetry the
single-ion anisotropy of the form n s( )2− · would be absent, the first
non-vanishing anisotropy terms would be of the form
s s s s s sx y x z y z

2 2 2 2 2 2+ + . However, in our case the choice of a cubic lat-
tice is merely a computational tool that should not affect our
conclusions.

In a cubic lattice the effective exchange field acting on each
spin is Js6 due to six nearest neighbors. In our model it competes
with the anisotropy field of strength sD2 R. The case of a large
random anisotropy, sD Js2 6R ≫ , that is, D J3R ≫ , is obvious, cor-
responding to a system of weakly interacting randomly oriented
single-domain particles. At T¼0 each spin aligns with the local n.
At T¼0, due to the two equivalent directions along the easy axis,
the system possesses magnetic hysteresis with a coercive field, HC,
of the order of the local anisotropy field H sD2C R∝ .

Here we are interested in a more subtle case of weak random
anisotropy, D J3R ≪ . Such anisotropy cannot destroy the local
ferromagnetic order created by the strong exchange interaction, it
can only slightly disturb the direction of the magnetization when
one goes from one lattice site to the other. If one moves along a
line in a solid such random disturbances would resemble a ran-
dom walk. Consequently the deviation of the direction of the
magnetization would grow with the distance. In a three-dimen-
sional lattice of spacing a the average statistical fluctuation of the
random anisotropy field per spin in a volume of size R would scale
as D sD a R2 ( / )Reff

3/2= , while the ordering effect of the exchange
field would scale as Js a R6 ( / )2. They become comparable at
R a R a J D/ / (3 / )f R

2= ∼ .
This famous argument [2] provides an estimate of the size of

the Imry–Ma domain, i.e. the distance Rf on which the magneti-
zation rotates by a significant angle. It leaves open the question
whether the ground state of the random anisotropy system pos-
sesses a non-zero magnetization M. Even if it does, as is the case in
the domain state of a conventional macroscopic ferromagnet, the
state with M¼0 may have no practical significance because the
presence of topological defects and their pinning by disorder will
always result in metastability and magnetic hysteresis. The coer-
cive field in the weak random anisotropy case must be propor-
tional to Deff on the scale Rf, which gives H D J/C R

4 3∝ . The pro-
portionality of HC to the fourth power of DR gives a very soft
magnet in the limit of small DR. This can be extended to the limit of
a Heisenberg ferromagnet with no anisotropy at all, which has
infinite susceptibility.

The qualitative arguments presented above can be refined
using a continuous field theory version of the Hamiltonian given in
Eq. (1)

⎡
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where Ja5α = , D a2R R
3β = , S r( ) is a three-component spin field of

length S s a/0
3= , and n r( ) is a three-component random field of

unit length. Adding a Lagrange multiplier term, d r r S( )3 2∫ λ− , to Eq.

(2) which accounts for the S r( )2 being constant, one obtains the
following equation for the extremal S r( ) configurations:
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Multiplying by S0, one obtains an equation for λ. At R R f≪ it gives
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where G r r( ) 1/(4 )π= − | | is the Green function of the Laplace
equation. Then
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where u n n n( ) ( )2σ σ σ= · − · .
At R af ≫ the direction of S is roughly uncorrelated with the

direction of n at the same lattice site. This gives

n n n nu r u r( ) ( ) ( )( ) , (7)σ σ σ σ δ σ σ δ〈 ′ · ″ 〉 = 〈 〉 × 〈 − − 〉α β γ δ β δ α μ αμ γ μ γμ′ ′ ″ ″ ′ ″ ′ ′ ″ ″

where n n r n n r( ), ( )′ = ′ ″ = ″ and the same for σ . The general form of



Fig. 1. Correlation functions from random initial conditions (RIC) and collinear
initial conditions (CIC).
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the anisotropy correlator is

n n n n A Br r r r
1
5

[ ( , ) ( , )( )] (8)δ δ δ δ δ δ〈 〉 = ′ ″ + ′ ″ +α β γ δ αβ γδ αγ βδ αδ βγ′ ′ ″ ″

The condition n 12 = gives A B 1= = at r r′ = ″, and A 5/3= , B¼0 at

r r| ′ − ″| → ∞. It is easy to see that the A-term in (8) does not
contribute to Eq. (7). Replacing B with a r r( )3δ ′ − ″ , one obtains
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in accordance with the Imry–Ma argument.
Fig. 2. Short-range correlation lengths for CIC and RIC.
3. Numerical results

Our numerical method consists of two processes randomly
chosen for each lattice site. The first process, which we call “re-
laxation”, rotates the spin towards the direction of the effective
field, defined by

