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A B S T R A C T

We use the coupled cluster method (CCM) to study the ground-state properties and lowest-lying triplet excited
state of the spin-half XXZ antiferromagnet on the square lattice. The CCM is applied to it to high orders of
approximation by using an efficient computer code that has been written by us and which has been implemented
to run on massively parallelized computer platforms. We are able therefore to present precise data for the basic
quantities of this model over a wide range of values for the anisotropy parameter Δ in the range Δ−1 ≤ < ∞
of interest, including both the easy-plane Δ(−1 < < 1) and easy-axis Δ( > 1) regimes, where Δ → ∞
represents the Ising limit. We present results for the ground-state energy, the sublattice magnetization, the zero-
field transverse magnetic susceptibility, the spin stiffness, and the triplet spin gap. Our results provide a useful
yardstick against which other approximate methods and/or experimental studies of relevant antiferromagnetic
square-lattice compounds may now compare their own results. We also focus particular attention on the
behaviour of these parameters for the easy-axis system in the vicinity of the isotropic Heisenberg point Δ( = 1),
where the model undergoes a phase transition from a gapped state (for Δ > 1) to a gapless state (for Δ ≤ 1), and
compare our results there with those from spin-wave theory (SWT). Interestingly, the nature of the criticality at
Δ = 1 for the present model with spins of spin quantum number s = 1

2 that is revealed by our CCM results seems
to differ qualitatively from that predicted by SWT, which becomes exact only for its near-classical large-s
counterpart.

1. Introduction

The antiferromagnetic XXZ model on the square lattice is an
important model that is used to describe antiferromagnetic insulators.
The Hamiltonian for this system is given by
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where the index i runs over all N sites on the infinite N( → ∞) square
lattice and the sum on i j〈 , 〉 runs over all nearest-neighbour bonds on
this lattice (counting each bond once only). Each site i of the lattice
carries a quantum spin s s ss ≡ ( , , )i i

x
i
y

i
z , with s ss = ( + 1)i

2 , and where
the spin components obey the usual SU(2) commutation relations. We
shall be interested here specifically in the case s = 1

2 only. For the
classical version s( → ∞) of the model, it is trivial to see that for Δ| | > 1
the energy is minimized (in this easy-axis case) when the spins align in

the spin-space z direction to give a ferromagnetic ground state for
Δ < − 1 and an antiferromagnetic Néel ground state for Δ > 1.
Conversely, for values Δ| | < 1 in the easy-plane regime, the classical
ground state is again a Néel state, but now with the spins aligned
parallel or antiparallel to some arbitrary direction in the xy spin plane.
The classical ground-state energy per spin, e E N≡ /0

cl
0
cl , is thus
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s Δ Δ
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for classical spins of length s. Whereas the ferromagnetic state is also
an eigenstate of the quantum Hamiltonian for any value of the spin
quantum number s, this is not the case for either of the Néel states, and
the role of quantum fluctuations now becomes important for finite
value of s.

Increasing experimental effort has been expended to investigate
layered quantum magnets, and precise theoretical results for the
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fundamental quantities, such as the ground-state energy, the sublattice
magnetization, the spin stiffness, and the uniform transverse magnetic
susceptibility, are therefore desirable for the antiferromagnetic XXZ
model on the square lattice. In particular, the spin-half XXZ antiferro-
magnet on the square lattice has attracted much attention in relation to
the magnetic properties of the parent compounds of high-temperature
cuprate superconductors [1,2].

The properties of two-dimensional (2D) bipartite (i.e., geometri-
cally unfrustrated) lattice quantum spin systems may be investigated
by using a variety of approximate techniques (see, e.g., Refs. [1,3]).
Foremost among these for 2D unfrustrated quantum spin systems are
various quantum Monte Carlo (QMC) simulation methods (see, e.g.,
Refs. [4–11]). Other approximate techniques that may be applied in
order to simulate the properties of 2D quantum magnets include spin-
wave theory (SWT) [12–19], exact diagonalizations (ED) [11,20–24]
on small finite-sized lattices, and series expansion (SE) methods
[12,15,25]. Another versatile method of ab initio quantum many-body
theory that has been shown over the last two decades to give
consistently reliable and accurate results for 2D quantum magnetic
systems at zero temperature is provided by the coupled cluster method
(CCM) [24,26–54]. In particular, the use of computer-algebraic
implementations [31,33,37] of the CCM for spin-lattice problems has
increased the accuracy of the method greatly. It has been demonstrated
conclusively in a series of recent studies (see, e.g., [24,36,40–44,47–
49]) that the CCM gives reliable results even in the vicinity of quantum
phase transition points for a host of quantum magnetic systems.
Hence, the CCM applied to high orders of approximation is a good
choice in order to provide accurate results for 2D quantum magnetic
systems. In this paper we present CCM results for the ground-state
energy, the sublattice magnetization, the zero-field, uniform transverse
magnetic susceptibility, the spin stiffness, and the spin gap over a wide
range of values of the anisotropy parameter Δ for the Hamiltonian
given in Eq. (1).

We start with a brief description of the CCM formalism in Section 2,
and then we go on to describe the application of the method to the
spin-half XXZ model on the square lattice in Section 3. We present our
results in Section 4, where we also provide a discussion of their
implications. All results are presented in graphical and tabular formats
in order to provide a straightforward quantitative “reference” data set,
against which results from other approximate methods or from
experiment for relevant magnetic materials may be compared. We
conclude with a summary and discussion in Section 5.

2. Method

The details of both the fundamental and practical aspects involved
in applying the high-order CCM formalism to lattice quantum spin
systems are given, e.g., in Refs. [27,31–33,35,37,38,43]. For the sake of
brevity, we outline here only some important features of the CCM. First
we mention that the CCM provides results in the infinite-lattice limit
N → ∞ from the outset, since it obeys the important Goldstone linked-
cluster theorem at any level of approximate implementation. The ket
and bra ground-state eigenvectors, Ψ| and Ψ |͠ , are parametrized within
the single-reference CCM as follows,

∑ ∑Ψ Φ S C Ψ Φ S S C= e ; = , = e ; = 1 + ,∼ ∼ ͠͠S

I
I I
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+ −
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where Φ is a suitably chosen single normalized model or reference
state. The ground-state ket- and bra-state Schrödinger equations for a
general Hamiltonian H are given by H Ψ E Ψ= 0 and Ψ H E Ψ⟨ | = ⟨ |.͠ ͠0
State normalizations are chosen so that Ψ Ψ Φ Ψ Φ Φ〈 = 〈 = 〈 | 〉 = 1͠ .
The reference state Φ| 〉 is required to have the property of being a cyclic
vector with respect to two well-defined Abelian subalgebras of multi-
configurational creation operators C{ }I

+ and their Hermitian-
adjoint destruction counterparts C C{ ≡ ( ) }I I

− + † such that
Φ C C Φ I⟨ | = 0 = | ⟩, ∀ ≠ 0.I I

+ − These conditions ensure theautomatic

fulfillment of the above normalization conditions. Theset-index I
denotes here a set of single-spin configurations, and the states C Φ| 〉I

+

span the Hilbert space. By definition,C ≡ 1,0
+ the identity operator. The

correlation coefficients I are calculated by minimizing the ground-
state energy expectation value functional H Ψ H Ψ H= 〈 | | 〉 = [ , ]͠͠ I I
with respect to ͠ I , thus leading to a coupled set of ket-state equations
given by Φ C H Φ⟨ | e e | ⟩ = 0,I

