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We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate
sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped pla-
quette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as
the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain.
We analyze the effects of non-conserving magnetization as well as the effects of the appearance of neg-
ative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromag-
netic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize
the ‘‘half-fire-half-ice” state introduced in reference Yin et al. (2015). The corresponding zero-
temperature ground state phase diagrams are presented.
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1. Introduction

In the last decade, intensive investigations have been focused
on the effects of magnetic anisotropy in metal complexes and ada-
toms. The anisotropy arises due to the interplay of the spin-orbit
coupling on the magnetic ion sites and the crystal field from neigh-
boring atoms and ligands [1–3]. This phenomenon can affect the
magnetothermal properties of the system essentially [4,49]. One
of the most unusual features of these joint interactions is the neg-
ative Landé g-factor which occurs in some complexes [5–7]. The
appearance of the negative and positive g-factors in the same sys-
tem leads to a series of peculiar features even in the simplest case
of Ising chain with alternating g-factors. It was demonstrated in
Ref. [[7]] that the novel frustration can be arisen in ferromagnets
with non-uniform g-factors with different signs. It was also argued
in the paper that the aforementioned novel frustrated state, which
has been given the name ‘‘half-fire-half-ice” by the authors can be
realized in copper-iridium oxides such as Sr3CuIrO6 [8,9]. Also, the
magnetic centers in some compounds of the transition-metal ions
with unquenched angular momentum and relatively strong spin-
orbit coupling could posses rather large Landé g factors, essentially
different from the corresponding g-factors for free ion. One can
mention, for instance, Fe3þ ion with a Landé g factor g � 2:8, as
well as Co2þ ion with g � 6:0 [1–3].
Large anisotropy can be obtained combining almost isotropic
transition-metal ion with highly anisotropic rare-earth ions
increasing the difference of the Landé g factors in oligonuclear com-
plexes. In it known that the Dy3þ ion has roughly g � 20. A series of
magnets compounds with this ion have been recently investigated
revealing some intriguing properties [10–12]. These unusual large g
factors must correlate with a strong anisotropy in the exchange
interaction as well [1,13,14]. One can mention the heterodinuclear

Cr3þ-Yb3þ [13] complex as an example of the molecular magnet
with highly anisotropic exchange interaction in z direction.

A recent investigation of the magnetism of a Co5 complex brings
evidence of negative g factors for some Co2þ ions [15]. Surely, this
study stimulates a deeper understanding of the origin of negative g
factors and their implications for magnetic properties of some
compounds. The inversion of the sign of the g factors can occur
in the molecular magnets as well as in the single chain magnet
and other materials [7]. For instance, in Ref. [[6]] combining ligand
field and density functional theory (DFT) analysis of the magnetic
anisotropy in cyanide-bridged single-molecule magnets (oligonu-
clear complexes, FeIII—CN—MII (M = Cu, Ni)) has been performed.
Particularly, it was found that the g-factor of the Fe3þ ion is isotro-
pic and negative, gFe ¼ �1:72, while for the and Cu2þ ion it is pos-
itive and has small axial anisotropy, gCux ¼ gCuy ¼ 2:18; gCuz ¼ 2. It
was also shown recently using the Ab initio calculation that the
product of the diagonal components of the Lande g factors satisfy
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for some lanthanide and transition metal complexes gxgygz < 0. It
is worth mentioning that the negative sign of the product of Landé
g-factor components has been known for some transitional metals
and lanthanide complexes since 60s [16–18].

Moreover, there are compounds of single-chain magnet (SCM)
type, for example ½ðCuLÞ2DyMoðCNÞ8� � 2CH3CN �H2O [10,11] which
are an interesting magnetic material exhibiting different Landé g-
factors for different magnetic ions and describing within the
Ising-Heisenberg spin chain model. These models, in contrast to
the Ising-Heisenberg models with uniform g-factors demonstrate
zero temperature magnetization curve with an unusual non-
plateau behavior within the same eigenstate [4,49,12,19]. The the-
oretical model of the aforementioned compound can be solved
exactly by means of the generalized classical transfer matrix
method [12]. The models of the Ising-Heisenberg type imply the
lattice consisting of small quantum spin clusters interacting with
each other through the intermediate Ising spin [49,12,19–42].
Therefore, the eigenstates of the whole system are direct products
of the eigenstates for the quantum spin clusters. The zero-
temperature magnetization curve of such models usually contains
the regions corresponding to certain eigenstates with the sharp
transitions between them. These regions are horizontal (magneti-
zation plateaus) in case if the magnetic moment is a good quantum
number and each eigenstate possesses fixed value of it. This is the
case for conserving magentization operator. However, for the dif-
ferent g-factors for different spins within the same cluster the
magnetization operator does not commute with the Hamiltonian.
As a result the magnetic moment is not a good quantum number
and the magnitude of magnetization could vary within the same
eigenstate under the change of the magnetic field. Thus, the devi-
ations form the horizontal line is occur in the magnetization curve
(quasi-plateaus) [4,49,12,19]. However, the deviation of the mag-
netization curve parts from the horizontal line due to difference
in g-factors of the quantum spin from the three-spin linear cluster
in the ½ðCuLÞ2DyMoðCNÞ8� � 2CH3CN �H2O SCM is merely visible by
eyes, as the difference of the values of g-factors is rather small
[12]. Almost the same effect has been observed but even quantita-
tively less pronounced in the approximate model of the SCM, the F-
F-AF-AF spin chain compoundCuð3� chloropyridineÞ2ðN3Þ2 [19].

In the past decades, a so-called diamond chain magnetic struc-
ture and its variants have been intensively studied. Since the
experimental discovery that the Cu2þ ion in the well-known min-
eral azurite, Cu3ðCO3Þ2ðOHÞ2, are arranged along the b-plane in a
diamond chain manner and that the interchain coupling is small
enough [43], the issue has been receiving permanent attention
form the theoreticians and experimentalists [44–47]. Due to its
symmetric properties and relative simplicity the diamond chain
is also the most popular one-dimensional structure for the theoret-
ical research in the field of the Ising-Heisenberg spin lattices. Var-
ious physical effects and issues have been considered in the
context of the corresponding model on the diamond chain or its
modification, magnetization plateaus and zero-temperature phase
diagrams, higher spin, mixed spins, four-spin interaction, magne-
tocaloric effect, entanglement and quantum state transfer, just to
mention few of them [4,49,21,23,26,28,29,31–40].

In the present paper we consider the S = 1/2 Ising-Heisenberg
model on the diamond chain with non-conserved magtnetization
due to non-uniform g-factors as well as due to XY-anisotropy.
We describe the eigenstates of the chain for the case of four differ-
ent g-factors. Particularly, we are interested in the zero-
temperature effect induced by the appearance of the negative g-
factors(s). As a further development of the ideas of the Ref. [7]
we preset the detailed description of the ‘‘fire-and-ice” configura-
tion which in our case are more divers. We analyze the Ising case
as well as the whole Ising-Heisenberg model.
The paper is organized as follows. In Section 2 we present the
model under consideration and make a general statements about
the non-commutativity of the magnetization and the Hamiltonian,
its origin and basis consequences. In Section 3 we describe in
details the ground states of the model and its Ising limit. In Sec-
tion 4 we study the effect of the negative g-factor for the part of
the spins from the unit cell. We found various frustrated states
of the ‘‘fire-and-ice” type introduced in Ref. [7]. The Section 5 con-
tains a conclusion.

2. The model

Let us consider the S ¼ 1=2 XYZ-Ising diamond chain describing
by the following Hamiltonian (See Fig. 1)

H ¼
XN
j¼1

Hj � Bgjrj
� �

; ð1Þ

where Hj is given by

Hj ¼ J 1þ cð ÞSx
j;1S

x
j;2 þ 1� cð ÞSy

j;1S
y
j;2

n o
þ DSz

j;1S
z
j;2 þ KðSz

j;1 þ Sz
j;2Þ

� ðrj þ rjþ1Þ � Bðg1S
z
j;1 þ g2S

z
j;2Þ; ð2Þ

the g-factors of the Ising intermediate spins, rj are supposed to be
alternating,

gj ¼
g3; j is odd
g4; j is even:

�
ð3Þ

Thus, the diamond-chain is composed of the vertical S ¼ 1=2
XYZ-dimers with quantum spin operators Sj;1 and Sj;2. These dimers
are alternating with Ising spins rj taking �1=2 values. The Ising
spins interact with the z-component of their left and right neigh-
boring S-operator with exchange interaction K. The quantum spins
belonging to the same dimer are also supposed to have different
Landé g-factors, denoted by g1 and g2. Therefore, the Hamiltonian
of the whole system is the sum of the mutually commutative block
Hamiltonians Hj. The important feature of the Hamiltonian H is its
the non-commutativity with the magnetization operator,