J DH
s

s n s n H2 ( ) .
(11)

i
i j

j R i i i,eff ∑δ
δ

= − = + · +

The rotated spin is then ss H H/i i i,new ,eff ,eff= .
In the second process, which we call “overrelaxation”, the spin

is rotated by 180° about the direction of the effective field, Eq. (11).
The new spin is given by

( )
H

s
s H H

s
2

(12)
i

i i i

i
i,new

,old ,eff ,eff

, eff
2 ,old=

·
−

Substituting this into the original Hamiltonian, one finds that at
R af ≫ , i.e. when the nearest-neighbor spins are approximately
aligned, overrelaxation reduces the energy. At each site, we ran-
domly choose between the two processes, and continue do so
throughout the lattice, repeating until we reach convergence. This
overrelaxation method has been found to produce much faster
convergence than the ordinary relaxation. The combination of
relaxation and overrelaxation converges to a representative local
energy minimum that is typical of a glassy system. All our com-
putations are done at zero temperature and therefore are relevant
to the hysteretic behavior of the random anisotropy system at
temperatures well below the Curie temperature of the local fer-
romagnetic ordering.

3.1. Correlation functions

We have computed spin-spin correlation functions, defined by
CF R s r s r R( ) ( ) ( )≡ · − . Two initial conditions have been used.
Collinear initial conditions (CIC) physically correspond to the state
obtained by placing the sample in a strong magnetic field which is
then turned off. Random initial conditions (RIC) physically corre-
spond to fast cooling followed by relaxation in zero magnetic field.
Correlation functions are shown in Fig. 1. As would be expected,
the curves differ significantly depending on initial conditions.
Under collinear initial conditions, the CF levels off to a finite value,
in agreement with the significant magnetization that remains.
However, correlations go to zero for random initial conditions,
consistent with zero magnetization.

It is interesting to compare the linear decrease of the CF at very
small R with the prediction of the analytical theory,
CF s R R(1 / )f

2= − . The dependence of Rf on DR extracted from the
linear dependence of the CF on R at R R f≪ is shown in Fig. 2. It is
consistent with Eq. (10), although the agreement is not exact. This
is not surprising since the analytical theory did not account for
topological defects, which we discuss in Section 4. At greater R the
correlation function for the state obtained from the RIC roughly
follows R Rexp( / )f− ′ with R f′ given by R a J D/ 22( / )f R

2≈′ . While R f′ is

slightly shorter than Rf, it also follows the D1/ R
2 dependence, in

agreement with the Imry–Ma argument (Fig. 3).

3.2. Hysteresis

We have numerically computed hysteresis curves using the
above method. The results for different DR are shown in Fig. 4.
They can be reasonably well scaled by dividing H by a certain
power of DR as is shown in Fig. 5. This scaling allows one to ap-
proximate the coercive field, HC, i.e. the field required to bring
magnetization to zero from saturation, by H D /118C R

4.4≈ . The area
of the hysteresis loop scales similarly. This is roughly consistent
with the expectation that HC scales as the fourth power of DR, al-
though the agreement is not precise.



Fig. 3. Correlation lengths for RIC.

Fig. 4. Hysteresis curves.
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3.3. Hedgehogs

3d Heisenberg model has topological defects – “hedgehogs”–
which correspond to the magnetization vector field going into a
point or sticking out of a point. Hedgehogs possess 71 topological
charge and thus appear in pairs. In the absence of random aniso-
tropy, hedgehogs and anti-hedgehogs would be attracted to each
other and would annihilate. However, random anisotropy can
stabilize hedgehogs even at T¼0. Random initial conditions au-
tomatically introduce hedgehogs. Relaxation from RIC annihilates
Fig. 5. Hysteresis curves scaled.
some of the hedgehog pairs but leaves the system with a finite
residual number of hedgehogs which depends on the strength of
the random anisotropy. This must be one of the reasons why
predictions of the continuous model deviate from numerical
results.

We can find hedgehogs in our computed states using a simple
method: we look for points between lattice sites where spins on
opposite sides of the point are aligned in opposite directions. This
method consistently finds hedgehogs; all other configurations that
satisfy this condition are forbidden by theory, so there is no risk
for false positives. Except for very high strengths of the random
anisotropy, collinear initial conditions generally do not produce
any singularities. Random initial conditions, however, do produce
singularities. Fig. 6 shows the density of hedgehogs, ρH, i.e. the
ratio between the number of points where hedgehogs have been
found and the total number of sites, versus the strength of the
random anisotropy, DR.

We have found that D J(0.19 / )H R
6ρ ≈ . Combining this result

with Eq. (10), we obtain

R a

2.1
4
3

( / )
,

(13)

H

f
3

ρ
π

≈

i.e. there are approximately two Hedgehogs per Imry–Ma domain.
This finding is in accordance with the topological argument pre-
sented a previous work [26]: the Imry–Ma state with zero total
magnetization requires singularities at n d 1< + , where n is the
number of spin components and d is the dimensionality of space.