S S− − I∀ ≠ 0. The correlation coefficients ͠ I are
similarly found by minimizing H with respect to I , thus leading to
Φ S H E C Φ I⟨ | (e e − ) | ⟩ = 0, ∀ ≠ 0.∼ S S

I
−

0
+ An equivalent form of this latter

equation is given by Φ S H C Φ⟨ | e [ , ]e | ⟩ = 0.∼ S
I

S− +

An excited state Ψe is parametrized within the CCM by applying an
excitation operator Xe linearly to the ground state Ψ , such that

∑Ψ X Φ X C= e ; = .e
e S e

I
I
e

I
≠0

+

(4)

From the Schrödinger equation, H Ψ E Ψ| 〉 = | 〉e e e , it follows that

H X Φ εX Φe [ , ]e = ,S e S e− (5)

where ε E E≡ ( − )e 0 is the excitation energy. We now project Eq. (5) on
the left with the state Φ C〈 | I

−, and use that the states labelled by the
indices I are, as usual, orthormalized, Φ C C Φ δ I J⟨ | | ⟩ = ( , ),I J

− + to yield the
generalized set of eigenvalue equations

Φ C H X Φ ε〈 | e [ , ]e | 〉 = ,I
S e S

I
e− − (6)

which we solve in order to obtain ε. In the present case we will be
interested specifically in the case when Ψe is the lowest-lying triplet
excited state, above the spin-singlet ground state Ψ , and ε is hence the
(triplet) spin gap.

The CCM formalism is exact in the limit of inclusion of all possible
multi-spin clusters within the ground- and excited-state operators [i.e.,
by inclusion of all multi-spin configurations I in the sums in Eqs. (3)
and (4)], although this is usually impossible to achieve practically. The
so-called LSUBm approximation scheme is used here for both the
ground and excited states. This approximation scheme uses all multi-
spin correlations over all distinct cluster locales on the lattice defined
by m or fewer contiguous sites. Such locales (or lattice animals) of size
m are said to be contiguous if every site in the cluster is nearest-
neighbour to at least one other. We select equivalent levels of LSUBm
approximation for both the ground and excited states. However, we
remark that for our calculation of the (triplet) spin gap the choice of
clusters for the lowest-lying (triplet) excited state is different from
those for the ground state because we know that the ground state lies in
the s s(≡ ∑ ) = 0T

z
i
N

i
z

=1 subspace, whereas the lowest-lying triplet excited
state in terms of energy must have s = ± 1T

z . Hence, we only use
configurations in the excited-state operator Xe that change the total
spin by one. We find that the number of configurations for the excited
state is larger than for the ground state at all levels of LSUBm
approximation. The number of terms in the corresponding equation
systems is correspondingly larger, and so the calculation of the excited
state is more difficult computationally than that of the ground state.

The LSUBm approximation scheme allows the systematic analysis
of CCM data as a function of the level of approximation m, without any
further approximations being made. We extrapolate the individual
LSUBm data to the limit m → ∞ in order to form accurate estimates of
all expectation values. The general form for extrapolating LSUBm
results in the limit m → ∞ is given by
A m A A m A m( ) = + (1/ ) + (1/ )ν ν

0 1 21 2, where the (fixed) leading exponents
ν1 and ν ν( > )2 1 may be different for the different quantities to be
extrapolated (and see Section 3 for details). Finally, we note that at any
LSUBm level of approximation the CCM exactly fulfills both the
Goldstone linked-cluster theorem and the very important Hellmann–
Feynman theorem.

3. The CCM applied to the XXZ model

We recall that the spin-half XXZ antiferromagnetic model on the
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square lattice with nearest-neighbour interactions is given by Eq. (1).
Here we use the quasiclassical z-aligned Néel state as the model state
Φ for values of the anisotropy parameter in the range Δ ≥ 1, whereas
we use a Néel state aligned in the xy plane for Δ−1 ≤ ≤ 1. Both
reference states give identical results for the rotationally invariant
model at Δ = 1. It is convenient to carry out a transformation of the
local spin axes on each site such that all spins in each reference state
align along the negative z-axis. A complete set of multi-spin creation
operators may then be formed with respect to every model state, and
we note that this set of multi-configurational creation operators with
respect to the rotated coordinate frame is defined by
C s s s n sN{ = ⋯ ; = 1, 2,…,2 }I i i i

+ + + +
n1 2 , where s s is≡ ±k k

x
k
y± . As we are

henceforth interested only in the case s = 1
2 , we note that no site index

ik contained in any retained cluster index I may appear more than
once. In the LSUBm approximation for the present s = 1

2 case there-
fore, we retain in the sums over multi-spin configurations I in Eqs. (3)
and (4) only those terms involving the set-indices
I i i i n N= { , ,…, ; = 1, 2,…, }n1 2 where n m≤ , and where each site index
i I∈k is nearest-neighbour to at least one other site index i I∈l .

For the z-aligned Néel model state we perform a rotation of all “up-
pointing” spins (say, on the B sublattice) by 180° about the y-axis. The
transformation of the local axes of the B-sublattice spins is given by

s s s s s s→ − , → , → − .j
x

j
x

j
y

j
y

j
z

j
z

(7)

The local spin axes of the “down-pointing” spins (say, on the A
sublattice) do not need to be rotated. The Hamiltonian of Eq. (1)
within the rotated coordinate frame is given by

∑ s s s s Δs s= − 1
2

[ + + 2 ],
i j

i j i j i
z

j
z

〈 , 〉

+ + − −

(8)

for the Néel model state with spins aligned in the z direction and with
respect to the rotated spin axes.

We use the Néel state with spins aligned along the x-axis as the
model state in the regime given by Δ−1 ≤ ≤ 1. We rotate the axes of
the left-pointing spins (i.e., those pointing along the negative x-
direction on, say, sublattice A) by 90° about the y-axis, whereas we
rotate the axes of the right-pointing (i.e., those pointing along the
positive x-direction on, say, sublattice B) spins by 270° about the y-axis.
The corresponding transformation of the local spin axes on sublattice A
is given by

s s s s s s→ − , → , → ,i
x

i
z

i
y

i
y

i
z

i
x (9)

and the corresponding transformation of the local spin axes on
sublattice B is given by

s s s s s s→ , → , → − .j
x

j
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j
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j
y

j
z

j
x

(10)

The Hamiltonian of Eq. (1) is then given by

∑ Δ s s s s Δ s s s s s s= − 1
4

[( + 1)( + ) + ( − 1)( + ) + 4 ],
i j

i j i j i j i j i
z

j
z

〈 , 〉

+ + − − + − − +

(11)

for the Néel model state with spins aligned in the xy plane and with
respect to the rotated spin axes.

We are able to evaluate ground-state expectation values of arbitrary
operators once the values for the bra- and ket-state correlation
coefficients, ͠ I and I respectively, have been determined (at a given
level of approximation), as described in Section 2. The ground-state
energy per spin is given, uniquely, in terms of the coefficients { }I

alone, by

e E
N N

Φ H Φ≡ = 1 |e e | .S S
0

0 −
(12)

The sublattice magnetization is given in terms of the rotated spin
coordinates for both model states by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑M

N
Ψ s

N
Φ Se s e Φ= − 1 Ψ = − 1 .∼͠

i

N

i
z S

i

N

i
z S

=1

−

=1 (13)

The classical s( → ∞) version of the model has a sublattice magnetiza-
tion M s=cl for each of the ground-state phases. For the quantum
version, when s takes a finite value, M remains equal to its classical
value only in the ferromagnetic phase. For each of the two Néel phases
one expects that quantum fluctuations will reduce the value of M below
its classical counterpart.