M z ¼ 1
N

XN
j¼1

g1S
z
j;1 þ g2S

z
j;2

� �
þ 1
N

XN=2
j¼1

g3r2j�1 þ g4r2j
� �

; ð4Þ

H; M z½ � – 0: ð5Þ
The origin of these non-commutativity is the difference in g-

factors for the quantum spins and XY-anisotropy,

Hj; g1S
z
j;1 þ g2S

z
j;2

h i
¼ �ic g1 þ g2ð Þ Sx

j;1S
y
j;2 þ Sy

j;1S
x
j;2

� �
þ iJ g1 � g2ð Þ Sx

j;1S
y
j;2 � Sy

j;1S
x
j;2

� �
: ð6Þ

As one can see, there are two sources of the non-commutativity,
the XY-anisotropy c and difference of the g-factors ðg1 � g2Þ [4].
This non-commutativity leads to a non-linear magnetic field
dependence of the spectrum of the model and to the phenomena
of quasi-plateau [4,12]. The quasi-plateau actually means the
eigenstate with an explicit magnetic field dependance, even at zero
temperature. The part of the magnetization curve corresponding to
the eigenstate with an explicit magnetic field dependance demon-
strates the monotonous grow of the magnetization with the
increasing the magnetic field magnitude, instead of being constant
(plateau) what takes the place in a conventional case when the
finite spin cluster has conserving magnetization operator. Non-
commutativity of the magnetization operator and Hamiltonian
leads to another unusual phenomena, the reentrant transitions
due to non-linear magnetic field dependence of the spectrum.



Fig. 1. The Ising-Heisenberg diamond-chain. Solid lines represent the quantum
interactions, while the dashed one stand for the interaction involving only z-
components of the spins. Here we also consider the g-factors of the quantum spins
Sj;1 and Sj;2 to be g1 and g2 respectively, and rj and rjþ1 to be g3 and g4.
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The sequence of the quantum phase transitions at zero tempera-
ture with the monotonous changing of the magnetic field for a
finite spin cluster is determined by a level crossing. For the linear
in magnetic field spectrum any two levels can have no more than
one crossing and thus each eigenstate can appear only once in
the magnetization curve. In case of non-linear spectrum two levels
can have more than one crossing which can lead to a multiple
appearance of the same ground state in the magnetization curve.

As the lattice has six spins in the translational invariant unit
cell, two r spins and two vertical dimers, the total saturation mag-
netization per unit cell (note that N is the number of block which is
supposed to be even, while the number of the unit cell with six
spins is N=2) is

Msat ¼ g1 þ g2 þ
1
2

g3 þ g4ð Þ
� �

: ð7Þ
3. Ground states

The eigenstates of the chain are composed of a direct product of
the eigenstates of each block. The Ising interaction between the
vertical dimers makes the propagation of any type of spin excita-
tion from block to block impossible. That is why, we can describe
all possible ground states of the system exactly in term of few con-
figuration. However, the Hamiltonian breaks the translational
symmetry of the diamond-chain by the doubling of the block lead-
ing to the six-spin unit cell. When g3 ¼ g4 the unit cell coincides
with the three-site triangular block of the diamond chain.

3.1. Quantum dimer eigenstates

Let us start with the description of the four eigenstates of the
isolated quantum spin dimer (Eq. (2)), which are the building
blocks for the construction of the ground states for the whole
chain. After diagonalization of the block Hamiltonian (2), we obtain
four eigenvalues. The first couple of eigenvalues e1;2 can be
expressed as follows:

e1;2 rj;rjþ1
� � ¼ �D

4
� G; ð8Þ

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðg1�g2Þ2þJ2

p
2 . The corresponding eigenstates are indepen-

dent on the value of the neighboring r-spins:

jW1;2i ¼ j "#i þ c�j #"ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2�

p ; ð9Þ

with c� ¼ Bðg1�g2Þ�2G
J .

This eigenstates in the limit of uniform g-factors transform to
the singlet state and Sz ¼ 0 component of the triplet state. That
is why the vertical dimer decouples from its neighborhood.

The second set of eigenvalues e3;4 of the Hamiltonian (2) are

e3;4 rj;rjþ1
� � ¼ D

4
� Frj ;rjþ1

; ð10Þ
where Frj ;rjþ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðg1þg2Þ�2Kðrjþrjþ1Þ½ �2þJ2c2

q
2 . The two eigenstates associ-

ated with the e3;4 eigenvalues are dependent on their left and right
r spins:

jW3;4i ¼
j ""i þ b�

rj ;rjþ1
j ##i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb�

rj ;rjþ1
Þ2

r ; ð11Þ

with b�
rj ;rjþ1

¼ Bðg1þg2Þ�2Kðrjþrjþ1Þ�2Frj ;rjþ1
Jc .

Thus, here we have three different eigenstates for a vertical
quantum dimer depending on the configuration of neighboring r
spins: jW�

3;4i corresponding to rj ¼ rjþ1 ¼ �1=2 and jW0
3;4i corre-

sponding to rj ¼ �rjþ1 which differ from each other only by the
form of coefficient b�.

In Appendix A one can find the Ising limit of the Eqs. (9) and (11).
One of the unusual features of the eigenstates (9) and (11) is the

explicit dependance of the corresponding magnetic moment on the
magnetic field, which is a direct consequence of the non-
commutativity of the magnetization operator and block Hamilto-
nian. It is easy to obtain that,

M z
1;2 ¼ hW1;2j g1S

z
j;1 þ g2Sj;2

� �
jW1;2i ¼ �Bðg1 � g2Þ2

4G
; ð12Þ

and

M z
3;4 ¼ hW3;4j g1S

z
j;1 þ g2Sj;2

� �
jW3;4i

¼ � ðg1 þ g2Þ Bðg1 þ g2Þ � 2Kðrj þ rjþ1Þ

 �

4Frj ;rjþ1

:
ð13Þ

Thus,M z
3;4 not only continuously depends on the magnetic field

but also exhibit jumps under the flip of the neighboring r-spins.

3.2. Eigenstates for the chain

Let us now describe the ground states for the whole chain using
the Hamiltonian (1), which are constructed with the aid of the
block eigenstates. In virtue of the difference in g-factors for the
Ising spins the model has six spins (two blocks) in the unit cell
and therefore the ground states will demonstrate the two-block
translational symmetry. Notice that in case of g3 ¼ g4, the unit cell
can contain only three spins (no period doubling).

1.- Quasi-Saturated (SQ) state: First of all, let us mention the
quasi-saturated state with the corresponding magnetic moment
and energy per unit cell. Let us remind that the total number of
the diamond-shaped blocks in the chain we denote by N, but due
to the difference in the g-factors of the r spins the unit cell corre-
sponding to the Hamiltonian (1) contains six sites. Thus, all quan-
tities presented below are calculated with respect to the number of
the six-spin unit cells equal to N=2.

The first ‘quasi-saturated’ (QS1) state reads

jQS1i ¼
YN2
j¼1

j " i2j�1 	 jW�
4 i2j�1 	 j " i2j 	 jW�

4 i2j;

MQS1 ¼
ðg1 þ g2Þ Bðg1 þ g2Þ � 2Kð Þ

2Fþ;þ
þ 1
2

g3 þ g4ð Þ;

EQS1 ¼ D
2
� 2Fþ;þ � B

2
g3 þ g4ð Þ;

ð14Þ

here the arrow stand for the spin-up configuration of the corre-
sponding r-spins.

The second ‘quasi-saturated’ (SQ2) state is expressed as follows:
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jQS2i ¼
YN2
j¼1

j # i2j�1 	 jWþ
4 i2j�1 	 j # i2j 	 jWþ

4 i2j;

MQS2 ¼
ðg1 þ g2Þ Bðg1 þ g2Þ þ 2Kð Þ

2F�;�
� 1
2

g3 þ g4ð Þ;

EQS2 ¼ D
2
� 2F�;� þ B

2
g3 þ g4ð Þ:

ð15Þ

The eigenstates QS1 and QS2 are linked to each other by the
inversion of the all rj spins. The QS2 represents a ground states
at the strong magnetic field when the g-factors of the r spins are
negative. Both QS1 and QS2 become degenerate at the vanishing
magnetic field. They are the counterparts of the saturated or fully
polarized state. However, the XY-anisotropy c prevents the magne-
tization from reaching its saturated value given by Eq. (7), at any
finite values of the magnetic field. Therefore, the saturation can
be reached asymptotically when B ! 1 or at the vanishing XY-
anisotropy c! 0.

2.- Ferrimagnetic (FI) state: There are two ‘ferrimagnetic’ (FI)
(with respect to the spin orientation, but not to the magnetic
moment) eigenstates. This implies appearance of several sublat-
tices with non-zero net magnetization as well as the nonzero Sz.

