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a b s t r a c t

The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually
coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making
use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rig-
orously mapped onto a classical composite spin-chain model, which is subsequently exactly treated
through the transfer-matrix method. The ground-state phase diagram, correlation functions, con-
currence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin
frustration represents an indispensable ground for a thermal entanglement, which is quantified by the
quantum concurrence. The specific heat displays diverse temperature dependences, which may include a
sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convin-
cingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly
degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral
degrees of freedom of the Heisenberg spin triangles.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Quantum spin models in one dimension traditionally attract a
great deal of attention, because they often exhibit unique magnetic
properties closely connected to exotic quantum ground states
[1–5]. Although all real-world magnetic materials are essentially
three dimensional a lot of them can be effectively described by the
notion of one-dimensional (1D) quantum Heisenberg spin models
due to negligible interactions in other two spatial dimensions
[5,6]. It should be emphasized that 1D Heisenberg spin models
display more prominent quantum features than their higher-di-
mensional counterparts on account of reinforced quantum spin
fluctuations. If the geometric spin frustration is absent, the fun-
damental properties of quantum Heisenberg chains basically de-
pend on the parity of spin. The Heisenberg chains with half-odd-
integer spins have a gapless excitation spectrum and algebraic
Education of Slovak Republic
0043/16, by the grants of the
nder the Contract nos. APVV-
nt agency CAPES. R.C. thanks
e of P. J. Šafárik University in
decay of correlations, while the Heisenberg chains with integer
spins have an energy gap and exponential decay of correlations
[1,7]. If the geometric spin frustration comes into play, however,
the essential features of quantum Heisenberg chains may become
more complex and possibilities for a low-energy spectrum are also
broadened [2–5].

From an immense reservoir of 1D quantum spin systems, the
spin-1/2 Heisenberg tubes have recently attracted much attention
[8–23]. The term spin tube generally refers to a n-leg ( ≥n 3) spin
ladder with periodic boundary conditions along a rung (inter-
chain) direction. The antiferromagnetic coupling along the rung
direction obviously causes a geometric spin frustration whenever
the odd-numbered tube is considered. Owing to this fact, the an-
tiferromagnetic spin-1/2 Heisenberg three-leg tube has a spin gap
in contrast to the spin-1/2 Heisenberg three-leg ladder with an
open boundary condition along the rung (inter-chain) direction
[20–23]. The Lieb–Schultz–Mattis theorem [24] would suggest
that the spin gap must be accompanied with at least doubly
degenerate ground state with a spontaneous breaking of the
translational symmetry since the unit cell consists of three spins.
From the experimental point of view, 1D coordination polymers
[(CuCl2tachH)3Cl]Cl2 (tach¼1,3,5-triaminocyclohexane) [25–27]
and ·Cu Cl D C SO2 4 8 4 2 [28] provide unique experimental realizations
of a spin-1/2 Heisenberg three-leg and four-leg tube, respectively.

In the present work, we will exactly examine a spin frustration
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and thermal entanglement of the spin-1/2 Ising–Heisenberg three-
leg tube, which accounts for the Heisenberg intra-triangle and
Ising inter-triangle interaction. This simplified but still highly non-
trivial 1D quantum spin system is exactly tractable by adapting the
approach worked out previously for the spin-1/2 Ising–Heisenberg
tetrahedral chain [29,30]. The exotic quantum ground states along
with a mutual interplay of spin frustration and quantum en-
tanglement will be the main subject matter of our investigations.
In particular, we will compare a frustration temperature [31] with
a threshold temperature of thermal entanglement, which will be
calculated from a disappearance of the concurrence serving as a
measure of bipartite entanglement [32,33]. Besides, we will also
calculate the non-locality function in order to test whether or not
the Bell inequality is violated [34], because the nonlocality and
entanglement capture different aspects of quantum correlations
[36,35].

