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a b s t r a c t

The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to
calculate magnetostatic fields generated by stationary electric currents. The efficacy of this code lies in its
ability to simulate Oersted fields in complex geometries with non-uniform current density distributions.
As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the
electric current density distribution. The accuracy of the code is confirmed by comparison with analytic
results. Two examples show how this method provides important numerical data that can be directly
plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with
a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly
used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the
Oersted field and the current density distribution, is essential for a reliable simulation of current-
driven micromagnetic processes.

& 2014 Published by Elsevier B.V.

1. Introduction

Over the past 10 years, the study of current-driven magnetiza-
tion processes has evolved to one of the most active fields in
magnetism. Important discoveries demonstrating that, owing to
the electron spin, the magnetization state of a nanomagnet could
be influenced directly by electrical currents rather than by external
magnetic fields [1–4] have led to numerous studies on the spin-
transfer torque (STT) effect. The magnetization dynamics induced
by STT [5,6] is attractive for both technological aspects and
fundamental physics. While field-induced magnetic switching in
nanodevices is connected with the technological difficulty to focus
magnetic fields on very small length scales, the STT effect provides
the possibility to switch, e.g., individual magnetic nanoelements
in integrated circuits or in densely packed arrays [7]. Moreover,
the current-induced magnetization dynamics differs qualitatively
from the field-induced dynamics. An important example thereof is
the excitation of high-frequency magnetic oscillations induced by
means of DC spin-polarized currents [1,2]; an effect that lacks an
analogy in the field-driven dynamics. The possibility to tune the
frequency of these oscillations by varying the current strength
bears a high potential for applications.

Micromagnetic simulations have nowadays evolved to a very
high level of accuracy and reliability, so that they provide essential
contributions for the design and for the understanding of func-
tional magnetic nanostructures. While the STT effect has been
implemented in several micromagnetic codes [8–10], a quantita-
tive difference between simulated and experimental results is
more pronounced in the case of current-induced magnetization
dynamics than in standard micromagnetic simulations [11]. Unlike
the STT case, numerous studies on the static [12,13] and the field-
driven dynamics [14] of nanomagnets have provided a nearly
perfect agreement between experiment and simulation.

One of the possible sources for such disagreement is the Oersted
field. Current-induced magnetization processes require high current
densities, often in the range of 1011 A/m2 . Such current densities are
connected with sizable magnetic fields,1 known as Oersted or Ampère
fields [16]. Therefore, in addition to the usual external and internal
effective fields entering the Landau–Lifshitz–Gilbert equation [17], and
also in addition to the STT term, the Oersted field can have a decisive
influence on the magnetization. The importance of the Oersted field in
spin-transfer induced magnetic switching process has in fact been
pointed out by various groups [18,19]. In view of the aforementioned
high accuracy of classical micromagnetic simulations, STT simulations
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require numerical methods to precisely calculate the Oersted field. In
this article a method based on a combination of the finite-element
method (FEM) and the boundary element method (BEM) is presented
which allows for a fast and accurate calculation of the Oersted field in
arbitrary contact geometries. The hybrid FEM/BEM scheme is similar
to the algorithm reported by Hrkac et al. [20] and has several
advantageous features, including the unproblematic treatment of
interactions resulting from Oersted fields in complex nanocircuits
[21] or the possibility to simulate arrays containing several current-
carrying nanopillars [22].

The article is structured as follows. First, the basic equations
and the numerical method for the Oersted field calculation are
presented. Subsequently, in Section 5, a method to calculate
current-density distributions in non-trivial geometries is outlined.
Finally, in Section 6, a few examples show how these methods can
be applied to typical geometries employed in studies on current-
driven magnetization processes.

2. The ideal symmetric case and its limits

In publications of micromagnetic simulation studies on the
current-induced magnetization dynamics it is often mentioned
that the Oersted field is included, without providing details on its
calculation, cf., e.g., Ref. [23]. This omission of specifications is
usually justified, since the calculation of the Oersted field can be
trivial when a few plausible assumptions are made. If the current
density j is homogeneous and if the current-carrying structure
shows no variation along z, where the z axis is the flow direction of
the current, the circulation theorem immediately yields the solu-
tion. From

∇� H ¼ j ð1Þ
An integration over a cross-section of the wire parallel to the
xy-plane yieldsI

H ds¼ jA ð2Þ

where A is the area of the cross-section enclosed by the surface
integral, and ds is an infinitesimal tangential line segment along
the boundary of A oriented in mathematically positive direction. If
the cross-section of the conductor is circular with radius R, one
obtains for the boundary

Hϕ ¼ jR=2 ð3Þ
and HϕðrÞ ¼ r � j=2 inside the wire, where rrR is the distance from
the central axis and Hϕ is the azimuthal component of the Oersted
field. It is easy to show that all other magnetic field components
are zero. Outside the wire, the field strength decays with 1=r.