Thus the first ferrimagnetic (FI1) state is

jFI1i ¼
YN2
j¼1

j " i2j�1 	 jW2i2j�1 	 j " i2j 	 jW2i2j;

MFI1 ¼
Bðg1 � g2Þ2

2G
þ 1
2

g3 þ g4ð Þ;

EFI1 ¼ �D
2
� 2G� B

2
g3 þ g4ð Þ:

ð16Þ

The unit cell of the ground state FI1, thus, contains two Ising
spin (with different g-factors) pointing up and two Heisenberg
dimers with average two spin pointing up and two spin pointing
down. Despite of non-coherent superposition of j "#i and j #"i in
jW2i the expectation values of S1j;1 and Sz

j;2, though differ from
�1=2, compensate each other:

jhW2jSz
j;1jW2ij ¼

1
2
1� c2�
1þ c2�

; ð17Þ

jhW2jSz
j;2jW2ij ¼ �1

2
1� c2�
1þ c2�

: ð18Þ

However,

jhW2jg1S
z
j;1jW2ij – � jhW2jg2S

z
j;2jW2ij: ð19Þ

The second ferrimagnetic (FI2) state is

jFI2i ¼
YN2
j¼1

j # i2j�1 	 jW2i2j�1 	 j # i2j 	 jW2i2j;

MFI2 ¼
Bðg1 � g2Þ2

2G
� 1
2

g3 þ g4ð Þ;

EFI2 ¼ �D
2
� 2Gþ B

2
g3 þ g4ð Þ:

ð20Þ

Similarly, state FI2 has two Ising spin-down, two Heisenberg
spin-down and two Heisenberg spin-up in the unit cell.

Despite the net spin orientation is not balanced, the magnetiza-
tion of the system could vanish at g1 ¼ g2 and g3 ¼ �g4.

Therefore, if one do not take into account the difference of the
g-factors (g3 ¼ g4) of the r spins these ground states have three
spins in the unit cell, ‘‘up-up-down” for the FI1 state and ‘‘down-
up-down” for the FI2 state. The pair of Heisenberg spins in both
case form a perfect singlet state.

3.- Antiferromagnetic (AF) state: There are two eigenstates which
one can call ‘antiferromagnetic’ (AF), because the corresponding
unit cell contains equal amount of spins pointing up and pointing
down (balanced spin orientation). However, the magnetization
does not necessarily vanish, unless the particular case g1 ¼ g2

and g3 ¼ g4.
The first ‘antiferromagnetic’ (AF1) states is given by
jAF1i ¼
YN2
j¼1

j " i2j�1 	 jW2i2j�1 	 j # i2j 	 jW2i2j;

MAF1 ¼
Bðg1 � g2Þ2

2G
þ 1
2

g3 � g4ð Þ;

EAF1 ¼ �D
2
� 2G� B

2
g3 � g4ð Þ:

ð21Þ

The second one (AF2) is
jAF2i ¼
YN2
j¼1

j # i2j�1 	 jW2i2j�1 	 j " i2j 	 jW2i2j;

MAF2 ¼
Bðg1 � g2Þ2

2G
� 1
2

g3 � g4ð Þ;

EAF2 ¼ �D
2
� 2Gþ B

2
g3 � g4ð Þ:

ð22Þ

The eigenstates jAF1i and jAF2i are slightly different due to the
left-right asymmetry which takes the place because of difference in
g-factors for the Ising spins. They become identical when g3 ¼ g4.

4.- Quantum ferrimagnetic (QI) state: Finally, we introduce two
so-called ‘quantum ferrimagnetic‘ eigenstates. Here the number
of the spin pointing up (down) in the unit cell is not a good quan-
tum number (is not fixed), as the jW0

4i eigenstate for the quantum
dimer is a non-coherent superposition of j ""i and j ##i. Thus, the
corresponding unit cell is characterized by one Ising spin pointing
up, another one pointing down, and the total Sz ¼ 0 for the spins on
Heisenberg dimers. But, in contrast to the AF and FI eigenstates it
does not makes any sense to speak about the number of the
Heisenberg spins with certain orientation even in the expectation
value level.

The first ‘quantum ferrimagnetic‘ (QI1) state reads
jQI1i ¼
YN=2
j¼1

j " i2j�1 	 jW0
4i2j�1 	 j # i2j 	 jW0

4i2j;

MQI1 ¼
Bðg1 þ g2Þ2

2Fþ;�
þ 1
2

g3 � g4ð Þ;

EQI1 ¼ D
2
� 2Fþ;� � B

2
g3 � g4ð Þ;

ð23Þ
and the second ‘quantum ferrimagnetic‘ (QI2) state differs from the
previous one just by the orientation of the r spins,
jQI2i ¼
YN2
j¼1

j # i2j�1 	 jW0
4i2j�1 	 j " i2j 	 jW0

4i2j;

MQI2 ¼
Bðg1 þ g2Þ2

2Fþ;�
� 1
2

g3 � g4ð Þ;

EQI2 ¼ D
2
� 2Fþ;� þ B

2
g3 � g4ð Þ:

ð24Þ

Like in the previous case, the states jQI1i and jQI2i differ from
each other only due to difference in the Ising spins g-factors. They
become identical when g3 ¼ g4. Note that if g1 ¼ �g2 and g3 ¼ g4

the magnetization can be zero.
In Appendix B the ground states energies for the limiting case of

all Ising spins diamond chain are described.
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4. ‘Fire-Ice’ interface

In the Ref. [7] an interesting unusual critical point has been
described. For the simplest classical case of the one-dimensional
ferromagnetic Ising model with staggered g-factors with different
signs the authors described the situation when there are two sub-
lattice (at zero temperature) in the ground state of the system. The
one of them is ordered and another one is totally disordered. For
the obvious reason they called the ground state ‘Half Fire, Half
Ice’. However, it is worthy mentioning, that the critical lines of
aforementioned kind have been considered a bit earlier. They are
quite common properties of the Ising-Heisenberg spin systems
[49,12,19–42]. Generally speaking, the ground states with ordered
and disorder sublattices naturally arise in the spin systems with
complex unit cell containing several spins. For instance, the same
phenomena occurs in the ferromagnetic-ferromagnetic-antiferro
magnetic Ising chain, due to antiferromagnetic bond [48]. The
appearance of the antiferromagnetic bonds here is crucial for such
critical states. They usually arises as the degeneracy between two
different ground states which differ one from another by the ori-
entation of one or several spins. The simplest example can be
found probably in Ref. [21] in the Ising-Heisenberg S = 1/2
diamond-chain. The critical line between fully polarized state
and the ground state where spins from quantum dimer are point-
ing along the magnetic field, while the Ising spins between them
are pointing oppositely, due to antiferromagnetic coupling
between them and the dimers is the line corresponding to the
’one third fire-two third ice’ configuration. This means one sublat-
tice from three in the ground state is disordered. The principal dif-
ference of the ‘Half Fire, Half Ice’ configuration of the Ref. [7] from
the partly ordered-partly disordered degenerate configurations
mentioned above is the uniform ferromagnetic coupling for all
bonds. The ambiguity in the state of the spins from the disordered
sublattice is here the consequence of their negative g-factor. As
the model of the Ising-Heisenberg diamond chain is the simplest
generalization of the Ising chain (decorated Ising chain) the corre-
sponding ’fire-and-ice’ degenerate configurations also can be real-
ized here.

Let as describe first how this configuration arises in the ordinary
ferromagnetic Ising chain with two alternating g-factors, gA > 0
and gB < 0 [7]. The Hamiltonian is

H1d
Is ¼ J

XN
j¼1

rjrjþ1 � B
XN=2
j¼1

gAr2j�1 þ gBr2j
� �

; ð25Þ

where J < 0; rj ¼ �1=2 and we assume for simplicity, jgBj > gA.
Thus, for T ¼ 0 and sufficiently low magnetic field the ground state
will be ferromagnetic one with all spins pointed down. Then, it is
easy to see that there is a critical point at

Bc ¼ jJj
gA

; ð26Þ

when the degeneracy occurs between aforementioned ground state
and a configuration where each spin with g-factor gA is pointed up
which becomes a non-degenerate ground state when B > Bc . Thus,
at the critical value of the magnetic field the system has two sub-
lattices. One of them is ordered (all spins with negative g-factor
are pointed down) and another one is completely disordered. This
extraordinary feature the authors of the Ref. [7] named ‘Half Fire,
Half Ice’. This property can be easily obtained in the nearest-
neighbor ferromagnetic Ising model on arbitrary bipartite lattice
with the g-factors of different signs on each sublattice. Making
the same assumptions about J; gA and gB, and considering the
model with two sublattices A and B,
HAB
Is ¼ J

X
i2A;j2B

rirj � B gA

X
i2A
ri þ gB

X
j2B
rj

 !
; ð27Þ

one can easily see that there exists the zero-temperature critical
point of the same origin with the corresponding value of the mag-
netic field

Bc ¼ jJjd
2gA

; ð28Þ

where d is the coordination number of the bipartite lattice.
It is easy first to do so for the purely Ising model on a diamond-

chain, then we can use the obtained results as a guideline for
searching the corresponding phenomena in the quantum model
under consideration.