The organization of this paper is as follows. The spin-1/2 Ising–
Heisenberg tube will be introduced in Section 2 along with basic
steps of its exact analytical treatment. Section 3 deals with the
most interesting results obtained for the ground-state phase dia-
gram, correlation functions, spin frustration, bipartite entangle-
ment, non-locality and specific heat. Finally, several concluding
remarks are mentioned in Section 4.
2. Model and method

Let us consider the spin-1/2 Ising–Heisenberg three-leg tube
with a cross-section of equilateral spin triangles, whereas the
spins belonging to the same triangular unit are mutually coupled
through the Heisenberg intra-triangle interaction and the spins
from neighboring triangular units are coupled through the Ising
inter-triangle interaction (see Fig. 1). The Hamiltonian of the spin-
1/2 Ising–Heisenberg three-leg tube is then given by
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where α^ ( ∈ { })
α

S x y z, ,i j, mark spatial components of the standard
spin-1/2 operator, the former subscript i determines a position of a
J ,x J z
J1

Si,1

Si,2

Si,3

Fig. 1. A diagrammatic representation of spin-1/2 Ising–Heisenberg three-leg tube.
Thick solid lines represent the XXZ Heisenberg intra-triangle interaction (Jx, Jz),
while thin broken lines correspond to the Ising inter-triangle coupling J1.
triangular unit within a spin tube and the latter subscript j spe-
cifies a position of individual spin within a given triangular unit by

imposing cyclic boundary conditions ^ ≡ ^α α
S Si i,4 ,1,

^ ≡ ^α α
+S SN j j1, 1, (see

Fig. 1). The interaction terms Jx and Jz stand for the XXZ Heisenberg
intra-triangle interaction between three spins from the same tri-
angular unit and the coupling constant J1 labels the Ising inter-
triangle interaction between all spins from neighboring triangular
units.

The total Hamiltonian (1) of the spin-1/2 Ising–Heisenberg tube
can be alternatively rewritten in terms of composite spin operators,
which determine the total spin of the Heisenberg triangles and its
z-component

∑ ∑^ = ^ ^ = ^
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It can be proved by inspection that the composite spin operators

T̂i
2 and T̂i

z commute with the total Hamiltonian (1), i.e.

[ ^ ^ ] = [ ^ ^ ] =H H TT, , 0i i
z2 , which means that the total spin of the Hei-

senberg triangles and its z-component represent conserved
quantities with well defined quantum numbers. Consequently, the
eigenvalues of the total Hamiltonian (1) can be related to the ei-

genvalues of the composite spin operators T̂i

2
and T̂i

z
. Using the

spin identity ( ^ ) = − (^ ^ + ^ ^ + ^ ^ )
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miltonian (1) can be rewritten into the following form:
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which depends on the Hamiltonian Ĥi of two subsequent trian-
gular unit cells
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The first term in Eq. (3) is the less important constant term and the
second one is expressed as a sum over the symmetrically defined

cell Hamiltonians Ĥi, which depend according to Eq. (4) on the
composite spin operators from two neighboring triangular units.

The eigenvalues of the composite spin operators T̂i

2
and T̂i

z
are

quantized according to the rules ( + )T T 1i i with =T 1/2i or 3/2 and,
respectively, = − − + …T T T T, 1, ,i

z
i i i. From this point of view, the

spin-1/2 Ising–Heisenberg tube defined by the Hamiltonian (1)
can be rigorously mapped onto some classical composite spin-
chain model, which can be further treated by the transfer-matrix
method [37]. Owing to a validity of the commutation relation

between the cell Hamiltonians [ ^ ^ ] =H H, 0i j , the partition function
can be factorized into the following form:

∏

∑ ∏

β β

β

β

= ( + ) ( − ^ )

= ( + ) ( )

= ( + )
( )

=

{ } =
+ +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Z
N

J J H

N
J J T T T T

N
J J

exp
3

8
2 Tr exp

exp
3

8
2 W , ; ,

exp
3

8
2 Tr W ,

5

x z
i

N

i

x z
T T i

N

i i
z

i i
z

x z
N

1

, 1
1 1

i i
z

where β = ( )k T1/ B , kB is Boltzmann's constant, T is the absolute
temperature, and the summation ∑{ }T T,i i

