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Abstract

This paper explores the optimization of an array of pick-up coils in a home-made

vibrating sample magnetometer for the detection of magnetic moment in thin

films. Sensitivity function of a 4-coils Mallinson configuration was numerically

studied for the determination of the physical dimensions that enhance the sen-

sitivity of the magnetometer. By performing numerical simulations using the

Biot-Savart law combined with the principle of reciprocity we were able to de-

termine the maximum values of sensitivity and the influence of the separation of

the coils on the sensitivity function. After the optimization of the pick-up coils,

the vibrating sample magnetometer was able to detect the magnetic moment of

a 100 nm-thickness Fe19Ni81 magnetic thin film along and perpendicular to the

in-plane anisotropy easy axis. The implemented vibrating sample magnetometer

is able to detect changes in the magnetic moment of ∼ 2 × 10−4 emu.
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1. Introduction

The measurement of magnetic moments using a Vibrating Sample Magne-

tometer (VSM) is based on the Faraday’s law. The electromagnetic induction

in an array of coils caused by the controlled motion of a magnetic sample in the

vicinity of the coils gives quantitative information related to the magnetic mo-5

ment of a sample [1]. This mechanism of magnetic moment detection is known

as inductive detection and its sensitivity and performance is strongly related

to the pick-up coil configuration, physical dimensions and cross section of the

coils. Since the fabrication of the VSM in 1959 by Simon Foner, several authors

reported relevant aspects of this type of magnetometer, such as theoretical and10

numerical calculation of the induced electromotive force [2], study and determi-

nation of the sensitivity function [3] and increase of the sensitivity [4]. In this

frame, the works of Zieba et al. [3] and Mallinson [5] highlight the important

role of the physical dimensions and characteristics of the pick-up coils on the

sensitivity function of the magnetometer. Mallinson published the first work on15

the determination of the optimal dimensions of the 4-coils configuration using

the principle of reciprocity in electromagnetism [5]. This principle is a conse-

quence of the mutual inductance between two coils and states that the mutual

flux threading two coils is independent of which one carries the current. On

the other hand, Zieba et al. [3] performed approximations of the sensitivity20

function for axial and transversal coil configurations using spherical harmonic

expansions. Their results allowed to quantitatively compare the sensitivity func-

tion for different coil arrangements that employ even number of coils and also

to study the influence of the sample geometry on the output signal of the coils.

These works were the foundations for the implementation of low cost home-25

made vibrating sample magnetometers [6, 7, 8, 9], particularly at undergraduate

level in physics. However, it is important to notice that most of these works

focused their results on the construction and calibration of the VSM for the

detection of samples with high magnetic signal. There are only a few papers

that focused their attention into the design and optimization of the physical30
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dimensions of the pick-up coils in order to enhance the sensitivity function of the

magnetometer, that allows to detect magnetization in thin films or samples with

low magnetic signal. This work discusses the influence of the coil dimensions

on the sensitivity function through numerical simulations using the Biot-Savart

law combined with the principle of reciprocity.35

2. Experimental details

A schematic of the implemented VSM is shown in Fig. 1. The oscillatory

motion of the magnetic sample is controlled by a loudspeaker of 30 W of power.

Samples were placed at the end of a glass rod of 5 mm-diameter attached to

the loudspeaker membrane. Pick-up coils were fabricated using copper wire40

AWG-42. Each coil has approximately 6500 turns and was compensated by

measuring the induced voltage produced by an alternating magnetic field. The

number of turns per coil was determined through the induced voltage; each

coil induces the same voltage for a fixed value of alternating magnetic field. A

Stanford Research SR-830 lock-in amplifier was used not only for the detection45

and amplification of the output voltage in the coils, but also to supply the

reference signal to the loudspeaker. A KEPCO BOP 50-8 ML power source

that supplies a CENCO electromagnet produces an external magnetic field of

up to 2000 Oe. The magnetic field was detected and measured by a transversal

Hall probe connected to a magnetic transducer GLOBALMAG model TMAG-50

V2 with an analog output. Fig 1b) shows an image of the sample zone indicating

the position of the pick-up coils and the placement of the sample.

The data collection of the VSM was performed using the programming lan-

guage Python[10] to control the data communication through a GPIB-Ethernet

interface. Numerical simulations for the determination of the sensitivity func-55

tion of the magnetometer were also performed using Python.
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Figure 1: (a) Block diagram of the home-made VSM (b) Image of the vibrating sample

magnetometer indicating the pick-up coils placement and the glass rod that supports the

magnetic sample.