The transverse uniform magnetic susceptibility may be calculated
within the CCM by using the method outlined in Refs. [43,53] for the
square- and triangular-lattice Heisenberg antiferromagnet. However, it
is useful to note here briefly that we add an appropriate transverse
magnetic field term to the Hamiltonian of Eq. (1), namely: λ s− ∑i i

x for
the z-aligned Néel reference state Δ( ≥ 1); or λ s− ∑i i

z for the x-aligned
Néel reference state Δ(| | ≤ 1), both in units where the gyromagnetic
ratio gμ / = 1B . Spins are now allowed to cant at an angle, and this
angle tends to zero in the limit λ → 0. The precise nature of the canted
model states and the solution of the associated CCM problem is
described in detail in Refs. [43,53]. The uniform transverse magnetic
susceptibility is then defined as usual by the relation

χ λ
N

d E
dλ

( ) = − 1 ,
2

0
2 (14)

where we now calculate the ground-state energy, E E λ= ( )0 0 , in the
presence of the applied magnetic field. The zero-field susceptibility,
χ χ≡ (0), may be calculated from the small-λ expansion,

E λ
N

E λ
N

χλ λ( ) = ( = 0) − 1
2

+ ( ).0 0 2 4
(15)

For the classical version of the model it is easy to show that χ takes the
same value,

χ
Δ

Δ= 1
4(1 + )

; −1 < < ∞,cl (16)

in both ground-state Néel phases, independent of the length s of the
classical spins.

The calculation of the spin stiffness ρs using the CCM is described in
Refs. [38,39,42,52,53]. The spin stiffness measures the increase in the
amount of energy for a magnetically long-range ordered system when a
helical “twist” of magnitude θ per unit length is imposed on the spins,
in a given direction. In this case the ground-state energy per spin is
given by

E θ
N

E θ
N

ρ θ θ( ) = ( = 0) + 1
2

+ ( ),s
0 0 2 4

(17)

where E θ( )0 is the ground-state energy as a function of the imposed
twist (see, e.g., Refs. [55–57] for details). Again, we use a rotation of
the local spin at site i by an appropriate angle δi such that the local spin
axes for the now helical reference state appear mathematically to align
along the (negative) z-axis (for details see Refs. [38,39]). The helical
state lies in the xy plane for Δ ≤ 1, and is thus well-defined to give a
unique determination of ρs. For the classical version of the model it is
simple to show that ρs takes the classical value,

ρ s Δ= ; − 1 < < 1,s
cl 2 (18)

for classical spins of length s, in units where the nearest-neighbour
spacing on the square lattice has been set to unity. By contrast, the spin
stiffness is ill-defined for Δ > 1 because the helical state lies in the xz
plane. The easy-axis anisotropy therefore adds an energy contribution
proportional to δcos( ),i and so the energy depends on the individual
angles δi relative to the easy axis.

As already outlined briefly in Section 2, as a final step we need to
extrapolate our LSUBm estimates for all physical quantities to the limit
m → ∞ where the method becomes exact. Although exactly provable
rules are not known for these extrapolations, robust empirical rules do
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exist, and these rules have successfully been tested for a wide range of
quantum magnetic systems [33,35,38,39,43,51,53]. We use the “stan-
dard” rules in order to extrapolate all expectation values, namely: the
ground-state energy per spin e E N≡ /0 0 using
e m a a m a m( ) = + / + / ,0 0 1

2
2

4 the sublattice magnetization using
M m b b m b m( ) = + / + / ,0 1 2

2 the zero-field, uniform transverse magnetic
susceptibility using χ m c c m c m( ) = + / + / ,0 1 2

2 the spin stiffness using
ρ m d d m d m( ) = + / + / ,s 0 1 2

2 and the spin gap using
ε m f f m f m( ) = + / + / .0 1 2

2

The numbers, N N m= ( ),f f of distinct (fundamental) configurations
I that are retained in the summations for both the ground state in Eq.
(3) and the excited state in Eq. (4) at a given LSUBm level of
approximation are reduced by utilizing the space- and point group
symmetries of the Hamiltonian and the model state, together with any
conservation laws that pertain to both the Hamiltonian and the specific
model state being used (viz., specifically here for sT

z). We are able to
compute data up to the order LSUB12 for the ground-state energy e0,
the sublattice magnetization M, and the spin gap ε using the high-order
CCM code [58]. The maximum number of fundamental ground-state
configurations used in our calculations is N (12) = 4 248 225f , and this
calculation was carried out for the planar Néel model ground state at
the LSUB12 level of approximation. The solution of the LSUBm
equations is more challenging for the susceptibility χ and the spin
stiffness ρs because less symmetries can be used in these cases. As a
result we can calculate the magnetic susceptibility and the spin stiffness
only up to the LSUB10 level of approximation. Finally, we extrapolate
our LSUBm results for the ground-state energy e0, the sublattice
magnetization M, and the spin gap ε by using data for
m = {4, 6, 8, 10} and then separately also by using data for
m = {4, 6, 8, 10, 12}. In this manner, we provide two sets of extra-
polated values for e0, M, and ε. By comparing these two sets of
estimates, we obtain an estimate of the precision of these extrapolated
quantities. We refer to extrapolated results using LSUBm results for
m = {4, 6, 8, 10} and m = {4, 6, 8, 10, 12} as LSUB∞(1) and LSUB∞(2)
respectively.

We remark that the results presented in this paper are carried out
to much higher levels of LSUBm approximation than those presented
in previous CCM investigations of the XXZ model [28–30,45], where
the highest order of approximation was the LSUB8 approximation. The
consequent accuracy of our results is thus significantly higher than
those presented in Refs. [28–30,45]. Moreover, a systematic study of
the magnetic susceptibility and the spin stiffness of the XXZ model was
not presented in these earlier studies.

4. Results

We first show in Figs. 1 and 2 our CCM results for the ground-state
energy per site, e E N≡ /0 0 , and the ground-state sublattice magnetiza-
tion M pertaining to the spin-1

2
Hamiltonian of Eq. (1) on the square

lattice. In both figures we show results obtained in LSUBm approxima-
tions with m = 4, 6, 8, 10, 12, using as CCM model states an x-aligned
Néel state in the range Δ−1 < < 1 and a z-aligned Néel state in the
range Δ > 1 of the anisotropy parameter.

We note that these model states provide exact ground states of the
Hamiltonian of Eq. (1) in the respective limits Δ = −1 and Δ → ∞ (the
Ising limit). Thus, exact results for all ground-state quantities are
achieved for these two limiting cases at all LSUBm levels of approx-
imation (viz., e = −0

1
2 and M = 1

2 at Δ = −1, and e Δ= −0
1
2 and M = 1

2 at
Δ = ∞). In each of Figs. 1 and 2 we also show two sets of extrapolated
(LSUB∞) results, based on the respective schemes described in Section
3, and using the two appropriate LSUBm input data sets with
m = {4, 6, 8, 10} and m = {4, 6, 8, 10, 12}.

