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A B S T R A C T

We map an interacting helical liquid system, coupled to an external magnetic field and s-wave superconductor,
to an XYZ spin system, and it undergoes Majorana-Ising transition by tuning of parameters. In the Majorana state
lowest excitation gap decays exponentially with system size, and the system has degenerate ground state in the
thermodynamic limit. On the contrary, the gap opens in the Ising phase even in the thermodynamic limit. We
study various criteria to characterize the transition, such as edge spin correlation with its neighbor =C r( 1),
local susceptibility i, superconducting order parameter of edge spin =P r( 1), and longitudinal structure factor
S k( ). All these criteria lead to the same critical value of parameters for Majorana-Ising phase transition in the
thermodynamic limit. We study the entanglement spectrum of the reduced density matrix of the helical liquid
system. The system shows finite Schmidt gap and non-degeneracy of the entanglement spectrum in the Ising
limit. The Schmidt gap closes in the Majorana state, and all the eigenvalues are either doubly or multiply
degenerate.

1. Introduction

The Majorana fermion (MF) was first proposed by E. Majorana as a
real solution of Dirac equation [1]. In the past few years, understanding
MF in condensed matter physics has become a topic of theoretical and
experimental research [2,3]. Recent studies show that it exists as qua-
siparticle excitation in condensed matter system [4–25]. The fact that
the exchange of two MF follows non-abelian statistics in contrast to
normal bosons and fermions, is useful for quantum computation which
is robust against local perturbation [4,26–28]. Kitaev proposed Ma-
jorana modes in 1D toy model with proximity induced superconductor
[4]. Inspired by Kitaev’s work, many other systems are proposed to
exhibit Majorana quasiparticle excitation, such as semiconductor-su-
perconductor nano wire [9–15], Bogoliubov quasiparticle in two-di-
mensional superconductors [5–8], proximity induced topological su-
perconductor [16–23,29], and the cold atoms trapped in one-dimension
[24,25].

The real world applications of these fermionic systems depend on
the stability of the MF. A single spin polarized fermion band system
with spin orbit coupling and proximity induced superconductor shows
Majorana like modes in the presence of weak fermionic interaction.
However, it was shown that the interaction weakens the stability of the
MF [30]. Potter and Lee [21] showed that the +p ip superconductor

possesses localized Majorana particles in a rectangular system with
width less than the coherence length of the superconductor. The helical
liquid system is another candidate where the Majorana like quasi-par-
ticles can exist. The helical liquid system generally originates because of
the quantum spin Hall effect in a system with or without Landau levels.
In this system, a coupling of the left moving down spin with the right
moving up spin at the edge of two dimensional quantum hall systems
gives rise to a quantized transport process. In this phase, the spin and
the momentum degrees of freedom are coupled together without
breaking the time reversal symmetry. Various aspects of helical spin
liquid is discussed in [31–35].

The field theoretical calculation by Sela et al. [31] shows that the
Majorana bound state in a helical liquid possesses a higher degree of
stability. In presence of the interaction, the scattering processes be-
tween the two constituent fermion bands in the helical liquid system
stabilizes the Majorana bound state by opening a gap [22,30–32].
However, the strong interaction may induce decoherence in the Ma-
jorana modes. They also considered a highly anisotropic spin model
with transverse and longitudinal fields, and the system shows Majorana
to Ising transition (MI) [31,32,35]. One of our coauthors showed using
RG calculation that a transition from a phase with Majorana edge
modes to the Ising phase exists in the helical liquid system for both
presence and absence of interaction [32]. However, a systematic and
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accurate calculation of the phase boundary of the MI quantum phase
transition is still absent in the literature. The above model can be
mapped to a one dimensional (1D) XYZ spin-1/2 model. The XYZ model
for a spin-1/2 chain can be realised in presence of anisotropic inter-
actions between two neighbouring spins. The zero energy mode (ZEM)
in spin chains and spinless fermionic model is explained very well in
Ref. [36].