z runs over all possible

values of the quantum spin numbers Ti and Ti
z. The expression

β= ( − ^ )W Hexp i , which depends on the composite spin operators
from two neighboring triangular units, can be alternatively viewed
as the transfer matrix with the following elements
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where β= ( − )x Jexp /4x , β= ( − )y Jexp /8z and β= ( − )z Jexp /41 . As
usual, the partition function is in the thermodynamic limit → ∞N
solely determined by the largest eigenvalue of the transfer matrix
W given by Eq. (6). By inspection, four out of eight transfer-matrix
eigenvalues equal zero (λ λ λ λ= = = = 05 6 7 8 ), because the second,
fifth and seventh (third, sixth and eighth) rows are linearly de-
pendent. The other four eigenvalues can be found by solving two
quadratic equations
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The remaining four eigenvalues of the transfer matrix (6) can be
therefore acquired by solving two quadratic equations (7)
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In thermodynamic limit → ∞N , the Helmholtz free energy per
unit cell is determined just by the largest transfer-matrix eigen-
value λ λ= +max
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After substituting the largest transfer-matrix eigenvalue (9) into
Eq. (11) and straightforward algebraic manipulations one obtains
an explicit form of the Helmholtz free energy
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which is expressed in terms of the newly defined functions g1–g4
given by
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Now, let us calculate pair correlation functions between two
spins from the same Heisenberg triangle. Both different spatial
components of the pair correlation function between two spins
from the same Heisenberg triangle can be calculated by differ-
entiating the Helmholtz free energy (12) with respect to the
coupling constant Jz or Jx. This procedure yields for the respective
spatial components of the pair correlation function the following
simple expressions
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The z-component of the pair correlation function between two
spins from the neighboring Heisenberg triangles can in turn be
calculated by differentiating the Helmholtz free energy (11) with
respect to the coupling constant J1
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whereas the functions g7–g9 are defined as
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At this stage, one may employ two spatial components of the
pair correlation function (14) and (15) between the spins from the
same Heisenberg triangle in order to calculate the concurrence
[33]
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and the Bell function [34]
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{ }= + ( )B C C C8 max ; 2 , 20xx zz xx
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which may serve as a measure of bipartite entanglement and
quantum non-locality at zero as well as non-zero temperature. The
Heisenberg spins from the same triangular unit display a thermal
entanglement just if the concurrence is greater than zero, i.e.

>C 0, otherwise they become disentangled. On the other hand, the
violation of the Bell inequality ≤B 2 can be used in order to prove
a non-local character of quantum correlations. The obtained exact
results for the thermal entanglement will be confronted with the
ones for non-locality, because the entanglement and non-locality
capture closely related yet independent features of quantum cor-
relations [34,36].
Fig. 2. The ground-state phase diagram of the spin-1/2 Ising–Heisenberg three-leg
tube in the −J Jx z plane. The numbers quoted in square brackets determine the
total spin and its z-component on two consecutive Heisenberg triangles
[ ]− −T T T T, ; ,i i

z i i
z2 1 2 1 2 2 .
3. Results and discussion

Let us proceed to a discussion of the most interesting results for
the spin-1/2 Ising–Heisenberg three-leg tube by considering the
particular case with the antiferromagnetic inter-triangle interac-
tion >J 01 , which will henceforth serve as an energy unit =J 11
(the Boltzmann's constant is also set to unity =k 1B for easy no-
tation). It should be mentioned that another particular case with
the ferromagnetic inter-triangle interaction <J 01 behaves quite
analogously, because the spin states on each second Heisenberg
triangle are merely inverted under the transformation → −J J1 1.

3.1. Ground state

A diagonal form of the Hamiltonian (4) can be straightfor-
wardly used in order to obtain all possible ground states, since the
lowest-energy eigenstate of the cell Hamiltonian (4) can be readily
extended to the whole spin-1/2 Ising–Heisenberg three-leg tube.
Consequently, the ground state of the spin-1/2 Ising–Heisenberg
tube can be written as a tensor product over the lowest-energy
eigenstate of the cell Hamiltonian (4). One finds by inspection just
three different ground states, namely, the classical anti-
ferromagnetic phase (CAF)

∏| 〉 = | ↑ ↑ ↑ 〉 ⊗ | ↓ ↓ ↓ 〉
( )=

−CAF ,
21j

N

j j
1

/2

2 1 2

the symmetric quantum trimerized phase (SQT)

( )

( )

∏| 〉 = | ↓ ↑ ↑ 〉 + | ↑ ↓ ↑ 〉 + | ↑ ↑ ↓ 〉

⊗ | ↓ ↓ ↑ 〉 + | ↑ ↓ ↓ 〉 + | ↓ ↑ ↓ 〉

( )

=
−SQT

1
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1
3

,
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and the macroscopically degenerate chiral antiferromagnetic
phase (DCA)