This procedure can be extended, e.g., to elliptical or rectangular
cross-sections. In all cases, the Oersted field is zero at the center of
the cross-section and its magnitude increases linearly up to its
maximum value as it approaches the boundary. The magnetic field
lines replicate the shape of the cross-section inside the conductor.

Given the high degree of accuracy that micromagnetic simula-
tions have achieved over the past years, it may however be
undesirable to make use of any simplifying assumption, such as
translational invariance along z or homogeneous current density
distributions j. The method described in this article provides an
approach to calculate the Oersted field in arbitrary geometries for
arbitrary stationary current density distributions.

3. Basic equations

Let us start by considering a current-carrying sample of volume
V in which the current density distribution jðrÞ is known for every

point r. The calculation of jðrÞ will be discussed in Section 5. The
Oersted field Hc resulting from a current density distribution jðrÞ
can be obtained by direct integration over the volume of the
current-carrying particle:

HcðrÞ ¼∇� 1
4π

Z
jðr0Þ

jr�r0j dV
0 ð4Þ

HcðrÞ ¼
Z

jðr0Þ � ð∇0GÞ dV 0 ð5Þ

where

Gðr�r0Þ ¼ 1
4π

1
jr�r0j ð6Þ

is Green's function with

ΔG¼ �δðr�r0Þ ð7Þ

and δðr�r0Þ is the Dirac delta function.2 If the volume of the
sample is discretized into finite elements, it is straightforward to
implement a routine performing the numerical integration. How-
ever, a direct integration according to Eq. (4) is problematic in a
numerical sense because of the steep increase of Green's function
when r0Cr. The value of Green's function can in fact vary
significantly within a single finite element containing the point
r0 when the viewpoint r is close to that element. In these cases
standard averaging techniques result in an unsatisfactory accuracy.
Moreover, the computational effort involved with this direct
integration is large: Calculating each component of Hc at a single
point r requires an integration over the whole volume V 0 of the
conductor. Instead of integrating directly Eq. (4), it is usually more
convenient to solve numerically a set of equivalent partial differ-
ential equations. Solving such differential equations is the task of
the FEM/BEM formulation outlined in the following.

The fundamental equation for the calculation of the Oersted
field is Ampère's law:

∇�H ¼ j: ð8Þ

In the case of a stationary, current-carrying ferromagnet with
magnetization M, the magnetostatic field H can be separated in
two parts:

H ¼HsþHc ð9Þ

where Hs is the demagnetizing field (also referred to as dipolar
field of stray field in the literature), which is created by the
magnetic moments of the ferromagnet. The field Hc is the Oersted
field (also called Ampère field) resulting from the current density
jðrÞ. The following equations apply to these two static magnetic
field contributions:

∇�Hs ¼ 0 ∇�Hc ¼ j ð10Þ

∇Hs ¼ �∇M ∇Hc ¼ 0 ð11Þ

The calculation of Hs is one of the central parts of any micro-
magnetic code. Several powerful methods have been applied for
the numerical calculation of the dipolar field in micromagnetics
[24,25]. A very efficient way to calculate the demagnetizing field
with finite elements is the hybrid FEM/BEM algorithm reported by
Fredkin and Koehler [26]. Even though there are still exciting
developments for further improvement of the speed and accuracy
in the magnetostatic field calculation of ferromagnets [27], the
problem can nowadays considered as solved. Henceforth, only the
contribution from the electric current Hc shall be considered, and
the subscript “c” is omitted for simplicity.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
1322 Note that ∇0G¼ �∇G.