In this paper, we study the existence of the Majorana like ZEM in the
spin-1/2 XYZ model, and also propose different criteria to characterize
the MI quantum phase transition. We also analyze the entanglement
spectrum (ES) to characterize the topological aspects of the ZEM. To
understand the ZEM in spin-1/2 XYZ model and for the sake of com-
pleteness, let us review the Majorana zero energy modes in helical li-
quid system [31].

Sela et al. [31] introduced a helical fermionic system, which can be
written in the field theoretical representation as

= + + +H H H H H ,fw um0 (1)

where H0 and H include the kinetic energy, single potential energy,
external magnetic field, and proximity induced energy terms. Hfw and
Hum represent the forward scattering and the umklapp scattering terms
respectively. The H0 and H terms can be written more explicitly as

= +

= + +
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where L and R are the field operators for left moving down spin and
right moving up spin fermions respectively, vF and µ are the Fermi-
velocity and chemical potential of the helical liquid. The system is
coupled to the magnetic field B, and is the proximity induced su-
perconducting gap. When a helical liquid system is interfaced with s-
wave supercondector, Cooper pairs can tunnel into the surface state of
the system due to proximity effect. This phenomenon in the system can
be taken care by pairing energy term with amplitude which depends
on the nature of the interface of the helical liquid and the super-
conductor [16,37].

Both the scattering terms are given as
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The conventional analytical expression for the umklapp scattering term
Hum for the half filling [31,32,35,38] is written in Eq. (3). This analy-
tical expression gives a regularized theory using the lattice constant a as
an ultraviolet cut-off.

This complete Hamiltonian in Eq. (1) is mapped to a spin-1/2 XYZ
model Hamiltonian [31,32,35]
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Here, = ++S S iSx y and =S S iSx y are the spin raising and lowering
operators and =J v ,F is the proximity induced superconducting gap
introduced earlier. In spin model this creates the anisotropy in the x
and y direction as we can write, without loss of generality, = +J Jx

and =J Jy . µ and Bare longitudinal normal and staggered mag-
netic field applied externally. Here, all the scattering terms of the he-
lical system in Eq. (3) are mapped to the interaction energy of the spin
component in zdirection as = = =J gz g g

u4 2
2 4 .

The spin Hamiltonian in Eq. (4) can be mapped to helical liquid
Hamiltonian in Eq. (1) by mapping the spin operators exactly to the
spinless fermionic operator by Jordan-Wigner transformation [39] and
then expressing the spinless fermionic operators ci with left and right
moving fermions [39] as +c e ei

i x
R

i x
L2 2 .

To have a better understanding of the Majorana modes, we map this

spin system in Eq. (4) to the spinless fermion model as [40]
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For better insight, let us try to understand the results in the limiting
cases. This model is well studied in the limit of =B 0 and =J 0z , and
Eq. (5) reduces to 1D Kitaev model [4,41] which is given by
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The spinless fermionic operators cj can be expressed in terms of
Majorana operators aj as

= +c a ia1
2

( )j j j2 1 2 (7)
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2

( )j j j
†

2 1 2 (8)

Here, aj
† and aj are the creation and annihilation operators of jth

Majorana fermion. Thus the Eq. (6) can be transformed exactly as
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There are two conditions: first, when = =J 0 and <µ 0, system
shows trivial phase and two Majorana operators at each site are paired
together to form a ground state with occupation number 0. Secondly,
for = >J 0 and =µ 0, the Majorana operators from two neighboring
sites are coupled together leaving two unpaired Majorana operators at
the two ends, and these two Majorana modes are not coupled to the rest
of the chain [4,19]. The fermionic edge state formed with these two end
operators has occupation 0 or 1 with degenerate ground state, i.e.,
generating zero energy excitation modes. However, the bulk properties
of these systems can be gapped.