4.1. Ising model on a diamond chain

Let us consider the Ising limit of the Hamiltonian (1). Assuming
J ¼ 0 we get

HI ¼
XN
j¼1

DSz
j;1S

z
j;2þKðSz

j;1þSz
j;2Þðrjþrjþ1Þ�Bðg1S

z
j;1þg2S

z
j;2Þ�Bgjrj

n o
;

ð29Þ
where the g-factors of the Ising intermediate spins alternating with
the spin-dimer are given by the Eq. (3).

The Ising diamond chain exhibits several interfaces between the
ground states with peculiar partial frustration. Below we discuss
some of them using the results given in Appendix C. As the unit cell
of the model contains six spins the ‘‘fire-and-ice” configurations
with one, two, three, four and five frustrated (disordered) sublat-
tice are possible. Let us emphasize once again that the origin of this
frustration is the conflict between negative g-factor(s) and ferro-
magnetic couplings.

4.1.1. One frustrated spin (1/6-fire and 5/6-ice)
The interfaces with one frustrated spin in the unit cell are

described in the Appendix C1. Here, we consider particular cases
of negative g3 as well as negative g3 and g4. All couplings are sup-
posed to be ferromagnetic, D < 0; K < 0. Let us first consider the
case of only one spin with negative g-factor, say g3. Due to ferro-
magnetic coupling between all spins the unit cell can be divided
into two parts, the spin with negative g-factor, and the rest spins.
When jg3j < 2ðg1 þ g2Þ þ g4 the zero-temperature ground state at
the small enough magnetic filed is QSþ1 (all spins are pointed up).
The saturated state (the ground state at strong magnetic field) dif-
fers form QSþ1 by the flip down of the spin with negative g-factor
leading to QIþ2 (See Eq. (B15)). Thus, there is a critical value of
the magnetic filed at which these two configurations become
degenerate,

Bc ¼ 2K
g3

: ð30Þ

At this particular value of the magnetic field the system has one dis-
ordered and five ordered sites in the six-site unit cell. Using the ter-
minology of the Ref. [[7]], one can naively refer to this state as to
‘1/6-fire-5/6-ice’. However, in virtue of the same argument about
the entropy given above the ground state belongs to the ‘‘half-
fire-half-ice” discussed in Ref. [7]. The same situation can be also
occurred at the interface between QSþ2 and QIþ1 when both g3 and
g4 are negative and additionally jg3j < jg4j. Let us emphasize that
despite of triangular form of the unit cell there is no geometrical
frustration in the system as we have only ferromagnetic bonds.
The appearance of disorder here is the direct consequence of the
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interplay between the ferromagnetic interaction and negative g-
factors [7].

4.1.2. Two frustrated spins (1/3-fire and 2/3-ice)
All possible interfaces with two frustrated spins are described in

the Appendix C2. As an illustration here we analyze particular case,
g3 < 0 and g4 < 0 for ferromagnetic coupling. Consider first the
case jg3 þ g4j < 2ðg1 þ g2Þ. Thus, the interface with two disordered
sublattices arises between QSþ1 and QSþ2 at

Bc ¼ 4K
g3 þ g4

: ð31Þ

As here we have two spins from the six-spin unit cell disordered,
according to our convention [7] the corresponding state can be
referred to as to ‘1/3-fire and 2/3-ice’ configuration. At jg3 þ g4j >
2ðg1 þ g2Þ the interface with two disordered sublattices occurs
between QS�2 and QSþ2 at the particular value of the magnetic field,

Bc ¼ 2jKj
g1 þ g2

: ð32Þ

Let us now consider the case of antiferromagnetic coupling into
the dimer, D > 0 and K < 0. Assuming for the time being
g1 ¼ g2 > 0 and g3 < 0; g4 < 0 we can find the ground state of
the Ising diamond-chain at weak magnetic field pointing along z-
axis to be fourfold degenerate (or twofold degenerate when
g3 ¼ g4 and the magnetic unit cell shrunk to the three-spin plaque-
tte): rj ¼ �1=2; Sz

j;1 ¼ �1=2, Sz
j;2 ¼ �1=2. But the degeneracy is

lifted once we put g1 – g2. The degeneracy can be even sixteen-
fold at zero magnetic field when r-spins become frustrated as well.
The corresponding ground state is the Ising counterpart of the
dimer-monomer ground state of the quantum diamond chain
[43]. Supposing as well D > jKj we get the non-degenerate ground
state with four spins in the six-spin unit cell pointing down
(rj ¼ rjþ1 ¼ �1=2 and Sz

j;2 ¼ Sz
jþ1;2 ¼ �1=2) and two spins pointing

up (Sz
j;1 ¼ Sz

jþ1;1 ¼ 1=2), or FIþ2 (See Eq. (B7)). In the saturated state

(QSþ1 ) at strong magnetic field one has the flip-up of the spins with
g-factor g2. Therefore, there is a critical value of the magnetic field,
defining the interface QSþ1 $ FIþ1 (QSþ2 $ FIþ2 ):

Bc ¼ Dþ 2jKj
2g2

: ð33Þ

Thus, we defined here another ‘fire-and-ice’ ground sates, in
which four spins in the unit cell are ordered and two is completely
disordered. In virtue of the distribution of the spins from the unit
cell between ordered and disordered sublattices, we can refer to
this ground state as to ‘1/3-fire-2/3-ice’.

4.1.3. Three frustrated spins (1/2-fire and 1/2-ice)
Increasing further the number of the frustrated sites in the unit

cell one can arrive at the ground states given in Appendix C3.
As an example we consider the following distribution of the g-

factors for the ferromagnetic Ising diamond-chain: g1 < 0 and
g3 < 0, while g2 > 0 and g4 > 0. Two different regimes
j2g1 þ g3j > 2g2 þ g4 and j2g1 þ g3j < 2g2 þ g4 leading to different
value of the critical field are possible. However, in both situation
there are three ordered and three ‘‘coherently” disordered spins
in the six-spin magnetic unit cell. Therefore, we deal here with
exact ‘‘half-fire-half-ice” configuration with the values of the criti-
cal field in the interface between QS�2 and AFþ

2 for
j2g1 þ g3j > 2g2 þ g4 and QSþ1 and AF�

2 for j2g1 þ g3j > 2g2 þ g4.
The corresponding values of the magnetic field are

Bc ¼ jDj þ 2jKj
2g2 þ g4

: ð34Þ
and

Bc ¼ Dþ 2K
2g1 þ g3

; ð35Þ

respectively. It is worth emphasizing once again that the three dis-
ordered spins in the unit cell can not be disordered independently
of each other, they can change their direction only simultaneously.
We call them, thus, ‘‘coherently” disordered spins. Therefore, the
residual entropy per the unit cell at the critical values of the mag-
netic field is equal to log2.

4.1.4. Four frustrated spins (2/3-fire and 1/3-ice)
All possible interfaces between two ground eigenstates with

four frustrated spins in the unit cell are presented in the Appendix
C4.

As an example we consider the following case: D < 0; K < 0
and g3 < 0; g4 < 0; g1 > 0, g2 > 0. Again the ground state at suffi-
ciently weak magnetic field depends on the mutual relation of total
positive and total negative g-factors in the unit cell. For
jg3 þ g4j > 2ðg1 þ g2Þ the system demonstrate all spins pointing
down, or QS�2 . Then, for strong enough magnetic field the ground
state transforms into the saturated one, which in this case is QSþ2
The degeneracy between these ground states takes place at

Bc ¼ 2jKj
g1 þ g2

: ð36Þ

As there are four ‘‘coherently” disordered spins and two ordered
spins in the magnetic unit cell, the corresponding configuration
can be classified as ‘‘2/3-fire and 1/3-ice”. If the g-factors of rj-
spin equal to each other, g3 ¼ g4, the magnetic unit cell shrunk
to only three spins. It is also straightforward that this critical value
is nothing else but the Eq. (A5) with K < 0 and rj ¼ rjþ1 ¼ �1=2.

4.1.5. Five frustrated spins (5/6-fire and 1/6-ice)
Finally, the last case we present here is the interface with only

one order site from the six sites in the magnetic unit cell. One can
consider the following case g3 < 0 with all other g-factors positive.
Again, the ratio of ordered and disordered sites inside the magnetic
unit cell depends on the relation between jg3j and 2ðg1 þ g2Þ þ g4.