3.4. Correlated disorder

So far we have studied the site disorder, i.e. the direction of the
anisotropy was chosen randomly at each lattice site. Meanwhile,
amorphous and sintered magnets would have anisotropy axes
correlated on some scale R aa > . This simply replaces a with Ra in
Eq. (10), making R a a R J D/ ( / ) ( / )f a R

3 2∝ and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H D

R
R

D R ,
(14)

C R
a

f
R a

3/2
4 6∝ ∝

which is valid for a R R La f< ≪ ≪ . Under these conditions the
sixth power dependence of the coercive field on the grain size is
confirmed by numerical results. These numerical results are ob-
tained by using cubic correlated chunks, where all sites within a
cubic region with volume Ra

3 have aligned anisotropy axes. This
corresponds to the physical conditions in sintered magnets. Fig. 7
shows the dependence of HC on Ra for R a a a a a, 2 , 3 , 4 , 5a = .
Fig. 6. Hedgehog density vs. DR.



Fig. 7. The dependence of the coercive field on the size of the grain, Ra. The points
correspond to R a/ 1, 2, 3, 4, 5a = .
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Note that Rf is proportional to the inverse third power of Ra,
which invalidates the condition R Raa f̂ª¡ very fast with increasing
Ra, limiting numerical studies of a finite-size system to just a few
grain sizes.
4. Discussion

Using 3d lattices containing over 10 million spins, we have
numerically studied the magnetic properties of the random-ani-
sotropy Heisenberg model in the limit when the anisotropy is
sufficiently weak compared to the exchange to provide a ferro-
magnetic correlation length that is greater than the scale on which
anisotropy axes are correlated. This limit will be satisfied by many
amorphous magnets, as well as by sintered magnets in which the
size of the grain, Ra, is sufficiently small. Taking
R a a R J D/ 15 ( / ) ( / )f a R

3 2π= in accordance with our analytical and
numerical results, one obtains that the condition R Ra f≪ requires

R a J D/ ( / )a R
1/2≪ . Had DR been the magneticrystalline anisotropy,

J D a( / )R
1/2 would have represented the scale of the domain wall

width. Consequently, if the magnet was sintered from ferroma-
getic nanocrystals, the condition R Ra f≪ would correspond to the
condition that the size of the nanocrystal was small compared to
the domain wall width in the magnetic material. This is practically
feasible and, in fact, reflects the direction in which the magnetic
industry is going.

Under the above condition, we found, in accordance with
theoretical expectation, that the coercive field and the area of the
hysteresis loop roughly scale as DR

4 and Ra
6. This strong depen-

dence on parameters shows that decreasing DR and Ra by even a
small factor could drastically reduce the coercive field, paving the
way to extremely soft magnetic materials. One obstacle could be
the coherent anisotropy which is inevitably present in any sample
due to its non-spherical shape and/or the anisotropy of the process
of sample preparation. Let such anisotropy have strength DC. Its
effect on the magnetic state will be small if it is weak compared to
the effective anisotropy stemming from DR. The latter, as our
theoretical argument suggests and numerical work confirms,
scales as D D J/Reff

4 3∼ . Consequently, the condition D DC eff≪
translates into D J D J/ ( / )C R
4≪ . Thus, in the case of a weak random

anisotropy, a much weaker coherent anisotropy would destroy the
softness of the magnet and will convert it into a more conven-
tional ferromagnet with domain walls of the width J D( / )C

1/2∼
pinned by disorder.

An interesting question is the physical origin of metastability.
We have seen that, similar to the random field model [26], the
metastability comes in large part from hedgehogs, whose con-
centration strongly depends on DR and corresponds to about two
hedgehogs per volume of size Rf. However, there is a difference
from the random-field model. In a random field system the me-
tastability and hysteresis disappear for n d 1> + when topological
defects are absent. In contrast, magnetic anisotropy in the random
anisotropy model introduces bistability, creating topological de-
fects – domain walls – regardless of the relation between n and d.
In principle, one can think of domain walls of width J D a( / )eff

1/2∼ .
However, substitution of D D J/Reff

4 3∼ into this expression gives a
width, J D a( / )R

2∼ , which scales as Rf, making the concept of a do-
main wall separating domains useless. Nevertheless, the topology
of the random-anisotropy model remains different from the to-
pology of the random-field model. We observed this by numeri-
cally studying the 3d random-anisotropy model with a five-com-
ponent spin. Although the agreement with analytical results be-
comes more precise when the hedgehogs are absent, hysteresis
persists, unlike the behavior found in the random field model.
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