3. Results and Dicussions

Numerical simulations of the sensitivity function are based on the principle

of reciprocity and the Biot-Savart law. In order to determine the output voltage

Vind of the pick-up coils, it is necessary to calculate the integral of flux change60

dΦ
dt generated by the movement of the magnetic sample, according to Faraday’s

law: Vind = −dΦ
dt . On the other hand, by applying the principle of reciprocity,

it is possible to estimate the flux inside each coil in our coils-sample system,

through the relation ~B · ~µ = IΦ. In this relation ~µ is the magnetic moment of

the sample, I is the current passing through the coils and ~B is the magnetic65

field at the position of the magnetic moment. According to this, we deduced

that the induced voltage in the pick-up coils depends on the magnetic moment

of the sample µ, the sensitivity function G(~r) and the velocity of the sample, as

shown in Eq. 1[3, 11]:

Vind = −
dΦ

dz

dz

dt
= grad

(

~B(~r) · ~µ

I

)

· ~v(t) = µG(~r)v(t) , (1)
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where G(~r) = grad
( ~B(~r)·ê~µ

I

)

· ê~v is the sensitivity function. We considered in70

Eq. 1 that z is the oscillation direction of the magnetic sample and v(t) =

Aω cos(ωt) is the velocity of the sample. We also observed in Eq. 1 that the

induced voltage is proportional to the amplitude and frequency of the oscillatory

motion of the magnetic sample. A coordinate system describing the relative

orientation between the axis of the coils and the oscillation direction of the75

sample in our magnetometer is shown in Fig. 2a). Using the coordinate system

shown in Fig. 2b) where ê~µ ‖ ŷ and ê~v ‖ ẑ, the sensitivity function G(~r) can be

reduced to the following:

G(~r) =
∂By(~r)

∂z
. (2)

Figure 2: (a) Coordinate system that describe the relative orientation between the axis of the

coils and the oscillation direction of the sample. The magnetic field is applied along y axis

and the movement of the sample is along z axis (vertical arrow). (b) Coordinate system and

vectors used for the calculation of the magnetic field at the sample position. Vertical and

horizontal separation of the center of the coils with respect to the z and y axis are zc and yc

respectively.

To calculate the sensitivity function of the Mallinson configuration in our

magnetometer we used the Biot-Savart relation:80
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~B =
1

c

∮

Id~l × ~r

r3
, (3)

where I is the current passing in each coil, d~l is the differential vector on the

contour of the loops and ~r is the displacement vector from the wire element to the

origin of the coordinate system. To compute the magnetic field, we considered

that the vector from the origin (sample’s position) to the center of the coil

has coordinates ~rc = (0, yc, zc) and the vector that determines the external85

contour of the coil (in the xz plane) is ~re = (R sin θ, 0,−R cos θ). According

to this, the vector that describes the position of a point in the contour of the

loops is given by ~r = −(~rc + ~re) = −(R sin θ, yc, zc − R cos θ) . The differential

vector d~l, was calculated taking the derivative of ~re with respect to θ: d~l =

(R cos θ, 0, R sin θ) dθ . Therefore, the cross product of equation 3 is given by90

d~l × ~r = (ycR sin θ, zcR cos θ − R2,−ycR cos θ) dθ. As a result, the integral of

Eq. 3 results in an angular integral from 0 to 2π:

~B =
I

c

∫ 2π

0

(ycR sin θ, zcR cos θ −R2,−ycR cos θ)

(R2 + y2c + z2c − 2zcR cos θ)3/2
dθ . (4)

According to Eq. 2, to determine the sensitivity function it is necessary to

calculate the y-component of the magnetic field ~B:

By =
I

c

∫ 2π

0

zcR cos θ −R2

(R2 + y2c + z2c − 2zcRcosθ)3/2
dθ . (5)

In order to compute the sensitivity of the whole coil, we must add the contri-95

bution of all loops. Therefore, a more generalized expression for the sensitivity

function in each coil is given by the following expression:

G(~r) =
I

c

ns
∑

m=0

nl
∑

n=0

∂

∂zc

∫ 2π

0

zc(Rint +md) cos θ − (Rint +md)2

[(Rint +md)2 + (yc + nd)2 + z2c − 2zc(Rint + id)cosθ]3/2
dθ .

(6)

where we have considered d as the diameter of the wire, nl is the number of

loops to make a solenoid and ns is the number of solenoid shells that make

up the entire sensing coil. From the previous equation we notice that the first100
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sum builds the coil axially, such that nl × d equals its length. The second

sum varies the radius in the integral such that it starts at rint and ends with

rint+ns×d = Rext. It is important to notice that the integration limits depend

on the coil that is being considered. Mallinson’s geometry requires that the

four balanced coils must be wounded in series opposition [5], in order to obtain105

a maximum output signal and to reduce the electrical response of the coils to

the magnet or to external signals. In our model, the integration limits will be

determined by the current direction in each coil.