If jg3j > 2ðg1 þ g2Þ þ g4 then the low-field orientation of all six
spins form the magnetic unit cell is defined by the orientation of
spin with negative g-factor. In the saturated state all spins except
the one with negative g-factor are pointed up. Thus, at the critical
value of the magnetic field arises the boundary QSþ1 $ QI�1 and
QS�1 $ QIþ1

Bc ¼ 2jKj
g4 � 2ðg1 þ g2Þ

; ð37Þ

the system has only one ordered site among the six sites of the mag-
netic unit cell. Thus, the corresponding configuration could be
referred to as ‘5/6 fire-1/6 ice’. However, it is important to remem-
ber that the rest five spins from the unit cell can not be disordered
independently form each other. For each magnetic unit cell they all
can either point up or down. Therefore, the residual entropy per the
unit cell is log2.

4.1.6. Additional remarks
Another important point affecting the structure of the partially

frustrated interface is the relation between the total negative and
positive g-factors in the system. Consider arbitrary S = 1/2 Ising
spin lattice with the uniform ferromagnetic coupling K. It can be
naively seemed that the number of the frustrated spins into the
magnetic unit cell in the interface between two ground states cor-
responds to the number of the spins with negative g-factor in it.
However, this is true only when absolute value of the total



1 Let us remind the reader that in this particular choice of the g-factors the system
has only three spins in the magnetic unit cell. That is why we get log 2 ¼ log 4

N
2

N instead
of 2 log 2 for the case of six-spin unit cell.
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negative g-factor is bigger than the total positive g-factor for the
unit cell,

P jgneg j >
P

gpos. The ground state under this condition
(at infinitely low magnetic field in z direction) is the ferromagnetic
state with all spins pointing down, F�. At the opposite limit,P jgneg j <

P
gpos, the ground state is ferromagnetic with all spins

pointing up, Fþ. The saturated state corresponds to all spins with
positive g-factor pointing up and all spins with negative g-factor
pointing down, S. It is easy to write down the corresponding
ground states energies per one unit cell in the following form:

E�
F ¼ � n

4
K þ B

2

X
gpos �

X
jgneg j

� �
; ð38Þ

Eþ
F ¼ � n

4
K � B

2

X
gpos �

X
jgneg j

� �
;

ES ¼ �m
4
K � B

2

X
gpos þ

X
jgneg j

� �
;

where n and m are positive integers and m < n. WhenP jgneg j >
P

gpos the interface between F� and S exists at

Bc ¼ ðn�mÞK
4
P

gpos
: ð39Þ

Thus, all spins with positive g-factor are ‘‘coherently” frustrated
and the critical field does not depend on the rest of g-factors. For
the opposite situation,

P jgneg j <
P

gpos, the ordered and disor-
dered sites change over each other. Now, at the interface between
Fþ and S at the critical value of the magnetic field,

Bc ¼ ðm� nÞK
4
P jgneg j

; ð40Þ

all spins with positive g-factors are ordered within the magnetic
unit cell, while the spins with negative g-factors are ‘‘coherently”
disordered. Thus, one can conclude that having q spins with nega-
tive g-factors in the p-spin magnetic unit cell can lead to the inter-
face with either q disordered spins or p� q disordered spins in the
unit cell depending on the relation between total negative and pos-
itive g-factors. Let us illustrate this feature on the example of one
and five disordered sites in the unit cell for the Ising diamond chain.
Eqs. (30) and (37) are the examples of Eqs. (40) and (39) respec-
tively. Taking, g3 > 0 and the rest g-factors negative one can obtain
the same interfaces given by the Eqs. (30) and (37) but under the
opposite relation between the g-factors. Thus, when
g3 > j2ðg2 þ g2Þ þ g4j one gets ‘‘5/6-fire-1/6-ice” with five disorder
spins in the unit cell and the critical field given by the Eq. (37).
For g3 < j2ðg2 þ g2Þ þ g4j the system has the interface correspond-
ing to ‘‘1/6-fire-5/6-ice” with one disordered spin and critical value
of magnetic field coinciding with Eq. (30).

4.1.7. The phase diagrams
Let us now proceed to the description of the ground state phase

diagrams illustrating the interfaces discussed above as well as
more sophisticated cases connected with interplay between nega-
tive g-factors and antiferromagnetic and mixed coupling in the
system. In the examples presented above we considered the sim-
plest interfaces between ground states at low (vanishing) magnetic
field and the saturated state at strong enough magnetic filed. Here,
using the phase diagrams we demonstrate some intermediate
interfaces as well.

The zero-temperature ground states phase diagrams in the
plane B-D for the Ising diamond-chain with the Hamiltonian (29)
are presented in the Fig. 2. The panel (a) displays the phase dia-
gram corresponding to the following particular values of the
parameters: K ¼ �1, g1 ¼ �2; g2 ¼ �2; g3 ¼ 4 and g4 ¼ 3. Here
one can see five interfaces between four ground states,
QS�2 ; QI�1 ; QS�2 and FI1, the latter is degenerate superposition of
FIþ1 and FI�1 , which exists due to the equal g-factors of the spins
from vertical dimer. Moreover, the spins in each vertical dimer
can be either in ‘‘up-down” or in ‘‘down-up” configuration inde-
pendently even inside the unit cell. Thus, the corresponding state
has the residual entropy per the unit cell, S ¼ 2 log 2.

The interface QS�2 $ FI1 corresponds to ‘2/3 fire-1/3 ice’ state,
with residual entropy per the unit cell, S ¼ 2 log 2, although there
are four frustrated spins these spins are not frustrated indepen-
dently from each other. The interface QS�1 $ FI1 corresponds to
‘1/3 fire-2/3 ice’ state. It has residual entropy per the unit cell,
S ¼ 2 log 3. The degeneracy is so high due to independent possibil-
ity for for two vertical dimers form the six-spin unit cell to be in
one of the three spin configurations, ‘‘up-down”, ‘‘down-up” and
‘‘down-down” at the QS�1 $ FI1 interface. Another interface is
QI�1 $ FI1. It corresponds to ‘1/2 fire-1/2 ice’ state with residual
entropy the unit cell, S ¼ log5. Quite remarkable is a series of
two interfaces, QS�2 $ QI�1 and QS�1 $ QI�1 , which both correspond
to the ‘1/6 fire-5/6 ice’ configuration, but with the different frus-
trated sites. The residual entropy per the unit cell in both cases is
S ¼ log 2. Thus, one can see that the intermediate eigenstate QI�1
between the ground state at zero magnetic field and the saturated
state arises due to difference in the g-factors of two spins between
the dimers.

In the Fig. 2(b), we present the phase diagram for the case
g1 ¼ g2 > 0; g3 ¼ g4 < 0 for ferromagnetic coupling K ¼ �1. Under
these conditions for the g-factors we have only three sites in a unit
cell.

Here one can see three phases and three interfaces. The inter-
face between QSþ1 and QSþ2 represents ‘1/3 fire-2/3 ice’ configura-
tion with residual entropy per the unit cell S ¼ log 21, similarly
there is the boundary between FI2 and QSþ2 states corresponding to
‘2/3 fire-1/3 ice’ state with residual entropy the unit cell S ¼ log 3.
The interface between QSþ1 and FI2 is characterized by four frustrated
spins generating the so-called ‘2/3 fire-1/3 ice’ state with residual
entropy per the unit cell,S ¼ log 2.

In the Fig. 2(c) for g1 ¼ �2; g2 ¼ 1; g3 ¼ 4 and g4 ¼ �2 one can
see additional type of interface QSþ1 $ QI�1 corresponding to ‘5/6
fire-1/6 ice’ state. However, as in this case the total magnetic
moment of the unit cell is zero, 2ðg1 þ g2Þ þ g3 þ g4 ¼ 0 we have
simple (non-macroscopic) degeneracy between QSþ1 (all spins up)
and QS�2 (all spins down). The vanishing total g-factor within the
unit cell also leads to a very high degeneracy at the horizontal line
B ¼ 1=2. The local mixture of the QSþ1 ;QS

�
2 and QI�1 states yields the

asymptotic value of the residual entropy per unit cell in the ther-

modynamic limit, S ¼ logð3þ
ffiffi
5

p
2 Þ[49]. There is another interface

between QI�1 and AF�
1 representing the ‘1/3 fire-2/3 ice’ configura-

tion with residual entropy given by S ¼ 2 log 2. The interfaces
QSþ1 $ AF�

1 corresponds to ‘1/2 fire-1/2 ice’ configuration and has

residual entropy per block S ¼ logð3þ
ffiffi
5

p
2 Þ. Finally, the Fig. 2(d) is

quite similar to the previous one.
4.2. Ising-Heisenberg diamond chain

Let us now turn to our Ising-Heisenberg model and look for the
quantum or semi-classical counterparts of the ‘‘fire-and-ice” con-
figurations described above for the purely Ising case.