In most of the papers [22,42–45], the ZEM are characterized by
exponential decay of the lowest excitation gap with system size, and a
large expectation value of the creation operator of the fermion

c| |1
†

2 near the edges of the system, where 1 and 2 are the wave
functions of two lowest energy states. However, in the spin language
there is no trivial relation between the Majorana mode and spin raising
operators. Therefore, in this paper our main focus is to find the accurate
phase boundary of the MI transition, and for this purpose we focus on
the lowest excitation gap , derivative of longitudinal spin-spin corre-
lations C (1) between edge spin and its nearest neighbor spin, and spin
density e of edge sites. In principle, the ZEM do not couple with the
bulk states [4,19]; therefore, this correlation of the edge spin should
decay exponentially. We notice that a local magnetic susceptibility i
shows a discontinuity near the phase transition. Fifth quantity is P r( ) of
edge spin, and it is similar to the spin quadrupolar/spin-nematic order
parameter [46–48] or superconducting order parameter of model in Eq.
(5). The structure factor S q( ) gives us information about the phase
boundary and the bulk state. Based on the above quantities the MI
transition boundary is calculated in this paper. The bulk properties of
the Majorana state of the helical liquid is rarely discussed in the lit-
erature, however we will try to discuss those properties in this paper. In
later part of this paper, the ES of both states are also discussed to un-
derstand the topological aspects of Majorana modes.

The Hamiltonian mentioned in Eq. (4) is treated with exact diag-
onalization (ED) method and Density matrix renormalization group
(DMRG) method [49,50]. We have considered open boundary condition
of the system to understand the edge modes. The systems with up to
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=N 24 spins are treated with ED. For higher system sizes, we have used
DMRG method. The DMRG is a state of the art numerical technique to
solve the D1 interacting system, and is based on the systematic trun-
cation of irrelevant degrees of freedom in the Hilbert space [49,50].
This numerical method is best suited to calculate a few low lying ex-
cited states of strongly interacting quantum systems accurately. To
solve the interacting Hamiltonian for ladder and chain with periodic
boundary condition, the DMRG method is further improved by mod-
ifying conventional DMRG method [51] for zigzag chains [52], quasi
one dimension [53] and higher dimensions [54]. The left and right
block symmetry of DMRG algorithm for a XYZ-model of a spin-1/2 chain
in a staggered magnetic field (in Eq. (4)) is broken. Therefore, we use
conventional unsymmetrized DMRG algorithm [49,50] with open
boundary condition. In this model, the total Sz is not conserved as Sz

does not commute with the Hamiltonian in Eq. (4). As a result, the
superblock dimension is large. We keep m 500 eigenvectors corre-
sponding to the highest eigenvalues of the density matrix to maintain
the desired accuracy of the results. The truncation error of density
matrix eigenvalues is less than 10 12. The energy convergence is better
than 0.001% after five finite DMRG sweeps. We go up to =N 200 sites
for the extrapolation of the transition points.

This paper is divided into three sections. In Section 2, we discuss our
numerical results, and this is divided into eight subsections. Results are
discussed and compared with the existing literature in Section 3.

2. Numerical results

In this section, various criteria for the MI transition are discussed.
We construct a phase diagram in B, and µ parameter space for given

=J 0z and 0.5. Thereafter, various criteria of the MI such as lowest
excitation energy , edge spin correlation with its nearest neighbor

=C r( 1), local susceptibility at the site nearest neighbor to the edge 2,
superconducting or spin-nematic order parameter of edge spin =P r( 1),
and structure factor S k( ) are studied. We show that all these quantities
show extrema at a transition parameter Bm in B parameter space.
However, all these extrema Bm are extrapolated to the same point in the
thermodynamic limit, and this extrapolation is done in the Section 2.8.
The ES is analyzed in Section 2.7 to show the distinction between to-
pological and the Ising phase.