In order to estimate the derivative of By with respect to z we calculated the

integral in Eq. 6 evaluated in z = zc± δz to numerically estimate the sensitivity110

function according to the following expression:

G(~r) =
∂By(~r)

∂z
≈

By+ −By−

2δz
, (7)

where By+ and By− correspond to the integral evaluated in zc + δz and zc − δz

respectively. Numerical calculation of the sensitivity function allow us to ob-

tain G(~r) for different Mallinson configurations. This analysis will help us to

determine not only the required dimensions of the coils but also the influence115

of the relative position between the coils, external and internal radius on the

sensitivity function of the magnetometer. The Python code used and a detail

description of the calculation of the sensitivity function is given in the supple-

mentary file of the manuscript.

120

3a) Influence of the y- and z-axis separation of the coils.- Numerical calcula-

tion of equations 6 and 7 allow us to determine the maximum values of the

sensitivity as a function of the y− and z−separation of the coils. Fig. 3 shows

the influence of the separation of the coils in both axis labeled as yc and zc,

according to the coordinate system shown in Fig. 2b). It is important to notice125

that the y−axis separation is limited by the gap that determines the sample’s

position, around 1 cm in most of the cases. For the calculations we have consid-

ered an external radius of the coils of 1.5 cm, that limits the vertical separation
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(zc). On the one hand, in Fig. 3a) the sensitivity function of the coils configura-

tion is plotted as a function of the horizontal separation yc for different values130

of zc. As expected, in the case of a zero vertical gap between the coils, corre-

sponding to a value of zc = 1.5 cm, there is a notable increase of the sensitivity

function, that rapidly decreases as the value of zc increases.
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Figure 3: (a) Sensitivity as a function of the the y-axis separation of the coils yc for different

values of zc. The vertical dashed line indicates the limit of the region in the y-axis where the

sample is placed. Units of sensitivity function are Gauss/cm. (b) Sensitivity as a function

of the the z-axis separation of the coils zc for different values of yc. The vertical dashed line

indicates that the vertical gap between the coils is zero, due to its external radius zc = 1.5

cm. (c) Log-linear plot of G(r) as a function of the y-axis separation for different values of

zc. (d) Log-linear plot of G(r) as a function of the z-axis separation for different values of yc.

On the other hand, the dependence of the vertical separation on the sensi-

tivity function of the coils (Fig. 3b)) also shows an increase as we decrease the135

separation of the center of the coils and the y axis. This result verifies that a

higher sensitivity of the function can be achieved as we approach the pairs of

coils in the y axis. Fig. 3a) and 3b) also show that the sensitivity function can

also take negative values. This behavior of the sensitivity function is a conse-

quence of the spacial distribution of the stray field of the magnetic sample, that140

in some cases induces a change of the current sense in the coils. Figures 3c) and
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3d), that show the sensitivity function in a log-linear plot, evidenced that the

dipole decays of the sensitivity function changes through 4 orders of magnitude

for y-axis separation of the coils below 1 cm for different values of zc. However,

for the selected values of yc, we appreciate that the sensitivity function does not145

change in the same way for z-axis separation, due to G(r) rapidly goes to zero

as shown in Fig. 3d). Our results agree with previous calculations performed

by other authors that also show the same behavior of the sensitivity function

[12]. More detailed calculations performed by our group indicate that there is a

region near the coils where the G(r) can take negative values. A report of these150

results will be published shortly.

3b) Influence of the internal and external radius on the sensitivity function.-

Numerical simulations varying the internal and external radius of the coils were

also performed. As it was mentioned above, the internal radius parameter rint155

was included into the calculation of the sensitivity function in Eq. 6. The detail

description of the calculation of the sensitivity function is given in the supple-

mentary file. Fig. 4 shows the sensitivity as a function of the external radius of

the coils for different values of internal radius rint. Simulations revealed that

the sensitivity function increases up to a maximum value of G(~r) around Rext160

= 3.5 cm. This maximum value of the sensitivity can be explained by the 1/R2

dependence of the integral in Eq 5.

As expected, we also observed in Fig. 4 that for smaller values of the external

radius, the sensitivity function increases as we decrease the internal radius.