∏

| 〉

=
| ↓ ↑ ↑ 〉 + | ↑ ↓ ↑ 〉 + | ↑ ↑ ↓ 〉

| ↓ ↑ ↑ 〉 + | ↑ ↓ ↑ 〉 + | ↑ ↑ ↓ 〉

⊗
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Owing to the time-reversal symmetry, the alternative
representation of the ground states CAF, SQT and DCA can be ob-
tained from Eqs. (21)–(23) by inter-changing the eigenkets on odd
and even Heisenberg triangles, respectively. Hence, it follows that
the ground states CAF and SQT are two-fold degenerate in contrast
to the ground state DCA, which is ×2 2N degenerate due to the
time-reversal symmetry and two chiral degrees of freedom on
each Heisenberg spin triangle. The spin arrangement inherent to
the three available ground states is consistent with the following
asymptotic values of the pair correlation functions as calculated
from Eqs. (14), (15) and (17) in a zero-temperature limit

= = = −

= = − = −

= − = − = − ( )

C C C

C C C

C C C

CAF: 0, , ;

SQT: , , ;

DCA: , , . 24

xx zz zz

xx zz zz

xx zz zz

11 11
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4 12
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11
1
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1
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1
36

11
1

12 11
1

12 12
1

36

The ground-state phase diagram involving all three available
ground states is depicted in Fig. 2. The CAF phase becomes the
ground state in a parameter space delimited by the conditions

< +J J2z x and < −J J2 /2z x , which are consistent with the ferro-
magnetic Heisenberg interaction ( <J 0z ) or the sufficiently weak
antiferromagnetic Heisenberg interaction ( <J 2z ). If the condi-
tions >J 0x and > −J J2 /2z x are met, however, the spin frustra-
tion arising out from the stronger antiferromagnetic Heisenberg
interaction gives rise to the macroscopically degenerate DCA
ground state with two (right- or left-hand-side) chiral degrees of
freedom on each Heisenberg triangle. As long as the conditions

<J 0x and > +J J2z x are fulfilled, the SQT phase with a regular
alternation of the symmetric quantum superposition of three up-
up-down and down-down-up states on odd and even triangles (or
vice versa) becomes the relevant ground state.

3.2. Correlation functions

To gain an overall insight into a character of spin arrangements
emerging within the individual ground states, let us explore in
detail temperature dependences of all calculated pair correlation
functions. The pair correlation functions are plotted against tem-
perature in Fig. 3(a)–(c) for three different sets of the interaction
parameters, which drive the investigated system towards the CAF,
SQT and DCA ground states, respectively. It is quite clear from
Fig. 3(a) that z-components of the spins from the neighboring
Heisenberg triangles are perfectly anticorrelated at zero



Fig. 3. The pair correlation functions as a function of temperature for the coupling
constants supporting three different ground states: (a) Jx¼1, Jz¼1 (CAF phase);
(b) = −J 2x , Jz¼2 (SQT phase); (c) Jx¼2, Jz¼2 (DCA phase).
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temperature, whereas a relative strength of the antiferromagnetic
correlation gradually decreases with increasing temperature. In-
terestingly, the longitudinal correlation function between the
spins from the same Heisenberg triangle shows a peculiar cross-
over at a so-called frustration temperature Tf, at which z-compo-
nents of the spins become completely uncorrelated (i.e. the re-
levant correlation function equals zero). The longitudinal
correlation between the spins from the same Heisenberg triangle
would suggest that the z-components of the spins are ferro-
magnetically correlated below the frustration temperature ( <T Tf )
and antiferromagnetically correlated above it ( >T Tf ). The trans-
verse correlation function between the spins from the same Hei-
senberg triangle is zero at absolute zero temperature due to a
classical character of the CAF ground state, but it implies anti-
ferromagnetic (ferromagnetic) correlation at non-zero tempera-
tures provided that the x-component of the Heisenberg coupling is
antiferromagnetic (ferromagnetic).

Fig. 3 (b) demonstrates thermal variations of the correlation
functions, which are quite typical for the SQT ground state. The
correlation function between the spins from the same Heisenberg
triangle serves in evidence of the antiferromagnetic (ferromag-
netic) correlation in a longitudinal (transverse) direction, whereas
a relative strength of the ferromagnetic transverse correlation is
slightly stronger than that of the antiferromagnetic longitudinal
correlation. Furthermore, the z-components of the spins from the
neighboring Heisenberg triangles are antiferromagnetically cor-
related within the SQT phase.

Last but not least, the correlation functions plotted in Fig. 3
(c) illustrate typical temperature dependences for the DCA ground
state. As one can see, the longitudinal and transverse correlation
functions between the spins from the same Heisenberg triangle
are antiferromagnetic. While the longitudinal and transverse cor-
relation are of equal strength at zero temperature, the transverse
correlation overwhelms over the longitudinal one at non-zero
temperatures. It is noteworthy that the z-components of the spins
from the neighboring Heisenberg triangles are always anti-
ferromagnetically correlated when the investigated spin system
starts from the DCA ground state.