R. Hertel, A. Kákay / Journal of Magnetism and Magnetic Materials ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: R. Hertel, A. Kákay, Journal of Magnetism and Magnetic Materials (2014), http://dx.doi.org/10.1016/j.
jmmm.2014.06.047i

http://dx.doi.org/10.1016/j.jmmm.2014.06.047
http://dx.doi.org/10.1016/j.jmmm.2014.06.047
http://dx.doi.org/10.1016/j.jmmm.2014.06.047
http://dx.doi.org/10.1016/j.jmmm.2014.06.047


(Eqs. (10) and 11) yield

ΔH ¼ �∇� j: ð12Þ
In the region outside the conductor, the source term is zero, i.e.,

ΔH ¼ 0 ð13Þ
Thus, each component of H satisfies the Poisson equation inside
the conductor and the Laplace equation outside. (Eqs. (12) and 13)
describe an open boundary problem. Such problems are character-
ized by the absence of well-defined boundary conditions at the
sample surface. The solution is uniquely defined by the condition
of regularity at infinity, i.e., a Dirichlet-type of boundary condition
for r-1:

lim
r-1

HðrÞ ¼ 0 ð14Þ

A possible approach to consider such boundary conditions
consists in attempting to expand the computational region to
“infinity”, e.g. by applying bijective transformations to map the
infinite volume surrounding the sample onto a volume of finite
size, which can then be discretized with finite elements [28]. Such
transformation methods can suffer from accuracy problems since
the discretized spatial transform effectively corresponds to a
truncation of the computational region at a more or less large
distance. Moreover, these methods require the external region to
be free of charges, thereby precluding the possibility of calculating
the field of interacting current carriers. The hybrid finite element/
boundary element method resolves these problems. In the bound-
ary element method, the fundamental solution of a partial differ-
ential equation is used. In this case, the fundamental solution is
given by Green's function, which automatically fulfills the bound-
ary condition at infinity.

4. Hybrid FEM/BEM formulation

The first step in developing the FEM/BEM formulation consists
in an analysis of the properties of the solution at the sample
boundary. From Eq. (12) a jump condition for the normal deriva-
tive of Hc at the boundary of the current carrier is easy to derive:

nð∇Hxjin�∇HxjoutÞ ¼ nðex � jÞ ð15Þ
This equation correspondingly holds also for the y and z compo-
nents of H. In Eq. (15), ex is the unit vector along the x axis and n is
the outward directed surface unit vector. Note that this condition
represents a discontinuity of the gradient of Hx at the boundary.
Such a discontinuity in the gradient a priori does not provide any
information on the value of the inward limit of the gradient of Hx.
It can therefore not be used as a Neumann boundary condition
at the boundary ∂Ω, the knowledge of which would allow for a
unique solution of the differential equation.

In order to obtain useful boundary conditions at the sample
surface, the Oersted field can be split in two parts, H ¼Hð1Þ þHð2Þ.
These fields shall have the following properties: (i) Outside
the current carrier, the part Hð1Þ is zero. (ii) The part Hð1Þ satisfies
Poisson's equation

ΔHð1Þ
x ¼ �ex � ð∇� jÞ ð16Þ

with Neumann boundary conditions

nð∇Hð1Þ
x jinÞ ¼ nðex � jÞ ð17Þ

(iii) The part Hð2Þ satisfies the Laplace equation

ΔHð2Þ
x ¼ 0 ð18Þ

and its derivatives are continuous along the boundary.
The boundary conditions required for the solution of Eq. (18)

will be discussed later. The jump condition for the individual

components Hð1Þ and Hð2Þ at the boundary

Hð1Þ
x jinþHð2Þ

x jin ¼Hð2Þ
x jout ð19Þ

results from the condition that the field H must be continuous at
the surface. The splitting of the field Hx in two parts is schema-
tically shown in Fig. 1. The advantage of this splitting is that it
allows to extract boundary conditions that can be used to solve
Poisson's equation: By setting Hð1Þ

x to zero outside the sample, the
discontinuity condition (15) is effectively converted into a Neu-
mann boundary condition (17). With this boundary condition, it is
possible to solve Eq. (16). The finite element method is tailored
to provide solutions of equations of the type (16) with given
Neumann boundary conditions (17), cf. Ref. [29]. Once this solution
is obtained, the somewhat more complicate part needs to be
addressed, i.e., finding the values of Hð2Þ at the particle surface.
These values will provide the Dirichlet boundary conditions
required for the solution of Laplace's equation (18). For this task,
the boundary element method is used.