Figure 1 shows that our CCM results for the ground-state energy
converge very rapidly as the order m of the LSUBm approximation is
increased towards the exact m( → ∞) limit. Indeed, both the raw
LSUBm results and the two LSUB∞ extrapolations, based on the two

different input LSUBm data sets as described above, are difficult to
resolve by eye in the main panel of Fig. 1, which shows the high
accuracy achieved within the CCM LSUBm framework for the energy.
The first-order transition at Δ = 1 between the two Néel forms of long-
range order (viz., that aligned in the xy plane for Δ| | < 1 and that
aligned along the z-axis for Δ > 1) is clearly visible in the e e Δ= ( )0 0
curves shown in Fig. 1. The inset to Fig. 1 presents the results near the
critical point at Δ = 1 in more detail.

An estimate of the accuracy of our extrapolated results can be
obtained by a comparison of the two different extrapolation schemes,
LSUB∞(1) and LSUB∞(2). For example, our LSUB∞ results at the
isotropic Heisenberg (XXX) point Δ( = 1) are e = −0.669660 using the
LSUBm data set m = {4, 6, 8, 10} and e = −0.669640 using the LSUBm
data set m = {4, 6, 8, 10, 12}. Corresponding results at the isotropic XY
( XX≡ ) point Δ( = 0) are e = −0.548900 using the LSUBm data set
m = {4, 6, 8, 10} and e = −0.548880 using the LSUBm data set
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coincide. The inset shows the region near Δ = 1 in more detail. We also show the
corresponding classical result from Eq. (2) with s = 1
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m = {4, 6, 8, 10, 12}. It is clear that the results for the ground-state
energy are very insensitive to the extrapolation procedure. We estimate
that over the whole range of values of Δ, our accuracy is better than 1
part in 104.

Our corresponding results for the sublattice magnetization M are
shown in Fig. 2. As is fully to be expected the results for the order
parameter are both more strongly dependent on the order m of the
LSUBm approximation and converge more slowly as m → ∞. Just as
for the ground-state energy the two LSUB∞ extrapolations, based on
LSUBm results with m = {4, 6, 8, 10} and m = {4, 6, 8, 10, 12} respec-
tively, are almost indiscernible in Fig. 2. The maximum difference in
the two extrapolations is at the isotropic Heisenberg point, Δ = 1,
where from Fig. 2 we see that the effect of quantum fluctuations is
largest at reducing the order parameter from its classical value M = .cl

1
2

Thus, our LSUB∞ results at the isotropic Heisenberg (XXX) point
Δ( = 1) are M=0.31024 using the LSUBm data set m = {4, 6, 8, 10} and
M=0.30931 using LSUBm data set m = {4, 6, 8, 10, 12}. The relative
error between the two results is thus of the order of 3 parts in 103. By
comparison, the corresponding LSUB∞ results at the isotropic
XY XX(≡ ) point Δ( = 0) are M=0.43446 using the LSUBm data set
with m = {4, 6, 8, 10} and M=0.43458 using the LSUBm data set with
m = {4, 6, 8, 10, 12}. The relative error between the two extrapolations
is now only of the order of 3 parts in 104.

Our CCM results shown in Fig. 2 imply that the classical Ising limit,
M = ,cl

1
2 is approached rather rapidly as the anisotropy parameter Δ is

increased. For example, even at a value Δ = 2, the order parameter M
already attains a value of about 94% of the classical value, and for all
values Δ ≥ 5 the value of M is greater than 99% of the classical limit.

It is interesting to compare our results for the spin-1
2
model in the

vicinity of the isotropic Heisenberg point, Δ = 1, with those of SWT,
which are applicable in the high-spin s( → ∞) classical limit. Thus,
SWT predicts [12,17,19] that in the vicinity of the isotropic point Δ = 1
all of the physical ground-state parameters are analytic functions of the
quantity Δ(1 − )−2 1/2 for Δ > 1. Hence SWT predicts that any physical
parameter R of the model that pertains to the scaled Hamiltonian Δ/
of Eq. (1) would have an expansion R r Δ= ∑ (1 − )n n

n
=0

∞ −2 /2 in the
region Δ > 1. In particular, the ground-state energy and order
parameter are predicted (and see, e.g., Ref. [12]) to behave as

E
NΔ

Δ Δ= ϵ + ϵ (1− ) + ϵ (1− ) +⋯,0
SWT

0 2
−2

3
−2 3/2

(19)

M μ μ Δ μ Δ= + (1 − ) + (1 − ) + ⋯.SWT
0 1

−2 1/2
2

−2 (20)

Naively, one might expect that the phenomenology of SWT, which is
strictly valid only in the s → ∞ limit, including these functional forms,
could remain correct for finite values of s, at least so long as long-range
antiferromagnetic Néel order persists (i.e., μ > 00 ) at Δ = 1 in the
quantum model. That is certainly the case here, since we find μ ≈ 0.310
at Δ = 1. Thus, it is tempting to hypothesize that since the SWT
singularities in the physical parameters near Δ = 1 [i.e., the odd powers
in Δ(1 − )−2 1/2 in the expansions] are caused by the Goldstone modes
and not by critical fluctuations, the associated leading critical expo-
nents for finite values of the spin quantum number s should therefore
be the same as predicted by SWT, even for the s = 1

2 case considered
here.

In order to test this hypothesis we have carefully examined our
CCM results for the magnetic order parameter M in the narrow range

Δ1 ≤ ≤ 1.01. We show in Fig. 3 our LSUB∞(1) extrapolations based on
the LSUBm data set m = {4, 6, 8, 10} in this range, plotted as a
function of the parameter Δ( − 1). In order to find the leading (critical)
exponent we have fitted the data to the totally unbiased form
M n n Δ= + ( − 1) ,ν

0 1 where each of the parameters n0, n1 and ν is
fitted. The best fit to the data points shown in Fig. 3 is obtained with
n = 0.31022 ± 0.00002,0 n = 0.826 ± 0.0171 and ν = 0.959 ± 0.004. Since
the leading exponent takes the value ν ≈ 1, we thus attempt a fit of the
form

M m m Δ m Δ= + ( − 1) + ( − 1) ,0 1 2
2 (21)

with m0 fixed at the value m = 0.3102430 appropriate to the LSUB∞(1)
value for Δ = 1, obtained as described above using the LSUBm data set
with m = {4, 6, 8, 10}. The best fit, shown as the solid line in Fig. 3, is
obtained with m = 1.0592 ± 0.00031 and m = −6.42 ± 0.04.2 Thus, per-
haps surprisingly, the SWT hypothesis is not confirmed by our results.
The square-root cusp in M that is predicted by SWT appears to be
entirely absent. Of course it is possible that for this s = 1

2 model the
parameter μ1 in Eq. (20) vanishes (or takes a very small value)
accidentally. More likely, however, is the scenario that the series for
M for the spin-1

2
model is actually analytic in Δ(1 − ),−1 possibly

multiplied by some additional slowly varying non-algebraic (e.g.,
logarithmic) term, near the isotropic Heisenberg point, rather than in
the parameter Δ(1 − )−2 1/2 predicted by SWT, as is appropriate in the
classical s( → ∞) limit.