2.1. Phase diagram

A phase diagram of the model Hamiltonian in Eq. (4), is shown as a
color gradient plot in Fig. 1, where the color gradient represents the
critical value of , i.e., c, and X- and Y-axis are the µ and the B of the
MI transition points for a system size =N 100 for . In the Majorana

phase, the lowest excitation gap decays exponentially with system size.
The phase diagram shows that a finite c is required to generate the
Majorana modes in a finite system. The µ favors the longitudinal de-
grees of freedom and tries to induce the ferromagnetic order, although
B tries to align the nearest spins in opposite directions to induce the
Antiferromagnetic Néel phase. In fact the B and the µ both favor the
Ising order, whereas the breaks the parity symmetry and induces the
degeneracy in the system. It also induces the formation of Cooper-pairs
or magnon-pairs like excitations at the two neighboring sites for the
model Hamiltonian given by Eq. (5) or Eq. (4) respectively. As shown in
Fig. 1, the c increases with increasing Bfor a fixed value of µ, and it
increases with increasing µ for a given B. The trends are similar for both

=J 0z and 0.5.

2.2. Excitation gap

To characterize the Majorana modes in one dimension for the he-
lical system, the lowest excitation gap is defined as

= E µ B E µ B( , , ) ( , , ),1 0 (10)

where E0 and E1 are ground state and lowest excited state of the
Hamiltonian in Eq. (4). The N is plotted in log-linear scale in Fig. 2.
The N plot for = = =µ J0.0, 0.5, 0.5z , and for five values of B.
For =B 0.05, 0.1 and 0.15, shows the exponential decay (Majorana
regime), whereas goes linearly with N1/ for =B 0.2 and 0.25 (Ising
phase) as shown in the Fig. 2. The phase boundary of MI transition is
evaluated based on change in N relation from exponential to the
power law. We also notice that the contribution to the excitation gap
is uniformly distributed in the Ising phase, whereas, in the Majorana
state, the major contribution comes from the edge as shown in Fig. 5 of
[35].

2.3. Correlation function =C r( 1) from the edge

The longitudinal spin-spin correlation fluctuation C r( ) at a distance
r from reference point i is defined as

= + +C r S S S S( ) ,i
z

i r
z

i
z

i r
z (11)

where Si
z and +Si r

z are spin densities at the reference site i and other
site +i r . In Fig. 3, the edge spin site =i 1 is considered as the reference
spin. The distance dependence of C r( ) for = =µ J0, 0z and = 0.5 is
shown in inset of Fig. 3. It decreases exponentially for r 2, and ef-
fectively, only last two sites are correlated. Therefore, =C r( 1) between

Fig. 1. MI phase boundary for a helical liquid mentioned in Eq. (4) in the
parameter space of µ and Bfor =J 0.5z . The color gradient represents the cri-
tical values of on the phase boundary, i.e., c.

Fig. 2. Lowest excitation gap (in Eq. (10)) vs. the system size N for
= =µ J0, 0.5z and = 0.5 with different values of B chosen around the
=B 0.15c (see Fig. 1).

S.K. Saha et al. Journal of Magnetism and Magnetic Materials 475 (2019) 257–263

259



nearest neighbors is important. =C r( 1) first increases with B in the
Majorana state and decreases afterwards in the Ising phase. The

=dC r dB( 1)/ is plotted as a function of B B/ c in the main Fig. 3 for
= =J( 0, 0.5)z , and = =J( 0.5, 1.5)z and =µ 0. This minimum for

the given value of parameters is also consistent with the MI transition
point calculated from energy degeneracy.