Multiplying Eq. (7) with H1 and Eq. (16) with G yields, after
subtraction and integration over the volume V of the region Ω:Z

GΔHx
1 dV

0 �
Z

Hx
1ΔG dV 0

¼
Z

Hx
1δðr�r0Þ dV 0 �

Z
exð∇0 � jÞG dV 0 ð20Þ

which, by virtue of Green's theorem, transforms intoI
G
∂Hx

1

∂n
dS0 �

I
Hx

1
∂G
∂n

dS0 ¼
Z

Hx
1δðr�r0Þ dV 0

þ
I

nðex � jÞG dS0 �ex
Z

j � ð∇0GÞ dV 0

The surface integrals
H

dS0 extend over the boundary ∂Ω of the
region Ω, i.e., the sample surface. If the boundary condition for H1

∂Hx
1

∂n
¼ nðex � jÞ ð21Þ

is inserted, the equation simplifies to

�
I

Hx
1
∂G
∂n

dS0 ¼
Z

Hx
1δðr�r0Þ dV 0 �ex

Z
j � ð∇0GÞ dV 0 ð22Þ
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Fig. 1. The field H is split in two parts. The angle α represents the known value of
the discontinuity of the derivative of H at the boundary (Eq. 15). The part H1 of the
solution is chosen such that its gradient at the boundary corresponds to α.
Moreover, H1 is equal to zero in the external region. Both, H1 and H2 are generally
discontinuous at the boundary. The sum, i.e., the field H is however continuous. The
gradient of the part H2 is constant along the boundary, as sketched by the angle β.
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The last term can be identified as the right-hand side of Eq. (4),
yielding

�
I

Hx
1
∂G
∂n

dS0 ¼
Z

Hx
1δðr�r0Þ dV 0 �½Hx

1ðrÞþHx
2ðrÞ� ð23Þ

The integral
R
Hx

1δðr�r0Þ dV 0 is trivial as long as the point r is
located inside or outside the volume V. The situation requires
more attention when r is a point on the surface. In this case, the
inward limit is taken by introducing an infinitesimal distance
of the point (located in the internal region) to the surface. The
resulting integral over the delta function isZ

Hx
1δðr�r0Þ dV 0 ¼ Ψ

4π
Hx

1ðrÞ ð24Þ

where Ψ is the solid angle subtended at the boundary point r.
Hence, an equation is obtained with which Hx

2ðrÞ can be
calculated at each boundary point:

Hx
2ðrÞ ¼

I
Hx

1ðr0Þ
∂G
∂n

dS0 þ Ψ

4π
�1ÞHx

1ðr
� �

ð25Þ

Accurate numerical methods to perform this integral by means of
BEM are discussed in Ref. [30]. In principle, Eq. (23) would be
sufficient to calculate H2 at any point inside (and outside) the
volume, so that the resulting total field H ¼H1þH2 could be
calculated at any discretization point. However, the calculation of
H2 at one point r requires in this case an integration over the
whole surface. This approach would thus have similar disadvan-
tages as the direct integration according to Eq. (4). By using
Eq. (25) instead, we obtain at relatively low cost the boundary
values of H2. Having these Dirichlet boundary conditions, it is easy
to solve Eq. (18) in the volume V by means of the FEM.

It is noteworthy that Eq. (25) has the same form as it has been
used in the FEM/BEM scheme described in Ref. [26] to calculate
the scalar magnetic potential of a ferromagnet. From the view-
point of implementation into a program, this means that the
matrix required for the numerical calculation the values of H2

according to Eq. (25) is already available in the micromagnetic
code if the FEM/BEM scheme presented in Ref. [26] is used for the
calculation of the magnetic scalar potential. Moreover, the matrix
has the usual form of BEM schemes for which powerful matrix
compression schemes [31] have been developed that can help
reducing drastically the memory requirements.

5. Calculation of current density distributions

Unless the geometry of the current-carrying sample is trivial,
the current density distribution jðrÞ needs to be determined
numerically prior to the calculation of the Oersted field. The
starting point for the calculation of the current density distribu-
tion is Ohm's law

j¼ σE; ð26Þ
where E is the local electric field and the conductivity σ is
assumed to be a scalar. The electric field is the gradient field of
the electrostatic potential U, so that E¼ �∇U. Charge conservation
yields ∇E¼ 0 and thus ∇j¼ 0, which leads to

∇ðσ∇UÞ ¼ 0 ð27Þ
This equation has the form of the stationary diffusion equation and
converts into the Laplace equation for U if σ is homogeneous.