We turn next to our results for the zero-field, uniform transverse
magnetic susceptibility χ of the model. Thus, we show in Fig. 4 the
CCM LSUBm results with m = 4, 6, 8, 10 and the corresponding
LSUB∞ extrapolation based on this set, for the same range of values
for the anisotropy parameter, Δ−1 ≤ ≤ 2, as shown in Figs. 1 and 2
above for the ground-state energy and sublattice magnetization re-
spectively. Once again we remark that the results become exact in both
limits Δ = −1 and Δ → ∞ (the Ising limit). It is clear that the LSUBm
sequence of results for χ converges extremely rapidly, with the curves
difficult to resolve by eye over most of the range shown, except for a
small region around Δ = 1, where quantum fluctuations are again
greatest. The inset to Fig. 4 presents the results near the critical point
at Δ = 1 in more detail. SWT similarly predicts (and see, e.g., Ref. [12])
a square-root cusp for χ near the Heisenberg point for values Δ > 1,

Δχ ζ ζ Δ ζ Δ= + (1− ) + (1− )+⋯,SWT
0 1

−2 1/2
2

−2 (22)

which appears also not to be borne out by our results in Fig. 4 for the
spin-1

2
model.

Hence, once again we show in Fig. 5 our extrapolated LSUB∞(1)
results for the zero-field, uniform transverse magnetic susceptibility χ
in the narrow range Δ1 ≤ ≤ 1.01, based on our LSUBm results with
m = 4, 6, 8, 10. The leading (critical) exponent ν is again obtained by
fitting the LSUB∞(1) data to the unbiased form χ y y Δ= + ( − 1) ,ν

0 1
where each of the parameters y0, y1 and ν is fitted. The best fit to the
data points shown in Fig. 5 is obtained with
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Fig. 3. The staggered magnetization M for the spin-1
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XXZ antiferromagnet with

anisotropy parameter Δ on the square lattice, plotted as a function of Δ( − 1) in the

vicinity of the Heisenberg point Δ( = 1). The extrapolated LSUB∞(1) data points

obtained from our CCM LSUBm results based on the z-aligned Néel state as model
state with m = 4, 6, 8, 10 are shown by open squares (□), and the solid line is the best fit

to them of the form of Eq. (21).
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y y= 0.069078 ± 0.000005, = 0.133 ± 0.0050 1 and ν = 0. 958 ± 0. 009.
Just as for the previous fit for the staggered magnetization M, the
leading exponent ν again takes a value very close to unity. We thus
attempt now a fit of the form

χ x x Δ x Δ= + ( − 1) + ( − 1) ,0 1 2
2 (23)

with x0 fixed at the value x = 0.0690830 appropriate to the LSUB∞(1)
value for Δ = 1, obtained as described previously using the LSUBm
data set with m = {4, 6, 8, 10}. The best fit, shown in Fig. 5 by the solid
line, is obtained with the values x = 0.1713 ± 0.00071 and
x = −1.05 ± 0.08.2

Our CCM results for the spin stiffness coefficient ρs are shown in
Fig. 6 in LSUBm approximation levels m = 4, 6, 8, 10, together with the
corresponding LSUB∞(1) extrapolation based on this data set, over the

range of values Δ−1 ≤ ≤ 1 of the anisotropy parameter. Again, as
expected, the results are exact in the Δ = −1 limit. Figure 6 shows the
extremely rapid convergence of the LSUBm sequence of values for ρs in
the range Δ−1 ≤ ≲ 0, followed by a slower convergence in the range

Δ0 ≲ ≤ 1. The effect of quantum fluctuations is again greatest in the
vicinity of the isotropic Heisenberg point Δ( = 1), where the difference
from the classical result is largest.

Finally, in Fig. 7 we show our CCM results for the spin gap ε for a
range of values Δ > 1, where the system is expected to be gapped.
Theoretically, we expect that ε → 0 as the isotropic Heisenberg limit
Δ → 1 is approached and the excitations become gapless Goldstone
modes. These modes then persist for all values of the anisotropy
parameter in the range Δ−1 < ≤ 1, in which ε remains zero. From
Fig. 7 we see that both LSUB∞ extrapolations, based on the two
LSUBm data sets m = {4, 6, 8, 10} and m = {4, 6, 8, 10, 12}, give
values of ε at Δ = 1 which are zero within small numerical errors
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associated solely with the extrapolations. The actual LSUB∞ extra-
polated values at Δ = 1 are ε = −0.0058 using the LSUBm data set
m = {4, 6, 8, 10} and ε = −0.0086 using the LSUBm data set
m = {4, 6, 8, 10, 12}. One also observes from Fig. 7 that the LSUBm
sequence of values ε m( ) for ε converges appreciably more rapidly as
m → ∞ for larger values of Δ, and hence one expects that the associated
extrapolated values will be even more accurate than those obtained at
the Δ = 1 limit. Figure 7 shows that in the Ising limit, Δ → ∞, ε
becomes proportional to Δ, exactly as expected classically.

Once again, SWT predicts (and see, e.g., Ref. [12]) however that ε
vanishes near Δ = 1 as

ε
Δ

η Δ η Δ η Δ= (1− ) + (1− ) + (1− ) + ⋯.
SWT

1
−2 1/2

2
−2

3
−2 3/2

(24)

This behaviour, just as before for the ground-state parameters, appears
not to be borne out by our results shown in Fig. 7 for the spin-1

2
model.

To investigate further we show in Fig. 8 our extrapolated LSUB∞(1)
results for the spin gap ε in the narrow range Δ1 ≤ ≤ 1.01 based on our
LSUBm results with m = {4, 6, 8, 10}. The leading (critical) exponent ν
is again obtained by fitting the extrapolated LSUB∞(1) data points to
the unbiased form ε Δ= ϵ + ϵ ( − 1) ,ν

0 1 where each of the parameters
ϵ , ϵ0 1 and ν is fitted. The best fit to the data points shown in Fig. 8 is
obtained with ϵ = −0.00584 ± 0.00005, ϵ = 6.02 ± 0.050 1 and
ν = 0.982 ± 0.002. Once again, just as for the previous fits for the
staggered magnetization M and the zero-field, uniform transverse
magnetic susceptibility χ, the leading exponent ν takes a fitted value
ν very close to unity. Hence, we now attempt a fit of the form,

ε γ γ Δ γ Δ= + ( − 1) + ( − 1) ,0 1 2
2 (25)

with γ0 fixed at the value −0.005774 appropriate to the LSUB∞(1) value
for Δ = 1, obtained as described above using the LSUBm date set with
m = {4, 6, 8, 10}. The best fit, shown in Fig. 8 by the solid line, is
obtained with the values γ = 6.6941 ± 0.00081 and γ = −17.6 ± 0.1.2

In Table 1 we present our best CCM extrapolated (LSUB∞) results
for each of the ground-state parameters e0, M, χ and ρ ,0 together with
the spin gap ε, for various values of the anisotropy parameter Δ, in both
the easy-axis Δ( > 1) and easy-plane Δ(−1 < < 1) regimes, as well
as at the isotropic Heisenberg point Δ( = 1). This tabulation should
hence allow a direct comparison of our results both to those obtained in
appropriate experiments on systems to which the model is applicable

and in other theoretical approaches or simulations using alternative
techniques.