Concerning the Ising-Heisenberg diamond-chain we considered
here the same phenomena takes place. We have to put c ¼ 0 as any
non-zero XY-anisotropy mixed up the ‘‘up-up” and ‘‘down-down”
states for the quantum spin dimer. Thus, the ‘‘disorder” term being
applied to the separate spins of the quantum dimer to some extent



Fig. 2. Zero temperature phase diagram D against B. (a) For K ¼ �1;
g1 ¼ �2; g2 ¼ �2; g3 ¼ 4 and g4 ¼ 3. (b) For K ¼ �1; g1 ¼ 2; g2 ¼ 2; g3 ¼ �3
and g4 ¼ �3. (c) For K ¼ �1; g1 ¼ �2; g2 ¼ 1; g3 ¼ 4 and g4 ¼ �2. (d)
K ¼ 1; g1 ¼ 2; g2 ¼ �1; g3 ¼ �2 and g4 ¼ 4.

Fig. 3. Zero temperature phase diagrams for the Ising-Heisenberg diamond chain at
fixed J ¼ 1 and c ¼ 0:5. (a) For K ¼ �1; g1 ¼ 2, g2 ¼ 1:2 , g3 ¼ �3 and g4 ¼ �3. (b)
For K ¼ 1; g1 ¼ 2, g2 ¼ 1:2; g3 ¼ 3 and g4 ¼ 3 . (c) For K ¼ �1; g1 ¼ 2,
g2 ¼ 2; g3 ¼ �3 and g4 ¼ �4. (d) For K ¼ �1; g1 ¼ �2, g2 ¼ 2; g3 ¼ �4 and g4 ¼ 3.
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makes no sense. However, the degeneracy still can exist. For
exchange parameters J < 0; K < 0 and D > 0, with g-factors
g1 ¼ g2 > 0, g3 ¼ g4 < 0, and jg3j > 2g1 the degeneracy occurs
between jQS2i and the eigenstate with all spins pointing down at
the value of the magnetic field given by Eq. (36). Moreover, at
D ¼ 1 the degeneracy rises up as the energy of the eigenstate
jFI1i at the critical value of the magnetic field Bc become equal to
those of jQS2i and jQS1i. However, this setup is just simple gener-
alization of the Ising chain from Ref. [7].

In case of the quantum dimer the situation is different. For
g1 ¼ g2 instead of ‘‘up-up” and ‘‘down-down” configurations we
have the spin-singlet (for g1 ¼ g2) and the Sz

tot ¼ 0 component of
the triplet. that is why the full analog of the classical ‘1/3 fire-2/3
ice‘ state in quantum case does not exist. We are going to consider
instead the analog of the critical line between fully polarized
eigenstate and the eigenstate with Ising spins pointing down. As
was mentioned above the corresponding state caused by the anti-
ferromagnetic coupling K has been considered in Ref. [21]. In our
case, however, we consider ferromagnetic K and negative g3 and
g4 with interface between jQS1i and jQS2i. One has to keep in mind
that the case of the negative g-factors of the r-spins corresponds to
the saturated state jQS2i, while jQS1i has intermediate magnetiza-
tion. The critical Bc can be find from eqs. (14) and (15):

Bðg3 þ g4Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðg1 þ g2Þ þ 2Kð Þ2 þ J2c2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðg1 þ g2Þ � 2Kð Þ2 þ J2c2

q
: ð41Þ

Solving this equation we get

Bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16K2

ðg3 þ g4Þ2
þ 4J2c2

ðg3 þ g4Þ2 � 4ðg1 þ g2Þ2

s
: ð42Þ

In the Fig. 3 the ground states zero temperature phase diagrams
in the (B-D)-plane are presented for fixed J ¼ 1 and c ¼ 0:5. The
critical line given by the Eq. (42) can be found in three panels,
(a) and (b). In the panels (c) and (d) one can see another interfaces
given by the vertical lines, QS1 $ QI1 and QS2 $ QI1. In the panel
(a) the following values of teh parameters are chosen: g1 ¼ 2;
g2 ¼ 1:2, K ¼ �1; g3 ¼ �3 and g4 ¼ �3. The interface between
QS1 and QS2 corresponding to ‘1/3 fire-2/3 ice’ state, with critical
Bc given by (42) resulting in Bc ¼ 0:4927794. At first glance this
interface seems to be frustrated, analogous to the Ising limit case
(see Fig. 2(b)), but due to the fact that the states jW�

4 i ¼
0:9975898j ""i � 0:06938726j ##i and jWþ

4 i ¼ 0:4207327j ""i�
0:9071847j ##i are different, the Ising-Heisenberg diamond chain
is simply twofold degenerate and not macroscopically degenerate,
thus there is no residual entropy in this interface. However, there
exists a quantum frustrated interface between QS2 $ FI2 with
residual entropy S ¼ 2 log 2 and another quantum frustrated inter-
face QS1 $ FI2 with a non-trivial residual entropy depending of the
parameters B and D. In the Fig. 3b the phase diagram for fixed
K ¼ 1; g1 ¼ 2; g2 ¼ 1:2, g3 ¼ 3 and g4 ¼ 3 is presented. Here we
observe once again the interface QS1 $ QS2 whose critical mag-
netic field is given by (42) (Bc ¼ 0:4927794). Similarly, there is also
the quantum frustrated interface between QS2 $ FI1 with residual
entropy S ¼ 2 log 2 and another quantum interface QS1 and FI1
with a non-trivial residual entropy depending of the parameters
B and D. In the Fig. 3c one can see the phase diagram for fixed
J ¼ 1; K ¼ �1; c ¼ 0:5; g1 ¼ 2 and g2 ¼ 2. Here the following
phases are presented: QS1; QI1 , QS2 and FI2. Two interfaces
QS1 $ QI1 and QI1 $ QS2 corresponding to ‘1/6 fire-5/6 ice’ state
have residual entropy given by S ¼ log 2Þ. Whereas, the interface
QS2 $ FI2 is frustrated with residual entropy given by S ¼ 2 log2.
The other interfaces are pure quantum frustrated states. Similarly
in Fig. 3d the phase diagram for fixed J ¼ 1; K ¼ �1;
c ¼ 0:5; g1 ¼ �2, g2 ¼ 2; g3 ¼ �4 and g4 ¼ 3 is shown. The inter-
face between QS2 and QI2 representing the ‘1/6 fire-5/6 ice’ state
has residual entropy given by S ¼ 2 log 2. The other interfaces
QS2 $ AF2 and QI2 $ AF2 are pure quantum frustrated states with
residual entropies given by S ¼ log 2. S ¼ 2 log 2 respectively.
4.3. Magnetization and magnetic susceptibility

The fact that the magnetization is a non-conserved quantity
gives rise to an unusual behavior of the magnetic susceptibility
at zero temperature.



Fig. 4. Zero temperature magnetization (magnetic susceptibility) as a function of
magnetic field B for J ¼ 1; K ¼ �1 and c ¼ 0:5. Left panel, (a) and (c),
g1 ¼ 2; g2 ¼ 1:2; g3 ¼ �3 and g4 ¼ �3; right panel, (b) and (d), For
g1 ¼ 2; g2 ¼ 2; g3 ¼ �3 and g4 ¼ �4.
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In the Fig. 4 the magnetization and magnetic susceptibility as a
function of B is displayed for fixed values of the parameters
J ¼ 1; K ¼ �1 and c ¼ 0:5. The left panel, Fig. 4a and Fig. 4c show
the magnetization and susceptibility for g1 ¼ 2; g2 ¼ 1:2; g3 ¼ �3
and g4 ¼ �3. The effects of the the non-conserving magnetization
are well visible here. For low magnetic field there is a magnetiza-
tion quasi-plateau [4,12] which gives the impression of a constant
value of the magnetization. However, actually this region corre-
sponds to the state QS1 with non-conserving magnetization which
has weak but monotone dependence of the magnetic field. The
magnetization curves for D ¼ �0:5 and D ¼ �0:6 demonstrate
another quasi-plateau at B � 0:641 corresponding to FI2. The final
part of the curve corresponds to the quasi-saturates state, QS2. In
the panel (c) the magnetic susceptibility for the same set of param-
eters is shown. The behavior of the susceptibility evidences of the
non-plateau nature of the magnetization within the same eigen-
states of the system. The interesting feature is monotone decrease
of the susceptibility as a function of the magnetic field for the QS1
eigenstate and non-monotone behavior with the maximum for the
QS2.