2.4. Local magnetic susceptibility i

The Majorana modes are confined to the edge of the system,
therefore we focus on the spin density of edge sites =i 1 and 2 for

= =µ0.5, 0 and =J 0z . The spin density and the local staggered
magnetic susceptibility is defined as

= S2 ,i i
z (12)

=
d
dB

,i
i

(13)

where, Si
z are the longitudinal spin density at site i. The magnitude of

spin density i for site =i 1, 2 increases at both the sites with B, it is
positive at site 1 and negative at site 2. The magnitude of i at site 2 is
lower than that is at site 1. However, both of them saturate with high
staggered field, but 1 continuously increases and there is no maxima
for this function. The 2 as a function of B B/ c are plotted in the main
Fig. 4 for ( = =J 0, 0.5z ) and ( = =J 0.5, 1.5z ) and both for =µ 0.
These two functions show a maxima near the transition. The i for the
whole system for =J 0z , = 0.5 and =µ 0 is shown in the inset of
Fig. 4. We notice that the variation of i is confined to the edge and the
first few neighboring sites, and has constant value throughout the rest
of system. The i for = =J 0.5, 1.5z and =µ 0 behaves in a similar
manner.

2.5. Quadrupolar order parameter =P r( 1)

The third term of the Hamiltonian in Eq. (4) induces the spin
quadrupolar/spin-nematic order in the system. In this phase +S van-
ishes, whereas + +S S has non-zero value, and two magnon pair for-
mation is favored similar to superconductor system where two electrons
form singlet Cooper pair. The spin distance dependent quadrupolar
order parameter is defined as

=
= +

+ +
+

+
+

+

P r S S S S
S S S S

( ) ,
.

i
x

i r
x

i
y

i r
y

i i r i i r (14)

P r( ) is the difference in the X and Y component of correlation +S S·i i r .
For =r 1, this quantity is very similar to the spin quadrupolar or su-
perconducting order parameter of the spinless fermion model. The

=P r( 1) is calculated as a function of B for ( = =J0.5, 0z ) and
( = =J1.5, 0.5z ) and both for =µ 0, and we notice that when
dominates over B, the system goes from non-degenerate Ising phase to
doubly degenerate states which favors Majorana edge state and the bulk
phase goes to spin quadrupolar phase as P r( ) 0. The =P r( 1)
first increases with B, and then it saturates with higher B. The
derivative of =P r( 1) with B for ( = =J0.5, 0z , =µ 0) and
( = = =J µ1.5, 0.5, 0z ) shows maxima at =B 0.48 and =B 1.04 re-
spectively as shown in the main Fig. 5. The distance dependence of P r( )
as a function r are shown for both the regime of the Majorana modes
and the Ising states in inset of Fig. 5. The reference site i is the edge site
of the chain. In the Majorana state P(r) shows long range behavior,
however, it decays exponentially in case of Ising phase.

Fig. 3. The derivative of longitudinal spin-spin correlation between the spins
corresponding to the edge bond =dC r dB( 1)/ with the staggered magnetic field
B both for ( = 0.5, = =µ J 0z ) and ( = = =J µ1.5, 0.5, 0z ). The inset shows
the distance dependence of C rln| ( )| for =B 0.3, 0.48 and 0.6 and for

= = =µ J0.5, 0z .

Fig. 4. Local staggered magnetic susceptibility (in Eq. (10)) of the second site
nearest neighbor to the edge 2 vs. B B/ c both for ( = = =µ J0.5, 0z ) and
( = =J1.5, 0.5z , =µ 0). In the inset, the spin density r( ) for the whole
system for =B 0.3, 0.48 and 0.6 with = = =µ J0.5, 0z is shown.

Fig. 5. =dP r
dB
( 1) as a function of B

Bc
is shown in the main figure for

( = = =µ J0.5, 0z ) and ( = 1.5, = =J µ0.5, 0z ). P r( ) (in Eq. (14)) is plotted
for the whole system in the inset for =B 0.3, 0.48 and 0.6 with

= = =µ J0.5, 0z .
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2.6. Longitudinal structure factor S k( )

The longitudinal structure factor S k( ) is the Fourier transformation
of C r( ) given in Eq. (11), and can be defined as

= + +S k S S S S e( ) ( ) .
r

i
z

i r
z

i
z

i r
z ikr

(15)