Elliptic differential equations of the type (27) are routinely
solved numerically with FEM. However, appropriate boundary
conditions must be specified to obtain a unique solution. In
this case, the boundary conditions are given by the fact that the
current is not flowing perpendicular to the sample surface
j � n¼ 0; except for the leads, where a known current density is

entering and leaving the sample. In the case of two contact leads
of the same size, the boundary condition is j � n¼ 7 j0 at the leads,
i.e.,

∂U
∂n

¼
8 j0=σ at the leads
0 at the rest of the boundary

(
ð28Þ

If only the value of the total current I flowing through the sample
is known, the current density at the positive and negative leads is
easily determined by dividing the total current flowing through
each lead by the area of the contact region. Obviously, care must
be taken that the total inflowing current is equal to the outflowing.
Note that with correct Neumann boundary conditions, Eq. (27) can
be solved without further changes also in the more general case of
a position-dependent conductivity σðrÞ.

The method described here for the calculation of current
density distributions is generally well known [32–34]. It is
included in this manuscript mainly for completeness, because
determining the current density distribution is usually a prerequi-
site for the calculation of the Oersted field.

6. Examples

The methods outlined above can be applied to various pro-
blems which are of high importance for modern research topics in
the field of nanomagnetism. In this section, a few examples are
presented. These include the current density distribution in a thin
strip with an notch and the calculation of the current density
distribution and of the Oersted field in a pillar contact geometry
as it is used to study high-frequency excitations in nanomagnets
[1,35].

6.1. Current density distribution in a thin strip with a notch

Ferromagnetic thin strips with width in the sub-μm range and
thicknesses of the order of a few ten nm have attracted much
interest over the past years. One reason is the particular type of
head-to-head domain walls that can develop in such structures
[36]. Magnetic strips have been proposed for nanomagnetic
devices in which the head-to-head domain walls represent units
of information that can be processed in logical devices [37,38]. It
has further been shown that the domain walls in such strips can be
displaced by means of the STT effect [3,4]. Since the domain walls
can be displaced continuously along a magnetic strip, it is of
practical importance to gain control of their position. This can be
achieved by means of notches in the strips, which act as an
attractive potential for the domain walls [39]. Depending on their
type, the domain walls are then either located exactly at the notch
or in its close vicinity [40,39].

The influence of notches on the micromagnetic configuration
has been studied intensively and reported in several publications.
However, notches do not only affect the micromagnetic structure
but also change the current density distribution within the strip.
This aspect is important for the study of current-driven domain
wall dynamics in such patterned strips.

Using the method described in the previous section, it is
straightforward to determine the current density distribution with
finite element simulations. The model used in this example is a
1.2 μm long strip (width: 100 nm, thickness: 20 nm) with a notch
in the center. The notch has the shape of a symmetric right
triangle and it reduces the width of the strip to 50 nm in the
narrowest part. The region of interest of the finite element mesh
is shown in the inset of Fig. 2. In the vicinity of the notch,
the tetrahedral mesh is locally refined to increase the numerical
accuracy. A total current of I¼2 mA is flowing along the wire, and
a homogeneous electric conductivity is assumed.
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The topographical representation in Fig. 2 displays the local value
of the current density. As expected, the current density increases at
the constriction. The Much impact of the notch is however much
more important than the reduction of the width. Where the wire is
not constrained, the current density is j¼ 1012 A=m2. At the apex
of the notch, the value increases drastically to j¼ 5:5� 1012 A=m2,
while in the opposite, flat part of the strip it only increases up to
j¼ 1:55� 1012 A=m2. Hence, in the narrow part of the strip, the
current density distribution is highly inhomogeneous. Over the small
distance of 50 nm it changes almost by a factor of four. The values of
the local current density obviously scale linearly with the applied
current. The value of 2 mA has only been chosen here as an example
since the resulting current density values are of the order of those
reported in corresponding experimental studies. The current density
profile is independent of the value of the applied current. Hence, the
inhomogeneities of the current density distribution are directly
connected with the sample geometry, and not with the value of
the applied current. The profile is moreover invariant with respect to
scaling. For completeness, it should be pointed out that singularities
like the one displayed here are well-known effects in the case of
laminar flow of incompressible liquids. Even though the current
density in reality never becomes singular, an accurate simulation of
these critical situations is a difficult and important task.