3.3. Spin frustration

It is obvious from previous discussions that the SQT and DCA
ground states have frustrated character in contrast to the unfru-
strated CAF ground state. According to the frustration concept de-
veloped by Toulouse [38], the spin system is said to be geome-
trically frustrated if a product of signs of the exchange couplings
along an elementary plaquette becomes negative. Analogously, the
product of signs of the pair correlation functions along an ele-
mentary plaquette can be used as another useful criterion for
testing whether or not a spin system is frustrated at finite tem-
peratures [31]. Hence, the antiferromagnetic (negative) correlation
function between z-components of the spins from the same Hei-
senberg triangle indeed verifies the frustrated character of the SQT
and DCA phases at non-zero temperatures [see Fig. 3(b) and (c)]. On
the other hand, the longitudinal correlation function between the
spins from the same Heisenberg triangle shown in Fig. 3(a) changes
its sign from positive (at lower temperatures) to negative (at higher
temperatures), which confirms an outstanding thermally activated
spin frustration above the unfrustrated CAF ground state on as-
sumption that the antiferromagnetic intra-triangle coupling >J 0z
is considered.

With this in mind, it might be quite interesting to investigate
how the thermally activated spin frustration above the unfrustrated
CAF ground state depends on a relative strength of the Heisenberg
intra-triangle interaction. For this purpose, we have depicted in
Fig. 4 typical dependences of the frustration temperature Tf on the
transverse component Jx of the Heisenberg coupling for a few fixed
values of its longitudinal component Jz. It is worthwhile to recall
that z-components of the spins from the same Heisenberg triangle
are ferromagnetically (antiferromagnetically) correlated below
(above) the frustration temperature Tf. In this regard, the spin-1/2
Ising–Heisenberg three-leg tube is free of frustration inside of the
region bounded from above by the line of frustration temperatures,



Fig. 4. The frustration temperature Tf as a function of the transverse component of
the Heisenberg coupling Jx for a few fixed values of its longitudinal component Jz.

Fig. 5. (a) A reentrant behavior of the frustrated temperature Tf in a vicinity of the
ground-state phase boundary CAF-SQT for the particular case Jz¼1.0;
(b) temperature dependences of the correlation functions for the parameter set

= −J 1.002x and Jz¼1.0 serving in evidence of the reentrant behavior (a thin
dotted line at zero is guide for eyes only).
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while it becomes frustrated outside of this region. It is evident from
Fig. 4 that the unfrustrated region gradually diminishes upon in-
creasing of the longitudinal component of the Heisenberg coupling
until it completely disappears for any ≥J 2z . This is in agreement
with the absence of the unfrustrated CAF phase in the parameter
region ≥J 2z . It should be pointed out, moreover, that the upper-
and lower-edge boundaries of the unfrustrated region exactly co-
incide at zero temperature with the ground-state boundaries CAF-
DCA and CAF-SQT, respectively (cf. Fig. 4 with Fig. 2).

Another interesting point to observe from Fig. 4 is that the
frustration temperature exhibits a notable reentrant behavior near
its lower edge closely connected to the ground-state boundary
between the CAF and SQT phases. To clarify this issue in a more
detail, we have plotted in Fig. 5 typical dependence of the frus-
tration temperature in a close neighborhood of its lower-edge
boundary [Fig. 5(a)] along with the corresponding thermal varia-
tions of the correlation functions [Fig. 5(b)]. If the transverse
component of the Heisenberg interaction is selected sufficiently
close but slightly below the ground-state boundary CAF-SQT, then,
the longitudinal correlation function between the spins from the
same Heisenberg triangle actually shows a weak ferromagnetic
correlation within a relatively narrow range of moderate tem-
peratures and antiferromagnetic correlation out of this tempera-
ture range.