The right panel of the Fig. 4 demonstrate the magnetization and
susceptibility as a functions of the magnetic field for J ¼ 1; K ¼ �1
and c ¼ 0:5 with g-factors g1 ¼ 2; g2 ¼ 2; g3 ¼ �3 and g4 ¼ �4.
Again here one can find the quasi-plateau corresponds to the state
QS1 for low magnetic field and the quasi-saturated state QS2 for the
strong field. There is also an intermediate quasi-plateau, which
corresponds to the FI2 state for D ¼ �0:1. The third quasi-plateau
arises for for D ¼ �0:37 and D ¼ �0:42. This is the QI1 state which
follows the FI2 in these cases. However, for D ¼ �1 there is only
one intermediate quasi-plateau (second one) corresponding to
the QI1 state. The corresponding magnetic susceptibility is shown
in the panel (d). Here, it demonstrates the monotone decrease for
each quasi-plateau.
5. Conclusion

In this paper we consider the Ising-XYZ model on the diamond
chain which was assembled as follows: the particles with the Ising
spin are located at the nodal diamond chain sites, whereas Heisen-
berg spins are over interstitial sites. We have assumed the Ising
spin and the Heisenberg spins have different g-factors, as well as
we have assumed the system is under external magnetic field.
The non-commutativity of the magnetization operator and Hamil-
tonian is due to the different g-factors of Ising and Heisenberg
spins and due to the XY-anisotropy (c) in the Heisenberg exchange
interaction. This leads to the unusual phenomena, such as the non-
linear magnetic field dependence of the spectrum and non-
constant magnetization within the same ground state. We discuss
in detail the zero temperature phase diagram under several condi-
tions and we find interesting phases. Due to the non-uniform sighs
of the four g-factors presented in the unit cell there are a phase
boundaries corresponding to so-called ‘‘half fire-half ice” configu-
rations for ferromagnetic couplings, which contain ordered and
disordered sublattices simultaneously. These interfaces for Ising
diamond were classified in five groups: the first one is when there
is one frustrated (disordered) spin and rest five ordered spins in the
unit cell (‘1/6 fire-5/6 ice’); similarly for two frustrated spins (‘1/3
fire-2/6 ice’); for three frustrated spins (‘1/2 fire-1/2 ice’), for four
frustrated spins (‘2/3 fire-1/3 ice’), and finally for five frustrated
spins (‘5/6 fire-1/6 ice’). For quantum Ising-Heisenberg diamond
chain most of the interfaces become quantum frustrated states.

Besides that, we study the zero temperature magnetization and
magnetic susceptibility as a function of the external magnetic field.
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Appendix A. Limiting case c ¼ 0 and g1 � g2 ¼ 0

Although, the case of conserving magnetization (c ¼ 0 and
g1 � g2 ¼ 0) is trivial and well known, we are going to make few
comments about these limits and some new notations which are
suitable for our further analysis. First of all let us mention, the limit
g1 � g2 ¼ 0 under which the jW1;2i transform into the conventional
singlet and zeroth component of triplet for two spin-1/2:

jW1;2i ! 1ffiffiffi
2

p j "#i � sgnðJÞj #"ið Þ; ðA1Þ

e1;2 ¼ �D
4
� 1
2
jJj:

where sgnðJÞ is the sign-function. Thus, depending on the sign of the
coupling constant J both eigenvectors can transform to the singlet
and zeroth component of the triplet. Namely,

jW1i ¼
js0i ¼ 1ffiffi

2
p j "#i þ j #"ið Þ; J > 0

jsi ¼ 1ffiffi
2

p j "#i � j #"ið Þ; J < 0

(
; ðA2Þ

++ and

jW2i ¼
jsi ¼ 1ffiffi

2
p j "#i � j #"ið Þ; J > 0

js0i ¼ 1ffiffi
2

p j "#i þ j #"ið Þ; J < 0

(
; ðA3Þ

where we introduce the conventional notations js0i and jsi for tri-
plet and singlet respectively,

The case of c ¼ 0 is more tricky. First of all, there is no contin-
uous limit from the eigenvectors jW3;4i to the upper and lower
components of the triplet, jsþi ¼ j ""i and js�i ¼ j ##i as at c ¼ 0
we have commutativity of the Hamiltonian and Sz

tot ¼ Sz
1 þ Sz

2 oper-
ator yielding the block-diagonal form of the Hamiltonian matrix
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and decoupling from each other of the basis states, corresponding
to jsþi and js�i [4]. However, the eigenvalues admit the corre-
sponding limit leading to

e3;4 ¼ D
4
� 1
2
jB g1 þ g2ð Þ � 2K rj þ rjþ1

� �j; ðA4Þ

depending on the values of the adjacent Ising spins rj and rjþ1.
In contrast to the case of jW1;2i the result of the c ¼ 0 limit

depends on the value of the magnetic field.
This condition lead to an obvious critical value of the magnetic

field at which the upper and lower component of the triplet for the
vertical quantum spin dimer are degenerate,

Bc ¼ 2Kðrj þ rjþ1Þ
g1 þ g2

: ðA5Þ

Namely,

jW3i ¼
js�i ¼ j ##i; B > Bc

jsþi ¼ j ""i; B < Bc

�
; ðA6Þ

jW4i ¼
jsþi ¼ j ""i; B > Bc

js�i ¼ j ##i B < Bc;

�
: ðA7Þ

Here, we use the notation jW3;4i for the c ¼ 0 having in mind the
features mentioned above.

Appendix B. On the ground states for Ising diamond chain

Here we present the ground states and the corresponding ener-
gies per the unit cell for the Ising diamond chain. In our to make
the link between Ising and Ising-Heisenberg counterparts more
clear and facilitate the interpretation of the Ising limit we keep
in general the same notations for the ground states.

1. Quasi-saturated (QS1) state splits into two states
jQS�1 i ¼
YN

2

j¼1
j " i2j�1 	 js�i2j�1 	 j " i2j 	 js�i2j; ðB1Þ

E�
QS1

¼D
2
� B
2
ðg3 þ g4Þ � Bðg1 þ g2Þ � 2Kð Þ; ðB2Þ

Thus, jQSþ1 i corresponds to a saturated (S) state for B > Bc ¼ 2K
g1þg2

,

whereas jQS�1 i stands for a ferrimagnetic (FIM) state when
B < Bc ¼ 2K

g1þg2
.

2. Quasi-saturated QS2 state splits into two states
jQS�2 i ¼
YN

2

j¼1
j # i2j�1 	 js�i2j�1 	 j # i2j 	 js�i2j; ðB3Þ

E�
QS2

¼D
2
þ B
2
ðg3 þ g4Þ � Bðg1 þ g2Þ þ 2Kð Þ ðB4Þ

Thus, jQS�2 i corresponds to a saturated (S) state for B < Bc ¼ �2K
g1þg2

,

whereas jQSþ2 i stands for a ferrimagnetic (FIM) state when
B > Bc ¼ �2K

g1þg2
.

3. Ferrimagnetic states, FI1 and FI2
jFIþ1 i ¼
YN

2

j¼1
j " i2j�1 	 j "# i2j�1 	 j " i2j 	 j "# i2j; ðB5Þ

Eþ
FI1

¼� D
2
� B
2
ðg3 þ g4Þ � Bðg1 � g2Þ ðB6Þ

jFIþ2 i ¼
YN

2

j¼1
j # i2j�1 	 j "# i2j�1 	 j # i2j 	 j "# i2j; ðB7Þ

Eþ
FI2

¼� D
2
þ B
2
ðg3 þ g4Þ � Bðg1 � g2Þ ðB8Þ

Exchanging the values of the g1 and g2 as well as the orientation
of all Sj spins one can get another pair of states, FI�1 and FI�2
respectively.
4. Antiferromagnetic states, AF1 and AF2
jAFþ
1 i ¼

YN
2

j¼1
j " i2j�1 	 j "# i2j�1 	 j #i 	 j "# i2j ðB9Þ

Eþ
AF1

¼� D
2
� B
2
ðg3 � g4Þ � Bðg1 � g2Þ ðB10Þ

jAFþ
2 i ¼

YN
2

j¼1
j # i2j�1 	 j "# i2j�1 	 j " i2j 	 j "# i2j ðB11Þ

Eþ
AF2

¼� D
2
þ B
2
ðg3 � g4Þ � Bðg1 � g2Þ: ðB12Þ

In the full analogy with the previous case, one can also define
another pair of the antiferromagnetic states, AF�

1 and AF�
2 , by

exchanging the values of the Isign spins g-factors simultane-
ously with the orientation of all Sj spins.