This drastically inhomogeneous current density distribution near
a notch can be very important for the design and for the under-
standing of devices based on current-driven domain-wall displace-
ment. The huge differences of the local current density in the
constriction region could have a strong impact on the STT effect,
electromigration processes, and on the heating of the sample.

6.2. Oersted field calculation – comparison with analytics

The method presented in Section 4 to calculate the Oersted
field for a given current density distribution can be tested by
comparing the numerical results with known analytic solutions. A
simple example is the magnetic field of an infinitely long current-
carrying cylinder with homogeneous current density. The current
is flowing parallel to the symmetry axis. If a wire with radius R is
parallel to the z direction, with the current I flowing along ez and ϕ

and ρ being the azimuthal and radial coordinate, respectively, the
Oersted field is

BðrÞ ¼ μ0HðρÞeϕ ¼
μ0I
2π

eϕ
ρ=R2 ðρrRÞ
1=ρ ðρ4RÞ

(
ð29Þ

In Fig. 3 this analytical result (solid line) is compared with the
computed values (dots) resulting from the FEM/BEM simulation in
the case of an 8 μm long wire with R¼50 nm and homogeneous
current density j¼ 1011 A=m2 � ez . Excellent agreement is obtained.
Numerical tests show that minor deviations can be further reduced
by increasing the discretization density, but are not of practical
importance. This example proves the correctness and accuracy of
the hybrid FEM/BEM scheme. Obviously, the advantage of the FEM/
BEM algorithm is its applicability to samples of complex shape,
which cannot be calculated analytically. Such an example is given in
the following subsection, where the current density distribution and
the resulting Oersted field are calculated for a complex contact
geometry as it is used to study current-induced stationary high-
frequency excitations of nanomagnets.

6.3. Current densities and Oersted fields in a nanopillar
contact geometry

The possibility of generating high-frequency, stationary oscilla-
tions in a nanomagnet with a DC current has attracted much
attention over the past years. This effect can occur when a sub-
micron sized ferromagnetic thin-film element is exposed to a spin-
polarized current flowing perpendicularly through its surface. It was
predicted [5,6] theoretically and a few later confirmed experimen-
tally [1]. In experimental setups on such spin-torque driven nano-
oscillators, the thin-film element is typically embedded into a pillar-
shaped multilayer structure, which is contacted by mesoscopic leads
on the top and on the bottom. The electric current flows parallel to
the pillar axis. Numerous experimental and numerical studies on
the current-induced magnetization dynamics in nanomagnets within

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 2. Current density distribution in a thin, flat strip with a notch. The inset
shows a part of the finite-element mesh used for the analysis close to the
constriction. The main image shows a perspective view on the region of interest
near the notch and a topographical representation of the magnitude of the local
current density. The strip is contacted such that the current flows parallel to the
strip. The local current density increases dramatically near the apex of the notch.
Contrary to this, the current density on the flat side of the constriction is only
slightly higher than the value in the unconstrained parts of the strip.

Fig. 3. Oersted field of a long, current-carrying cylinder with homogeneous current
density. The current is flowing parallel to the wire axis. In this case, the field H only
has an azimuthal component. The computed values (dots) perfectly match with the
analytic solution (line). The grey area denotes the region inside the wire.
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a pillar contact have been reported (see, e.g., [41] and references
therein) and the field remains very active. While the STT effect is
driving the magnetization dynamics, the Oersted field connected
with the electric current may represent a non-negligible perturbation
which could have an important impact on the magnetization
dynamics. Considering that, also in this case, typical current densities
are of the order of 1012 A/m2, the Oersted field can provide a sizable
contribution even when the pillar dimensions are deep in the sub-
micron range.