Before proceeding it is useful to compare our results to those
obtained by other approximate techniques for the two special cases
Δ = 1 and Δ = 0 of the anisotropy parameters. Several different
techniques have been applied to study the spin-1

2
XXZ model on the

square lattice for Δ ≥ 1 (see, e.g., Refs. [11–13,15,59–61]). Both ED
and QMC methods have also been applied to it in the range Δ−1 ≤ ≤ 1
(see, e.g., Ref. [11]). Furthermore, other techniques have also been
applied for the specific case Δ( = 1) of the isotropic Heisenberg model.
Our result for the ground-state energy at Δ = 1 is e = −0.66964.0 This
may be compared firstly, for example, with corresponding results from
three different QMC simulations. Thus, a zero-temperature (T = 0)
Green's function Monte Carlo (GFMC) calculation [7] directly for the
ground state gave e = −0.66934(3),0 while another finite-temperature
T( ≠ 0) calculation using the stochastic series expansion QMC (SSE-
QMC) method [9] gave e = −0.699437(5).0 Both of these calculations
were performed on L L× square lattices with L ≤ 16, and the results
extrapolated to the thermodynamic limit L( → ∞). Two other T ≠ 0
QMC simulations of the model, based on a continuous Euclidean time
version of a loop cluster algorithm for evaluating path integrals (PIMC)
[8,10], extracted the low-energy parameters by fitting the T ≠ 0 data to
finite-temperature scaling forms derived from chiral perturbation
theory [62]. Using very large-scale simulations on L L× lattices with
L ≤ 1000, for example, Kim and Troyer [10] found e = −0.66953(4).0
The spin-1

2
isotropic Heisenberg model on the square lattice has also

been studied via extrapolations to the N → ∞ limit on ED calculations
of clusters of sizes N ≤ 40 [22], which gave a ground-state energy
e = −0.6701;0 and by extrapolations to the Δ = 1 limit using a linked-
cluster SE method around the Ising Δ( → ∞) limit [12], which gave
e = −0.6693(1).0 It is clear that our CCM result for the ground-state
energy at Δ = 1 is in complete agreement with these other accurate
results. For comparison purposes the corresponding result at Δ = 1
from SWT [13] up to third order in powers of s1/ about the classical
s( → ∞) limit from Eq. (2) is given by

e s s s s= −2 − 0.315895 − 0.012474 + 0.000216(6) + ( ).0
2 −1 −2 (26)

For our present s = 1
2 model Eq. (26) yields the respective approxima-

tions at first, second and third orders in SWT, e = −0.657950 (SWT1),
e = −0.670420 (SWT2), and e = −0.669990 (SWT3).

For the Δ = 1 case our CCM result for the order parameter is
M = 0.3093. Once again, this may be compared with a T ≠ 0 SSE-QMC
result [9] of M = 0.3070(3) and the extrapolated result from a T ≠ 0
PIMC calculation [8] of M = 0.3083(2). A further study of the present
XXZ model using a combination of ED and QMC results [11] gave
M = 0.3050(5) for the case Δ = 1, while a direct extrapolation to the
N → ∞ limit on ED calculations with clusters of sizes N ≤ 40 [22] gave
the results M = 0.3105. Lastly, the corresponding result from a linked-
cluster SE method around the Ising limit Δ( → ∞) [12], suitably
extrapolated to the Δ = 1 limit, gave the value M = 0.307(1). Once
again, we see that our CCM result for the ground-state order parameter
M at Δ = 1 agrees well with these other accurate results. Again, for
purposes of comparison, the result from SWT up to third order [13,14]
for the Δ = 1 case about the classical s( → ∞) result of M = s is given by

M s s s= − 0.1966019 + 0.00087(1) + ( ).−2 −3 (27)

For our present s = 1
2 model Eq. (27) yields the respective approxima-

tions at first, second and third orders in SWT, M = 0.3034 (SWT1),
M=0.3034 (SWT2), and M=0.3069 (SWT3).

Our results for the spin stiffness and zero-field, uniform transverse
magnetic susceptibility at Δ = 1 are ρ = 0.1807s and χ = 0.0691 respec-
tively. These may firstly be compared with the results of various ED and
QMC calculations. For example, a study using a combination of ED and
QMC results [11] gave values ρ = 0.180(2)s and χ = 0.0755(15) in the
thermodynamic limit, while a direct extrapolation to the N → ∞ limit
on ED calculations of clusters of sizes N ≤ 40 [22] gave the two
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different values ρ = 0.1246s extracted from the finite-size scaling
relation for the order parameter, and ρ = 0.1115s extracted from the
value χ = 0.0674 obtained for the zero-field, uniform transverse
magnetic susceptibility and the corresponding value c = 1.287 ob-
tained for the spin-wave velocity c, together with the hydrodynamic
relation (see, e.g., Refs. [62–65]),

ρ χc= ,s
2 (28)

which is valid both for Heisenberg and general easy-plane antiferro-
magnets. Both parameters were also calculated directly in a T ≠ 0 SSE-
QMC simulation of the isotropic Δ( = 1) model [9], which gave values
ρ = 0.175(2)s and χ = 0.0625(9). By contrast, a T = 0 GFMC simulation
of the isotropic Δ( = 1) model [7] calculated χ and c directly. Use of Eq.
(28) enables us to quote the corresponding GFMC results ρ = 0.162(10)s
and χ = 0.0669(7). Two T ≠ 0 PIMC simulations of the isotropic system
may also be quoted. The first [8] finds ρ = 0.185(2)s and quotes a value
c = 1.68(1), from which we find χ = 0.0655(15). By contrast, a second
very large-scale PIMC simulation [10] calculates both ρs and χ directly,
and quotes the values ρ = 0.178(2)s and ρ = 0.185(1)s from two different
fits to the data, and χ = 0.06549(2). Lastly, the corresponding values
obtained directly from a linked-cluster SE method around the Ising
limit Δ( → ∞), suitably extrapolated to the Δ = 1 limit, are ρ = 0.182(5)s
[15] and χ = 0.0659(10) [12]. We see once more that our CCM results
for both ρ and χ at Δ = 1 are in very good agreement with other
purportedly accurate results.

Again, for comparison, we also cite corresponding results from SWT
for the Δ = 1 case. For the spin stiffness results are known [15] up to
third order in powers of s1/ about the classical s( → ∞) limit from Eq.
(18),

ρ s s s s= − 0.117629 − 0.010208 − 0.00316(2) + ( ).s
2 −1 −2 (29)

Corresponding results for χ are known at Δ = 1 [14,15] up to second
order in powers of s1/ about the classical limit from Eq. (16),

χ s s s= 0.125 − 0.034447 + 0.002040 + ( ).−1 −2 −3 (30)

Note that the term proportional to s−2 in the SWT expansion for χ in
Ref. [13] was later corrected in Ref. [15] to that shown in Eq. (30). Eqs.

(29) and (30) yield for our present s = 1
2 model the respective

approximations at first, second and third orders in SWT, ρ = 0.1912s
(SWT1), ρ = 0.1810s (SWT2), ρ = 0.1747s (SWT3), and χ = 0.0561
(SWT1), and χ = 0.0643 (SWT2).

For the corresponding case Δ = 0 of the anisotropy parameter,
which equates to the spin-1

2
isotropic XY XX(≡ ) model, our CCM results

are e = −0.54888,0 M = 0.4346, ρ = 0.2698s and χ = 0.2090. These may
be compared with results from a study using a combination of ED and
QMC results [11], which gave e M= −0.54882(3), = 0.4377(5),0
ρ = 0.2695(2),s and χ = 0.211(1); and from a finite-temperature
T( ≠ 0) SSE-QMC simulation [66], which gave

e M ρ= −0.548824(2), = 0.437(2), = 0.2696(2)s0 and χ = 0.2096(2).
Our results are thus again seen to be in very good agreement with
these other accurate results for the Δ = 0 case.