Now let us define a quantity K in small k limit defined as

=K S k
k

k( )
/

; 0,
(16)

where = = ± ± … ±k m; 0, 1, 2, ,m
N

N2
2 . K is proportional to the Lut-

tinger Liquid parameter [55–57]. We take the value of the function S k
k
( )

at = =k m( 1)N
2 . We calculate K for the ( = =J0.5, 0z ) and

( = =J1.5, 0.5z ) as a function of µ and B. The derivative of K as a
function of B shows maxima at =B 0.48, 0.52, and 0.7 for =µ 0, 0.2 and
0.5 at =J 0z and = 0.5. The derivative of K with B B/ c for
( = =J0.5, 0z ) and ( = =J1.5, 0.5z ) is shown for three different
values of µ in the main and in the inset of Fig. 6. The maxima of dK

dB
indicates the boundary between the Majorana and the Ising state. The
extrapolated value of the transition point is very close to the transition
point calculated from other criteria. It also shows that the critical value
of B for the transition calculated from dK

dB
at a fixed increases with

increasing µ.

2.7. Entanglement spectrum in Ising and Majorana state

We study the entanglement spectrum (ES) of the reduced density
matrix of the helical liquid system to investigate the topological aspect
of the Majorana modes [58–60]. For this purpose we consider the bi-
partition of the full system into two halves, the system (A) and the
environment (B). The reduced density matrix for part A is obtained by
tracing out the degrees of freedom in part B. For the wave function |
the reduced density matrix for part A is given by = Tr | |A B . A
contains the information of the entanglement between part A and B.
The eigen values ( n, where = …n 0, 1, 2, ) of the reduced density
matrix is known as the ES. In Majorana phase, all the states in the ES are
either doubly or multiply degenerate [58,59]. The difference between
the largest and the second largest eigenvalues, i.e., 0 and 1 of the ES is
called the Schmidt gap =S 0 1. Topological phases are also
characterized by = 0S , whereas it is finite in the trivial phase [59].

The ES of the reduced density matrix is analyzed for a chain of
=N 96 spins with PBC in the deep Ising state ( = =J 0, 0.2z and

= =J 0.5, 0.7z ), and in the deep Majorana state ( = =J 0, 0.9z and
= =J 0.5, 1.2z ) for =B 0.5 and =µ 0 in the main of Fig. 7. We plot

the Schmidt gap ( S) as a function of
c
for =J 0z and shown

in the inset of Fig. 7 for the same values of µ and B. We notice that
0 is non-degenerate in the Ising state and Schmidt gap is finite
in this regime ( < 1

c
) but goes to zero in the Majorana regime

( > 1
c

) as shown in the inset of Fig. 7. In the Ising phase many of
n are non-degenerate for ( = = =J µ B0, 0, 0.5z , = 0.2) and
( = = = =J µ B0.5, 0.0, 0.5, 0.7z ). In this phase the ES is of mixed
type. The spectrum is shown as open and filled symbols in the main
Fig. 7 for =J 0z and 0.5 respectively. In the Majorana phase the

0 is triply degenerate, and for other higher n, these are either
doubly or multiply degenerate as shown in the main Fig. 7 for
( = = = =J µ B0, 0, 0.5, 0.9z ) and ( = =J µ0.5, 0z , =B =0.5, 1.2).
The phase boundary of the system can be characterized at the point
where Schmidt gap goes to zero and the whole spectrum becomes
doubly or multiply degenerate. In the Majorana phase first few largest

n are independent of parameters.

2.8. MI phase boundary

In the last seven subsections, different criteria give us different MI
phase boundary in a finite system size and the phase boundary Bc,
calculated from different criteria have different finite size dependence.
For =µ 0.2, the finite size scaling of the Bc for four different criteria,
i.e., ground state degeneracy (GSD), =K P r, ( 1) and =C r( 1) are
shown in the inset (a) of Fig. 8. The GSD and =C r( 1) have same finite
size effect. We notice that the extrapolations from all the criteria lead to
the same =B 0.52c in the thermodynamic limit. The effect of µ on the
MI transition point Bc is shown in the thermodynamic limit for
( = =J 0, 0.5z ) and ( = =J 0.5, 1.5z ) in the main Fig. 8. We have
also shown the effect of J z on the MI transition in the thermodynamic
limit in the inset (b) both for ( = =µ 0, 1.0) and ( = =µ 0.2, 1.5).