5. ‘‘Quantum ferrimagnetic” states QI1 and QI2
The Ising limit of the Eqs. (23) and (24) lead to the following
four ground states of the Ising diamond-chain. Though, some
of them have pure antiferromagnetic orientation of spins and
other can be described as pure ferrimagnetic ones, we keep
the original notations form the Ising-Heisenberg case in order
to avoid a confusion.
jQI�1 i ¼
YN

2

j¼1
j " i2j�1 	 js�i2j�1 	 j # i2j 	 js�i2j; ðB13Þ

E�
QI1

¼D
2
� B
2
ðg3 � g4Þ � Bðg1 þ g2Þ; ðB14Þ

jQI�2 i ¼
YN

2

j¼1
j # i2j�1 	 js�i2j�1 	 j " i2j 	 js�i2j; ðB15Þ

E�
QI2

¼D
2
þ B
2
ðg3 � g4Þ � Bðg1 þ g2Þ: ðB16Þ

Appendix C. Frustrated interface state for Ising diamond chain

Here we list possible interfaces between various ground states
of the Ising diamond chain with ferromagnetic couplings and
mixed, positive and negative, g-factros.

C.1. One frustrated spin (1/6-fire and 5/6-ice)

The configuration with one frustrated sublattice (‘1/6-fire and
5/6-ice’ in the terms of Ref. [7]) corresponds to the interface
between Quasi-saturated and ‘Quantum-ferrimagnetic’ states
when g3 or g4 is negative.

Bc ¼

2K
g3
; QSþ1 $ QIþ2 ; and QSþ2 $ QIþ1 ;

� 2K
g3
; QS�1 $ QI�2 ; and QS�2 $ QI�1 ;

2K
g4
; QSþ1 $ QIþ1 ; and QSþ2 $ QIþ2 ;

� 2K
g4
; QS�1 $ QI�1 ; and QS�2 $ QI�2 :

8>>>>><
>>>>>:

ðC1Þ

When spin with g3 (g4) is frustrated, the corresponding residual
entropy per block is S ¼ kB lnð2Þ.

C.2. Two frustrated spin (1/3-fire and 2/3-ice)

For the case of two frustrated spins into the unit cell one hase
the following interfaces between the ground states of the Ising dia-
mond chain: interface between ‘Quantum-ferrimagnetic’ and Anti-
ferromagnetic states,

Bc ¼

D
2g1

; QIþ1 $ AF�
1 and QIþ2 $ AF�

2 ;

� D
2g1

; QI�1 $ AFþ
1 and QI�2 $ AFþ

2 ;

D
2g2

; QIþ1 $ AFþ
1 and QIþ2 $ AFþ

2 ;

� D
2g2

; QI�1 $ AF�
1 and QI�2 $ AF�

2 ;

8>>>>><
>>>>>:

ðC2Þ
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interface between Quasi-saturated and Ferrimagnetic states,

Bc ¼

D�2K
2g1

; QSþ1 $ FI�1 QSþ2 $ FI�2
� �

;

� D�2K
2g1

; QS�2 $ FIþ2 QS�1 $ FIþ1
� �

;

D�2K
2g2

; QSþ1 $ FIþ1 QSþ2 $ FIþ2
� �

;

� D�2K
2g2

; QS�2 $ FI�2 QS�1 $ FI�1
� �

:

8>>>>><
>>>>>:

ðC3Þ

There is another interface between the Quasi-Saturated states
QSþ1 $ QSþ2 and QS�1 $ QS�2 . For this case we have

Bc ¼ � 4K
g3 þ g4

; ðC4Þ

respectively. Here the spins with g3 and g4 are frustrated.

C.3. Three frustrated spins (1/2-fire and 1/2-ice)

When three form the six spins in the unit cell are frustrated we
one can speak about ‘1/2-fire and 1/2-ice’ configuration. the corre-
sponding interfaces are listed below.

Interface between ‘Quantum-ferrimagnetic’ and Ferrimagnetic
ground states, when two spins with g1 (g2) and one spin with are
disordered g4, the critical magnetic field becomes

Bc ¼

D
2g1�g4

; QIþ2 $ FI�2 QIþ1 $ FI�1
� �

;

� D
2g1�g4

; QI�1 $ FIþ1 QI�2 $ FIþ2
� �

;

D
2g2�g4

; QIþ2 $ FIþ2 QIþ1 $ FIþ1
� �

;

� D
2g2�g4

; QI�1 $ FI�1 QI�2 $ FI�2
� �

;

8>>>>><
>>>>>:

ðC5Þ

when two spins with g1 (or g2) and one spin with g3 are disordered

Bc ¼

D
2g1�g3

; QIþ1 $ FI�2 QIþ2 $ FI�1
� �

;

� D
2g1�g3

; QI�2 $ FIþ1 QI�1 $ FIþ2
� �

;

D
2g2�g3

; QIþ1 $ FIþ2 QIþ2 $ FIþ1
� �

;

� D
2g2�g3

; QI�2 $ FI�1 QI�1 $ FI�2
� �

:

8>>>>><
>>>>>:

ðC6Þ

There is the interfaces between Quasi-saturated and Antiferro-
magnetic states. When two spins with g1 (or g2) and one spin with
g4 are disordered,

Bc ¼

� Dþ2K
2g1þg4

; QSþ1 $ AF�
1 QS�2 $ AFþ

2

� �
;

� D�2K
2g1�g4

; QSþ2 $ AF�
2 QS�1 $ AFþ

1

� �
;

� Dþ2K
2g2þg4

; QSþ1 $ AFþ
1 QS�2 $ AF�

2

� �
;

� D�2K
2g2�g4

; QSþ2 $ AFþ
2 QS�1 $ AF�

1

� �
;

8>>>>><
>>>>>:

ðC7Þ

When two spins with g1 (or g2) and one spin with g3 are disordered

Bc ¼

� Dþ2K
2g1þg3

; QSþ1 $ AF�
2 QS�2 $ AFþ

1

� �
;

� D�2K
2g1�g3

; QSþ2 $ AF�
1 QS�1 $ AFþ

2

� �
;

� Dþ2K
2g2þg3

; QSþ1 $ AFþ
2 QS�2 $ AF�

1

� �
;

� D�2K
2g2�g3

; QSþ1 $ AFþ
2 QS�1 $ AF�

2

� �
:

8>>>>><
>>>>>:

ðC8Þ
C.4. Four frustrated spins (2/3-fire and 1/3-ice)

There are several critical points corresponding to four disor-
dered spins in the six-spin unit cell. The interfaces between two
quasi-saturated states (QSþ1 $ QS�1 and QSþ2 $ QS�2 ) exist at

Bc ¼ � 2K
g1 þ g2

; ðC9Þ

respectively. The four spins with the g-factors g1 and g2 are frus-
trated here.
Critical magnetic field for the phase boundary between Quasi-
ferrimagnetic and Antiferromagnetic states is given by,

Bc ¼

D
2g1�ðg3�g4Þ ; QIþ1 $ AF�

2 QIþ2 $ AF�
1

� �
;

�D
2g1�ðg3�g4Þ ; QI�2 $ AFþ

1 QI�1 $ AFþ
2

� �
;

D
2g2�ðg3�g4Þ ; QIþ1 $ AFþ

2 QIþ2 $ AFþ
1

� �
;

�D
2g2�ðg3�g4Þ ; QI�2 $ AF�

1 QI�1 $ AF�
2

� �
:

8>>>>><
>>>>>:

ðC10Þ

Whereas the interface between Quasi-ferrimagnetic and Ferri-
magnetic phases by

Bc ¼

�ðDþ2KÞ
2g1þðg3þg4Þ ; QSþ1 $ FI�2 QS�2 $ FIþ1

� �
;

�ðD�2KÞ
2g1�ðg3þg4Þ ; QSþ2 $ FI�1 QS�1 $ FIþ2

� �
;

�ðDþ2KÞ
2g2þðg3þg4Þ ; QSþ1 $ FIþ2 QS�2 $ FI�1

� �
;

�ðD�2KÞ
2g2�ðg3þg4Þ ; QSþ2 $ FIþ1 QS�1 $ FI�2

� �
:

8>>>>>><
>>>>>>:

ðC11Þ

In all these sixteen cases the spins with g1 (or g2) and one both
spins with g3 and g4 are frustrated.

C.5. Five frustrated spins (5/6-fire and 1/6-ice)

Finally, the spin configuration with five frustrated spins in the
six-spin unit cell is possible at the interface between quasi-
saturated and ‘‘quasi-ferrimagnetic” states. The phase boundary
of these ‘5/6-fire and 1/6-ice’ sates are given by

Bc ¼

2K
2ðg1þg2Þ�g4

; QSþ1 $ QI�1 QS�1 $ QIþ1
� �

;

�2K
2ðg1þg2Þ�g4

; QS�2 $ QIþ2 QSþ2 $ QI�2
� �

;

2K
2ðg1þg2Þ�g3

; QSþ1 $ QI�2 QS�1 $ QIþ2
� �

;

�2K
2ðg1þg2Þ�g3

; QS�2 $ QIþ1 QSþ2 $ QI�1
� �

:

8>>>>><
>>>>>:

ðC12Þ

It is easy to recognizing looking at the denominators that in all
cases two spins with g1 g-factor, two spins with g2, one of the spins
with g3 and g4 are frustrated.
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