Finally, in Fig. 9 we present our extrapolated CCM results for the
ground-state quantities e0,M and χ (in each case as a ratio with respect
to their classical counterparts), as well as for the ratio ε Δ/(2 ), in the
region Δ ≥ 1. For reasons we describe below e e/ ,0 0

cl M M/ cl and ε Δ/(2 )
are plotted as functions of Δ1/ 2, while χ χ/ cl is plotted against Δ1/ . As
expected, we observe that each of the four scaled parameters ap-
proaches the value 1 in the Ising limit Δ( → ∞) where the CCM
becomes exact. It is interesting to compare our results with those
obtained from perturbation theory (PT) expansions in powers of Δ1/
around the Ising limit. For the ground-state energy the PT expansion
[12,25] is

⎛
⎝⎜

⎞
⎠⎟

e
e Δ Δ Δ

= 1 + 1
3

1 − 1
540

1 + 1 ,0

0
cl 2 4 6 (31)

while for the ground-state order parameter the corresponding PT
expansion [12,25,67] is

⎛
⎝⎜

⎞
⎠⎟

M
M Δ Δ Δ

= 1 − 2
9

1 − 8
225

1 + 1 .
cl

2 4 6 (32)

In Figs. 9(a) and 9(b) we also show least-squares straight-line fits of the
form αΔ1 + −2 to the extrapolated CCM data points with Δ ≥ 3 for e e/0 0

cl

and M M/ .cl For e e/0 0
cl we obtain a fit with α = 0.33320 ± 0.00001, which

may be compared with the exact value 1
3
from Eq. (31). The corre-

Table 1
Extrapolated CCM results for the ground-state energy per site e0, the sublattice magnetization M and the spin gap ε are obtained for various values of the anisotropy parameter Δ by
using the LSUBm data set m = {4, 6, 8, 10, 12}. Extrapolated results for the zero-field transverse susceptibility χ , and the spin stiffness ρs are obtained by using the LSUBm data set
m = {4, 6, 8, 10}. The spin-wave velocity c for the isotropic and easy-plane systems Δ(−1 ≤ ≤ 1) can also be obtained by using the standard hydrodynamic relation c ρ χ= / .s

Δ e0 M χ ρs Δ e0 M χ ε

−1.00 −0.5000 0.5000 ∞ 0.2500 1.00 −0.6696 0.3093 0.0691 −0.0086
−0.90 −0.5010 0.4924 2.4154 0.2581 1.10 −0.7028 0.3766 0.0783 0.5601
−0.80 −0.5033 0.4856 1.1820 0.2624 1.15 −0.7208 0.3939 0.0798 0.7811
−0.70 −0.5066 0.4792 0.7738 0.2654 1.20 −0.7394 0.4067 0.0805 0.9805
−0.60 −0.5106 0.4729 0.5711 0.2676 1.25 −0.7587 0.4168 0.0807 1.1646
−0.50 −0.5154 0.4667 0.4502 0.2692 1.30 −0.7784 0.4249 0.0805 1.3371
−0.40 −0.5208 0.4604 0.3693 0.2703 1.35 −0.7986 0.4317 0.0801 1.5004
−0.30 −0.5269 0.4542 0.3123 0.2708 1.40 −0.8191 0.4374 0.0796 1.6563
−0.20 −0.5336 0.4478 0.2692 0.2709 1.50 −0.8611 0.4466 0.0782 1.9509
−0.10 −0.5409 0.4413 0.2358 0.2706 1.60 −0.9041 0.4537 0.0767 2.2279
0.00 −0.5489 0.4346 0.2090 0.2698 1.70 −0.9480 0.4594 0.0750 2.4921
0.10 −0.5575 0.4276 0.1870 0.2685 1.80 −0.9925 0.4641 0.0733 2.7465
0.20 −0.5667 0.4204 0.1687 0.2666 1.90 −1.0377 0.4680 0.0717 2.9934
0.30 −0.5766 0.4128 0.1531 0.2640 2.00 −1.0833 0.4712 0.0700 3.2344
0.40 −0.5872 0.4047 0.1395 0.2606 2.50 −1.3166 0.4818 0.0623 4.3828
0.50 −0.5985 0.3960 0.1276 0.2562 3.00 −1.5555 0.4875 0.0559 5.4790
0.60 −0.6106 0.3864 0.1167 0.2505 3.50 −1.7976 0.4908 0.0505 6.5481
0.65 −0.6169 0.3811 0.1115 0.2469 4.00 −2.0417 0.4930 0.0460 7.6008
0.70 −0.6235 0.3754 0.1065 0.2428 4.50 −2.2870 0.4945 0.0422 8.6426
0.75 −0.6304 0.3692 0.1016 0.2380 5.00 −2.5333 0.4955 0.0390 9.6764
0.80 −0.6375 0.3621 0.0964 0.2322 6.00 −3.0278 0.4969 0.0338 11.7281
0.85 −0.6449 0.3540 0.0911 0.2249 7.00 −3.5238 0.4977 0.0298 13.7657
0.90 −0.6527 0.3440 0.0852 0.2155 8.00 −4.0208 0.4983 0.0267 15.7943
0.95 −0.6609 0.3306 0.0784 0.2022 9.00 −4.5185 0.4986 0.0241 17.8167
1.00 −0.6696 0.3093 0.0691 0.1807 10.00 −5.0167 0.4989 0.0220 19.8347
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sponding fitted value for M M/ cl in Fig. 9(b) is α = −0.2247 ± 0.0002,
which may be compared with the exact value − 2

9 from Eq. (32). The
corresponding PT series around the Ising limit for the zero-field,
uniform transverse susceptibility χ [12,25] contains both odd and
even powers of Δ ,−1

⎛
⎝⎜

⎞
⎠⎟Δχ

Δ Δ Δ Δ
= 1

4
− 1

3
1 + 17

48
1 − 41

108
1 + 1 ,2 3 4 (33)

unlike those for e Δ/0 and M, which contain only even powers of Δ .−1

Using Eq. (16), the corresponding expansion for χ χ/ cl is thus,

⎛
⎝⎜

⎞
⎠⎟

χ
χ Δ Δ Δ Δ

= 1 − 1
3

1 + 1
12

1 − 11
108

1 + 1 .
cl

2 3 4 (34)

In Fig. 9(c) we also show a least-squares straight-line fit of the form
αΔ1 + −1 to the extrapolated CCM data points with Δ ≥ 3 for χ χ/ .cl The

obtained value is α = −0.321 ± 0.001, which may be compared with the
exact value − 1

3 from Eq. (34).
Finally, the corresponding PT series around the Ising limit for the

scaled spin gap ε Δ/(2 ) is [12]

⎛
⎝⎜

⎞
⎠⎟

ε
Δ Δ Δ Δ2

= 1 − 5
6

1 + 137
864

1 + 1 ,2 4 6 (35)

which again contains only even powers of Δ .−1 The least-squares fit,
shown in Fig. 9(d), of the form αΔ1 + −2 to the CCM data points with
Δ ≥ 3 for ε Δ/(2 ) yields a value α = −0.794 ± 0.003, which may be
compared with the exact value − 5