3. Discussion

We have studied the helical liquid system and mapped this model
into a XYZspin-1/2 chain model. The Majorana-Ising transition is
characterized by calculating the lowest excitation gap of the model
Hamiltonian in Eq. (4) on a chain geometry. In the Majorana state, the
system has finite gap for a finite system which decays exponentially
with the system size N. The closing of the gap in the thermodynamic

Fig. 6. Derivative of K (in Eq. (16)) with the staggered magnetic field B, as a
function of B

Bc
is shown in the main figure for = =J0.5, 0z , and the inset

shows the same for = =J1.5, 0.5z for =µ 0, 0.2 and 0.5.

Fig. 7. The entanglement spectrum n is plotted for =µ 0 and =B 0.5 in both
the Ising and Majorana regime for =J 0z and =J 0.5z in the main figure. In the
inset, the Schmidt gap S is shown as a function of c

for = =B µ0.5, 0 both for
=J 0z and =J 0.5z .
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limit is consistent with the study by Sela et al. [31]. Our aim of this
paper is to explore various criteria to characterize Majorana mode other
than closing of the lowest excitation gap, and the accurate determina-
tion of the MI transition boundary in an anisotropic XYZ spin-1/2 model
in Eq. (4). We have calculated various quantities, e.g., C r P r, ( ), ( )i ,
K , S. We have shown that the phase boundary calculated from the
various criteria are the same for given value of and µ in the ther-
modynamic limit. We have shown that in strong repulsive interaction
limit >J 0z , Majorana mode occurs at higher value of than the non-
interacting case =J( 0)z , which is consistent with the study of Gang-
adharaiah et al. [30], where they have shown that the repulsive in-
teraction weakens the Majorana modes. The J z term of Eq. (4) is similar
to the repulsive interaction term of the spinless fermion model in Eq.
(5). In the mean field limit, J z term reduces to effective µ. The P r( ) is
long range in the Majorana state, whereas it decays exponentially in the
Ising phase as shown in the inset of Fig. 5. In the Majorana state, the
bulk of system shows quadrupolar/or spin nematic phase like behavior.
The local magnetic susceptibility at the site nearest neighbor to the
edge site, i.e., 2 shows maxima near the phase boundary.

We have also studied the ES of this model, and it is shown that the
Ising phase has finite Schmidt gap S, and non-degenerate eigenvalues
are present in the spectrum of the reduced density matrix of the system,
whereas the topological aspect of Majorana state is characterized by the
doubly degenerate eigenvalues and zero Schmidt gap [58,59]. We have
also shown that ES of the reduced density matrix of the ground state
shows double and multiple degeneracy in the Majorana state. We have
also noticed threefold degeneracy in the largest eigenvalues in this state
in the thermodynamic limit. Degeneracy of all the eigenvalues is very
similar to the study by Pollmann et al. [58] to distinguish the topolo-
gical and trivial phase of =S 1 system. The first few eigenvalues of ES
in the Majorana state is almost independent of parameters as shown in
Fig. 7.

In conclusion, we have studied the helical liquid phase in one di-
mensional system. This system shows the Majorana-Ising transition, and
the phase boundary is calculated using various criteria. The topological
aspect of the Majorana modes is studied for helical model, and the
closing of the Schmidt gap and degeneracy of full spectrum of reduced
density matrix can also be used to characterize the phase boundary of
Majorana-Ising transition. This model is one of the most interesting and
a general model for spin-1/2 systems. Our study shows that an aniso-
tropic spin-1/2 chain can be a good candidate to observe the Majorana

modes and MI transition. The local experimental probe like neutron
magnetic resonance can be used to measure the local spin density at the
edge of the sample.
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