3.4. Thermal entanglement

The concurrence, as calculated from Eq. (19), represents a fea-
sible measure of bipartite quantum entanglement at zero as well
as non-zero temperatures. Although the absence of quantum
correlations in the CAF ground state could be anticipated on the
grounds of the fully classical character of this phase, it is some-
what more surprising that the concurrence equals zero also within
the DCA ground state. According to this, the SQT phase is the only
ground state for which the calculated concurrence =C 1/3 at zero
temperature indicates the substantial but not full quantum en-
tanglement. To clarify the effect of temperature upon the bipartite
entanglement, we have plotted in Fig. 6 the concurrence against
temperature for two different values of the longitudinal compo-
nent Jz of the Heisenberg intra-triangle coupling and several values
of its transverse component Jx. In agreement with the general
expectations, thermal fluctuations gradually destroy the quantum
entanglement, i.e. the concurrence generally decreases upon in-
creasing temperature until it finally disappears above a certain
temperature referred to as the threshold temperature Tt. Apart
from this standard dependence, one may also found a peculiar
reentrant behavior of the concurrence, which is illustrated in Fig. 6
(b) on the particular example with Jz¼1.8 and = −J 0.19x . Under
this circumstance, the concurrence evolves from zero just at a
certain lower threshold temperature, then it shows a peculiar
thermally induced increase followed by a successive thermally
induced decrease until it completely vanishes at an upper
threshold temperature.

To gain an overall insight into the entangled part of the para-
meter region, we have depicted in Fig. 7 the threshold tempera-
ture as a function of the transverse component Jx of the Heisen-
berg intra-triangle coupling for several fixed values of its long-
itudinal component Jz. The spin-1/2 Ising–Heisenberg tube is en-
tangled inside of the parameter region bounded from above by
displayed lines of the threshold temperature, where the con-
currence as a measure of the thermal entanglement is non-zero. If
the longitudinal component of the antiferromagnetic Heisenberg
coupling is sufficiently strong ≥J 2z , then, the threshold tem-
perature monotonically decreases with increasing its transverse
component Jx until it tends to zero at Jx¼0. On the other hand, the
dependence of the threshold temperature terminates for <J 2z at
the ground-state phase boundary between the SQT and CAF pha-
ses at = −J J 2x z . Moreover, it can be observed from Fig. 7 that the



Fig. 6. Thermal variations of the concurrence for several values of the transverse
component of the Heisenberg intra-triangle coupling Jx and two different values of
its longitudinal component: (a) Jz¼2.0; (b) Jz¼1.8.

Fig. 7. The threshold temperature Tt as a function of the transverse component of
the Heisenberg coupling Jx for a few fixed values of its longitudinal component Jz.
The inset shows a detail from the reentrant region for the particular case Jx¼1.8.

Fig. 8. The dependence of threshold (solid lines) and frustration (broken lines)
temperatures on the transverse component of the Heisenberg intra-triangle cou-
pling Jx for several fixed values of its longitudinal component Jz. The panel
(a) shows reentrant behavior of the threshold temperature and the panel
(b) reentrant behavior of the frustration temperature.
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threshold temperature shows the most striking dependence with a
pronounced reentrant region when the longitudinal component of
the Heisenberg intra-triangle interaction is close enough but
slightly below ⪅J 2z .

3.5. Frustration vs. entanglement

At this stage, it might be of particular interest to investigate a
mutual interplay between the thermally activated spin frustration
and entanglement, which do not bear at first sight any direct re-
lation. To this end, we have plotted in Fig. 8 the threshold and
frustration temperature against the transverse component of the
Heisenberg intra-triangle coupling Jx for several fixed values of its
longitudinal component Jz. It is quite apparent from this compar-
ison that the threshold and frustration temperatures coincide at
low enough temperatures, because they both converge to the
identical zero-temperature asymptotic limit though they show
completely different behavior at higher temperatures. It can be
also understood from Fig. 8 that the thermal entanglement occurs
just outside of the parameter region bounded by the line of frus-
tration temperatures, which means that the spin frustration is in
the spin-1/2 Ising–Heisenberg tube indispensable for a presence of
the thermal entanglement. Another interesting point is that the
reentrance in the threshold temperatures gives rise to the thermal



Fig. 9. (a) The Bell function versus temperature for three different Heisenberg in-
tra-triangle interactions corresponding to three available ground states:

= =J J 1.0z x (CAF phase), = − =J J 2.0z x (SQT phase), = =J J 2.0z x (DCA phase);
(b) thermal variations of absolute values of the longitudinal and transverse pair
correlation function between the spins from the same Heisenberg triangle for the
parameter set = =J J 1.0z x (CAF phase).

Fig. 10. Temperature variations of the specific heat (per one spin) for the fixed
value of the longitudinal component of the Heisenberg coupling Jz¼1 and several
values of its transverse component Jx. The selected coupling constants Jx are con-
sistent with the following ground states: (a) SQT phase; (b) CAF phase; (c) DCA
phase.
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entanglement above the unfrustrated parameter space for ⪅J 2z
[see Fig. 8(a)], while the reentrance in the frustration temperatures
makes possible to detect the unfrustrated region above the en-
tangled parameter space [see Fig. 8(b)]. Both types of reentrances
are apparently antagonistic and cannot emerge simultaneously.