The Oersted field in such complicated contact geometries can
be obtained by first calculating the current density distribution
and, based on this, determining the magnetic field using the
method described before. In addition to the current flowing
through the pillar, also the current in the leads contributes to
the total magnetic field acting on the nanomagnet. Fig. 4 shows
the finite-element mesh used to simulate the current and field
distribution in a pillar contact geometry. In this example, the pillar
diameter is 50 nm and the pillar height is 120 nm. It is contacted
by strips of 500 nm width and 100 nm thickness. Each contacting
strip is 4 μm long and the top and bottom electrodes form an angle
of 901. The geometry roughly corresponds to the usual experi-
mental setups [35], even though the contacting strips are often
much wider than those used here. By defining the FEM mesh, the
details of the shape of the contacts can easily be adapted to any
experimental setup.

In this example, a current of 2 mA flows through the sample.
The current density inside the pillar is according to the above-
mentioned diameter jC1012 A=m2. At sufficiently large distance
from the pillar, the current density in the contacting strip is nearly
homogeneous j¼ 4� 1010 A=m2. A complicated situation develops
in the vicinity of the contact to the pillar. The non-trivial current
density distribution in this region is shown in Fig. 5.

Once the discretized form of the vector field jðrÞ is calculated, it
can be used as an input for the Oersted field calculation. By
applying the FEM/BEM algorithm we obtain the Oersted field in
the entire contact geometry, including the pillar. The result is
displayed in Fig. 6, where the field circulation around the contact-
ing strips and around the pillar can clearly be seen. For clarity, only
the field in the contacting strips is displayed.

For such experiments and the correct interpretation of the data,
the field distribution inside the pillar can play a decisive role.
The profile of the field inside the pillar is very similar to the one
displayed in Fig. 3: The dominant component of the field is
azimuthal, with a magnitude that inside the pillar increases
linearly with the distance from the central axis. The peak value
at the boundary of the pillar is in this case 28 mT, which certainly
represents a non-negligible magnitude. Compared with the field
strength due to the current flowing in the pillar, the field arising
from the current in the contacting strips can be considered as a
perturbation. This perturbation provides in this case merely an
asymmetry along a direction at 451 with respect to the strips.
Due to this asymmetry, the magnitude of the maximum and
the minimum value of both, the x and the y components of

the Oersted field differ by about 12%. Whether this asymmetry is
essential depends on the specific experimental setup and the
problem that is being investigated.

6.4. Impact of the Oersted field on a spin-torque-driven
nano-oscillator

It was mentioned at the beginning that Oersted fields may also
play an important role in the case of spin-transfer-torque driven
nano-oscillators [1]. Such oscillators consist of a “free” magnetic
layer that is usually a soft-magnetic thin-film element of circular
or elliptical shape, with a typical size of about 100 nm. This thin-
film element is embedded into a layered pillar structure, where a
“fixed” layer acts as a spin polarizer. The fixed layer usually has a
larger thickness than and a pronounced in-plane anisotropy. The
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Fig. 4. Perspective view on the finite-element mesh used for the contact geometry.
The ends of the 4 μm long contacting strips, where the current is flowing into and
out of the sample, are located outside of this frame, which is a magnified view on
the region of interest where the pillar is located. The mesh is locally refined at the
nanopillar.

Fig. 5. Simulated current density distribution in the contact geometry. The arrows
represent the direction of the local current, and their length is proportional to the
local value of the current density. For better visibility, only a selection of the
computed data is shown. For the same reason, the current density distribution
inside the pillar is not shown, since the much larger current density there would
result in very long arrows in this representation. The top electrode is displayed as
semi-transparent in order to visualize the current density distribution inside
the leads.

Fig. 6. Computed Oersted field resulting from the current distribution shown in
Fig. 5. The circulation of the magnetic field around the current-carrying regions is
clearly visible. The black arrows have a component directed outside of the sample,
while the pale gray arrows are pointing towards the inside. Only the magnetic field
at the surfaces of the leads is displayed. The magnetic field of the pillar is not
shown for better visibility of the overall structure of the field.
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free and the fixed layer are separated by a thin non-magnetic layer
and the current flows along the pillar, i.e., perpendicular to
the surface of the free layer. The quotation marks in the words
“free” and “fixed” have been used because these terms represent
idealizations, since the polarizer also experiences a spin-torque
due to back-scattered polarized electrons and the free layer may
encounter various energetic obstacles in its motion.

Micromagnetic simulations with spin-transfer-torque dynamics
allow to investigate a situation that is not realistic in an experiment,
where a strong current density flows through the pillar without
generating any Oersted field. Such simulations are useful to identify
the impact of the Oersted field on the overall dynamics, by comparing
the result with the data obtained if the Oersted field is correctly
included.