According to the results on the influence of the internal and external radius165

of the coils and also of the vertical and horizontal separation on the sensitivity

function it is possible to determine the optimal dimensions and placement of the

pick-up coils for our magnetometer. Having into consideration the dimensions

of our electromagnet and the gap between the poles we chose a region in Fig.

4 (indicated by vertical lines) with adequate values for rint and Rext without170

reducing the sensitivity considerably. We set the dimensions and relative place-

ment of the pick-up coils to yc = 1 cm, rint = 1 cm and Rext = zc = 1.5 cm.

9
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Figure 4: Sensitivity as a function of the the external radius for different values of the internal

radius ri of the pick-up coils.

The coils were fabricated avoiding wire breaks during wounding. Considering

these dimensions for our pick-up coils, a rough estimation of the induced signal

can be obtained. A sample with a magnetic moment of 1 × 10−4 emu (or 1 ×175

10−7 A m2) will generate a magnetic field at the vicinity of the coils (placed

at yc = 1 cm) of ∼ 0.1 µT (according to the Biot-Savart law). This value

multiplied by the number of turns, the vibration frequency and integrated over

the surface of the coils (rint = 1 cm) gives and induced voltage of 20 µV. This

estimated induced voltage agrees with the induced signal detected by our coils180

in the experiments performed during the optimization of our vibrating sample

magnetometer: 0.1 - 10 µV.

3c) Hysteresis loops of Fe19Ni81 thin films.- The magnetic moment of the sample

was measured using a time constant of τ = 100 ms, an oscillation frequency of f185

= 95 Hz and a supplied voltage to the loudspeaker of V = 1 Vrms. The required

time to complete a magnetic field cycle (starting from +H to -H and then to

+H) is around 50 minutes.

Figure 5a) shows the magnetization measurements with the external mag-
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netic field applied along the in-plane easy axis of a Si(100)//FeNi(100 nm) thin190

film. The dimensions of the Py sample used to obtain the hysteresis loop shown

in Fig. 5 are 100 nm × 2.2 mm × 2.8 mm, which give a volume of 6.16 × 10−7

cm3. Now considering that the saturation magnetization of Py is around 1 T

or 800 emu/cm3, the expected magnetic moment should be 4.9 × 10−4 emu.

As observed in Fig. 5, the value of the magnetic saturation is slightly above 5195

× 10−4 emu, which agrees with our estimation of the magnetic moment. The

square shape of the magnetization curve and the very low coercive field indicate

the presence of a well defined uniaxial anisotropy of the film. As it was expected,

the coercive field of the FeNi layer is below 10 Oe. On the other hand Fig. 5b)

shows the hysteresis loop along the hard axis of the FeNi film. As expected,200

a linear dependence of the magnetization and the lack of coercive field in the

hysteresis loop was observed.
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Figure 5: Magnetization curves of a 100 nm-thickness thin film of Fe19Ni81. The magnetic

field was applied (a) parallel to the in-plane easy axis and (b) perpendicular to the easy axis.

The diamagnetic signal arising from the sample holder was corrected through a linear fitting

of the data.

The magnetization curves of the FeNi thin film evidence the relatively high

sensitivity of our home-made vibrating sample magnetometer (∼ 2 × 10−4 emu)

as a result of the pick-up coils optimization through numerical simulations.205
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4. Conclusions

In conclusion, we have been able to implement a vibrating sample magne-

tometer with a sensitivity of ∼ 2 × 10−4 emu. The optimal physical dimensions

and relative position between the pick-up coils in a Mallinson configuration were

determined through numerical calculations of the sensitivity function based on210

the principle of reciprocity and the Biot-Savart law. Our results can be in-

terpreted as a mechanism to determine the optimal dimension of the pick-up

coils to enhance its sensitivity. Numerical simulations of the sensitivity func-

tion provided information about the performance of the detection mechanism in

a multi-coil arrangement. Magnetization measurements in Fe19Ni81 confirmed215

that our magnetometer has an enhanced performance and is able to detect the

magnetic moment of permalloy thin films of 100-nm thickness and also to iden-

tify interesting phenomena such as the presence of magnetic anisotropies.
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Highlights of the manuscript entitled 

“Detection of magnetic moment in thin films with a home-made vibrating sample 

magnetometer.” 

 

The main contributions and highlights of this research are: 

1) The optimization of the pick-up coils through numerical simulation based on the Biot-

Savart law combined with the principle of reciprocity in electromagnetism. 

2)  The implementation of a home-made vibrating sample magnetometer with enhanced 

sensitivity ~ 2 x 10-4 emu. 

3) The observation of in-plane magnetic anisotropies of thin films with a home-made VSM. 