3.6. Quantum non-locality

Next, it could be quite interesting to answer the question
whether or not the spin-1/2 Ising–Heisenberg tube may violate
the Bell inequality, because the entanglement and non-locality
capture closely related but independent features of quantum cor-
relations. A comprehensive analysis reveals that all three available
ground state do not violate the Bell inequality, since the calculated
value of the Bell function never exceeds the largest value =B 2
allowed for classical correlations. To support this statement, we
have depicted in Fig. 9(a) typical temperature variations of the Bell
function for three different sets of the Heisenberg intra-triangle
interaction, which drive the investigated model to the CAF, SQT
and DCA ground states, respectively. Altogether, it could be con-
cluded that quantum correlations are in the spin-1/2 Ising–Hei-
senberg tube strictly local in spite of the fact that the thermal
entanglement is evidently present within the SQT ground state.
The cuspate dip of the Bell function at the temperature ≈T 0.55 of
the particular case with the CAF ground states thus represents the
most striking feature of the displayed dependences. A presence of
this kind of singularity can be attributed to a crossing of absolute
values of the transverse and longitudinal pair correlation function
between the spins from the same Heisenberg triangle, which in-
dicates according to Eq. (20) two different analytic prescriptions
below and above a relevant crossing point [see Fig. 9(b)].



Fig. 11. (a) The semi-logarithmic plot for the temperature dependence of the
specific heat (per one spin) exactly at the ground-state phase boundary CAF-DCA
( = =J J2.0; 1.0x z ) and just below it ( = =J J1.9; 1.0x z ); (b) the low-temperature
peak of the specific heat for the case with Jz¼1.0 and Jx¼1.9 in a log-log scale;
(c) the temperature dependence of the entropy (per one triangle) exactly at the
ground-state phase boundary CAF-DCA ( = =J J2.0; 1.0x z ) and just below it
( = =J J1.9; 1.0x z ).
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3.7. Specific heat and entropy

The substantial thermal variations of the correlation functions
near the ground-state phase boundaries may manifest themselves
also in unusual temperature dependences of basic thermodynamic
quantities, so let us explore in the following typical thermal var-
iations of the zero-field specific heat. It can be seen from Fig. 10
(a) that the specific heat can exhibit a peculiar double-peak tem-
perature dependence when the SQT phase constitutes the ground
state, whereas the low-temperature peak predominantly comes
from thermally induced breakdown of the longitudinal correlation
between the spins from the neighboring triangles. Note further-
more that the low-temperature peak gradually merges with the
round high-temperature maximum, which shifts to lower tem-
peratures when the spin system approaches the ground-state
phase boundary between the SQT and CAF phases (at = −J 1x
when Jz¼1 is fixed).

Contrary to this, the specific heat shows a more common
temperature dependence with a single maximum in a majority of
the parameter space, which corresponds to the CAF ground state
[Fig. 10(b)]. The only notable exception from this rule is when the
Heisenberg intra-triangle coupling drives the spin system suffi-
ciently close to the ground-state phase boundary with the DCA
phase at Jx¼2.0 assuming the fixed value of Jz¼1.0 (see the sub-
sequent paragraph). Last but not least, one recovers the more
striking double-peak temperature dependence of the specific heat
on assumption that the DCA phase constitutes the ground state
[Fig. 10(c)]. Under this condition, the low-temperature peak pre-
dominantly comes from the thermally assisted breakdown of the
longitudinal correlation between the spins from the neighboring
triangles.

Let us turn back to the most spectacular temperature depen-
dence of the specific heat, which involves three separate peaks as
displayed in Fig. 11(a) and (b). The triple-peak thermal depen-
dence of the zero-field specific heat can be found when the Hei-
senberg intra-triangle coupling drives the spin-1/2 Ising–Heisen-
berg tube towards the CAF ground state but still keeps it in a close
vicinity of the phase boundary with the DCA phase (at Jx¼2.0 for
Jz¼1.0). While thermal excitations of physically different origin are
responsible for an existence of the high-temperature maximum at