Fig. 7 displays an example of such a comparison. When a
sufficiently strong DC current flows through the pillar, it excites
persistent oscillations in the free layer. In this case the free layer is an
epitaxial Fe disk of 2 nm thickness and 150 nm diameter. An in-plane
external field of 100 mT is applied along the hard axis (110) of the Fe
disk. A current with spin-polarization opposite to the direction of the
magnetization is flowing homogeneously, perpendicular through the
surface of the disk. Typical material parameters for Fe with cubic
anisotropy are used in the simulation. The spin-polarization is set to
30% and the Gilbert damping α is equal to 0.01. A detailed description
of the fine-splitting and the additional modes occurring in the free
layer because of the Oersted field would go beyond the scope of this
article. The results shown in Fig. 7 are only meant as an example
to show that, in a typical setup of a spin-torque nano-oscillator,
the Oersted field can influence the oscillation spectrum decisively,
introducing quantitative and qualitative changes compared to the
hypothetical case of an Oersted-field free spin-polarized current.

7. Artifacts due to the truncation

The FEM/BEM algorithm to calculate Oersted described in this
article relies on a given current density distribution jðrÞ. For

practical reasons the current is assumed to enter at one part of
the circuit and exit at another. In these regions where the current
enters and exits the conductor, it displays a discontinuity, since
the current density jumps from zero (outside the surface) to a
constant finite value within the conductor. This sudden appear-
ance of the current does not represent a real physical situation. It
can be shown that, in the algorithm described above, this
discontinuity of the current density at the end of the contacting
leads has the same effect as a magnetic surface charge distribu-
tion. These purely artificial surface charges create a spurious
magnetic field. Owing to the rapid decay of this field, the effect
is negligible at reasonable distance from the points of entry and
exit of the current. The vague expression “reasonable distance”
cannot be quantified in absolute terms since it depends on each
individual case, i.e., the geometry of the structure and the
contacting leads. Moreover, the problem is invariant with respect
to scaling. Therefore, a distance can only be defined as large by
comparison with the region of interest, e.g., the size of a nano-
magnet in a pillar geometry. The effect of spurious magnetic fields
is comparable to the case of a homogeneously magnetized long
wire with the magnetization along the symmetry axis. The ends of
the wires are positive and negative poles of the field H, but the
magnetostatic field is quickly diluted geometrically and can be
neglected at distances lbr from the wire end, if r is the wire
radius.

8. Conclusion

The classical interaction of electric currents with the magneti-
zation of ferromagnets is given by the Oersted field. Its importance
should not be underestimated in theoretical studies in the highly
active field of spin-transfer-torque driven magnetization pro-
cesses. The Oersted field obtained in the case of typical experi-
mental contact geometries can be as large as a few tens of mT. The
STT-driven dynamics of nanomagnets could be influenced signifi-
cantly by such strong Oersted field. The hybrid FEM/BEM method
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Fig. 7. (a) Oscillations of the magnetization in a spin-torque driven nano-oscillator (see text) as a function of the applied current. The data is obtained from micromagnetic
simulations in which only the spin-transfer-torque effect and the usual Landau–Lifshitz dynamics is taken into account. The color code displays the intensity of the oscillation
at a specific frequency. The data is obtained from a detailed Fourier analysis of the oscillations of the nanoplatelet performed over several tens on nanoseconds.
(b) Oscillations of the magnetization in the same nanopillar when the Oersted field connected with the current flowing through the nanopillar is included in the simulations.
The fundamental mode [the same mode as in panel a)] exhibits a shift to higher frequencies (blue-shift) when excited with current densities above 8�107 A/cm2. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)Q2
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presented in this article provides a flexible and accurate tool to
calculate the Oersted field in arbitrary geometries for any given
stationary current density distribution.

Also in the case of current-induced domain wall displacement
in ferromagnetic strips, inhomogeneities of the current density
distribution and/or the magnetostatic field should be considered
in micromagnetic simulations if the cross-section of the domain
wall is not constant. Notches, often used to capture moving
domain walls, can have a dramatic impact on the current-density
distribution in thin strips. In these cases, the drastic local increase
of the current density should be considered in the simulation of
STT-driven domain wall motion.
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