≈T 1.0, the round maximum at moderate temperatures ≈T 0.25
relates to a gradual decline of the longitudinal and transverse
correlations between the spins from the same triangle. The most
surprising is of course a presence of the sizable low-temperature
peak, which could be at first sight easily confused with a tem-
perature-driven first-order phase transition. The sharp and very
narrow low-temperature peak, which emerges around the tem-
perature ≈T 0.072 by considering the particular case with Jx¼1.9
and Jz¼1.0, can be ascribed to massive thermal excitations from
the two-fold degenerate CAF ground state to the macroscopically
degenerate DCA excited state. As a matter of fact, the locus of the
sharp low-temperature peak is in a good concordance with the
formula

=
− −

( )T
J J4 2

ln 4
, 25p

z x

which follows from a direct comparison of the Helmholtz free
energies of the CAF and DCA phases provided that thermal varia-
tions of the internal energy and entropy are simply neglected.
Thus, it could be concluded that the sharp low-temperature peak
of the specific heat appears due to a high entropy gain, which
originates from the chiral degrees of freedom of the DCA phase
lying in energy just slightly above the doubly degenerate CAF
ground state. To support this statement, we have plotted in Fig. 11
(c) the relevant thermal variations of the entropy, which provides
a convincing evidence for an abrupt but still continuous change of
the entropy from almost zero to ln 2 associated with the vigorous
thermal excitations from the CAF phase to the DCA phase. The
abrupt entropy change can be detected at the temperature, which
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is in accordance with the position of the sharp low-temperature
peak of the specific heat given by the formula (25).
4. Conclusion

In the present work, we have exactly solved the spin-1/2 Ising–
Heisenberg three-leg tube by taking advantage of the local con-
servation of the total spin on each Heisenberg spin triangle and
the classical transfer-matrix method. The elaborated rigorous
procedure has enabled us to derive exact results for the ground-
state phase diagram, basic thermodynamic quantities and several
pair correlation functions, which were subsequently employed for
a calculation of the concurrence and Bell function. The latter two
quantities were used in order to quantify thermal entanglement
and non-locality, which are related to quantum correlations be-
tween two spins coupled by the Heisenberg intra-triangle inter-
action. While none of three available ground states violates the
Bell inequality, the SQT phase with a regular alternation of the
symmetric quantum superposition of up-up-down and down-
down-up on odd and even triangles (or vice versa) does exhibit
the thermal entanglement.

It has been demonstrated that the SQT and DCA ground states
are naturally frustrated unlike the unfrustrated CAF ground state,
above which the so-called thermally activated spin frustration can
develop provided that the antiferromagnetic intra-triangle inter-
action >J 0z is considered. We have rigorously calculated the
frustration temperature delimiting the unfrustrated region from
the frustrated one, which was subsequently compared with the
threshold temperature of a disappearance of the thermal en-
tanglement. It has been verified that the frustration and threshold
temperatures coincide at sufficiently low temperatures though
they can be very different at higher temperatures. Moreover, it
turns out that the spin-1/2 Ising–Heisenberg three-leg tube is
thermally entangled just in the frustrated region, which implies
that the frustration represents indispensable ground for a pre-
sence of the thermal entanglement in this spin system. Note fur-
thermore that the lines of threshold and frustration temperatures
may display a reentrant phenomenon though both reentrances are
antagonistic and cannot appear simultaneously. Hence, the famous
dictum that quantum correlations are gradually suppressed
through thermal fluctuations is not of general validity, because
thermal fluctuations can alternatively act against classical spin
arrangements and thus leaving more space to an emergence of the
thermal entanglement above a classical ground state.

The most interesting finding stemming from our study cer-
tainly represents an extraordinary diversity of temperature de-
pendences of the zero-field specific heat, which may show up to
three separate local maxima. The most remarkable temperature
variations of the specific heat involve a sharp low-temperature
peak extended in a very narrow temperature range, which is quite
reminiscent of a temperature-driven first-order phase transition.
However, it has been convincingly evidenced that this anomalous
peak relates to massive thermal excitations from the doubly de-
generate CAF phase to the macroscopically degenerate DCA phase
with two chiral degrees of freedom per each Heisenberg spin tri-
angle. To the best of our knowledge, the spin-1/2 Ising–Heisenberg
three-leg tube is just the second example of the exactly solved
model with such an intriguing feature in addition to a hybrid spin-
electron double-tetrahedral chain [39].

Finally, it should be also mentioned that the rigorous procedure
elaborated in the present work can be straightforwardly adapted
to account for the non-zero external magnetic field as well. Our
future work will continue in this direction.
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