6 from Eq. (35).
It is interesting to note from Fig. 9 that even lowest-order PT (i.e.,

the straight-line fits shown) gives rather accurate results for each of the
parameters shown for values of the anisotropy parameter Δ ≳ 1.8. In
each case in this range the extrapolated CCM values and the straight-
line fits are difficult to distinguish by eye. It is thus natural to ask how
the inclusion of additional terms in the PT expansions changes the
accuracy of the results for smaller values of Δ as we approach the
isotropic Heisenberg limit Δ( → 1). Let us denote by PT(n) the
corresponding nth-order PT series around the Ising Δ( → ∞) limit for
the respective model parameter under consideration, scaled to its
classical (large-Δ) value (i.e., the series terminated at the term
proportional to Δ ).n− Such series expansions have been given, for
example, in Ref. [12] for e e/0 0

cl and M M/ cl out to n = 14, for χ χ/ cl out to
n = 13, and for ε Δ/(2 ) out to n = 10. A similar expansion for ρs has been

Fig. 9. Extrapolated CCM results for the (a) scaled ground-state energy per site e e/ ,0 0
cl (b) scaled sublattice magnetization M M/ ,cl (c) scaled susceptibility χ χ/ ,cl and (d) scaled spin gap

ε Δ/(2 ) , plotted as functions of either Δ1/ 2 or Δ1/ , as shown, where Δ is the anisotropy parameter, in the region Δ ≥ 1. The LSUB∞(1) results for χ χ/ cl are based on LSUBm data with

m = {4, 6, 8, 10}, while the LSUB∞(2) results for the remaining quantities are based on LSUBm data with m = {4, 6, 8, 10, 12}. In each case we also show least-squares linear fits of the

form αΔ1 + ,n− where n=2 for e e M M/ , /0 0
cl

cl and ε Δ/(2 ), and n=1 for χ χ/ ,cl to the CCM data points with Δ ≥ 3.
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given, for example, in Ref. [15] out to n = 10.
Thus, in Fig. 10 we take the specific example of the zero-field

transverse magnetic susceptibility, where we compare results for the
quantity χΔ from our own CCM extrapolation using LSUBm data with
m = {4, 6, 8, 10} to those obtained from the PT(13) expansion (i.e., as
in Eq. (33) but including 14 terms out to the term proportional to

Δ1/ ).13 The two curves are now essentially indistinguishable by eye for
all values Δ ≳ 1.4 of the XXZ model anisotropy parameter Δ.
Nevertheless, despite the extraordinarily close agreement in this range,
what is very interesting is how rapidly the two curves diverge from one
another as Δ is reduced further. Whereas the CCM results remain
smooth even as Δ → 1, the PT(13) results become wholly unphysical
(i.e., χ < 0) in this limit for all values Δ1 ≤ ≲ 1.07. For comparison
purposes we also show in Fig. 10 the PT results at the PT(12) level. We
clearly observe that the PT series becomes ill-behaved as we approach
the critical point at Δ = 1. We comment further on these findings in
Section 5.

5. Summary and discussion

The spin-half square-lattice XXZ antiferromagnet is a fundamental
and prototypical model of quantum magnetism to which a variety of
quantum many-body theory techniques has previously been applied. In
this paper we have applied the high-order CCM to the model, using two
reference (or model) states upon which to build the multi-spin
correlations in a fully consistent LSUBm hierarchy. Unlike most
alternative techniques the CCM has the distinct advantage that we
work from the outset, at every level of LSUBm approximation, in the
large-lattice N( → ∞) thermodynamic limit. We have presented results
for the ground-state energy, the sublattice magnetization (i.e., the order
parameter), the spin stiffness, the zero-field, uniform transverse
magnetic susceptibility, and the triplet spin gap, for a large range of
values of the XXZ anisotropy parameter Δ. The CCM results for each of
these parameters were found to converge rapidly with increasing values
of the LSUBm truncation parameter m, for all values of Δ (in the range

Δ−1 ≤ < ∞ of interest), and we showed how simple heuristic extra-
polation schemes for m → ∞ could be used to estimate the formally
exact LSUB∞ values.

Our CCM LSUBm results are exact in the two limits Δ = −1 (where
there is a first-order phase transition to a ferromagnetic state) and
Δ → ∞ (the Ising limit). The most interesting point in between these
limits is at the isotropic Heisenberg (or XXX) point, Δ = 1, where the

model possesses SU(2) spin-rotational symmetry. The ground state of
the isotropic model then undergoes spontaneous symmetry breaking
via the Goldstone mechanism, so that as the limit Δ → 1 is approached
from the Ising side Δ( > 1) the system has long-range Néel order in the
z direction with a predicted finite value of the corresponding order
parameter, M ≈ 0.309. We showed that in the same limit Δ → 1, the
spin gap vanishes ε( → 0) within very small numerical errors, corre-
sponding to the emergence of the massless Goldstone boson excitation
modes. Away from the isotropic limit, when Δ ≠ 1, the SU(2) spin-
rotational symmetry is broken into a product of a Z(2) symmetry in the
z direction and a U(1) symmetry in the xy plane.

Precisely at the isotropic Heisenberg point Δ( = 1) all of the
parameters calculated exhibit the greatest difference from their classi-
cal counterparts, and hence we expect any errors in our (and other)
calculations to be greatest for this value of Δ. However, we have shown
specifically at Δ = 1 that our results compare extremely well with those
from a number of different QMC simulations, as well as with the results
of linked-cluster SE techniques and high-order SWT. As expected, our
results are even closer to those of QMC simulations at the isotropic XY
(or XX) point, Δ = 0. All of these results demonstrate very clearly the
high accuracy of which the CCM is capable.

We have exploited this accuracy to examine the behaviour of the
model parameters in the vicinity of the isotropic Heisenberg point,
Δ = 1. Whereas SWT indicates that the point Δ = 1 is singular, with the
physical parameters behaving there as power series in Δ(1 − )−2 1/2 on
the Ising side, as in Eqs. (19), (20), (22) and (24), our own analysis of
the sublattice magnetization M, for example, gave a different value of
the leading exponent [cf., Eqs. (20) and (21)]. Similar analyses of our
CCM results for both the zero-field, uniform transverse magnetic
susceptibility χ [cf., Eqs. (22) and (23)] and the triplet spin gap ε
[cf., Eqs. (24) and (25)] of the spin-1

2
square-lattice XXZ antiferro-

magnet in the easy-axis regime near the singular isotropic point Δ = 1
also show marked differences from the square-root singularities
predicted by SWT. Our CCM results for all three parameters
p M χ ε= { , , } in this critical regime show a consistently different form
of criticality to that predicted by SWT. In each case, if we attempt a fit
to our LSUB∞ results of the form p p p Δ→ + ( − 1)ν

0 1 as Δ → 1+ in the
critical regime, we find a value of ν very close to 1 rather than the value
1
2

from SWT. With a value ν = 1 it is then also possible that the
associated critical behaviour is more subtle than a simple leading
power law (e.g., involving additional logarithmic or other non-algebraic
terms). Since the behaviour of the model parameters near Δ = 1
predicted by SWT presumably becomes exact in the s → ∞ limit, the
intriguing possibility opens up that the leading critical exponent
describing the singular behaviour there depends on the spin quantum
number s. Any further such analysis is beyond the bounds of the
present paper, however.

These results are particularly interesting in the context that the
PT(n) perturbative power series expansions about the Ising limit [and
see, e.g., Eqs. (31)–(34)] are very ill-behaved near Δ = 1, as is to be
expected, and as Fig. 10 shows for the transverse susceptibility χ, for
example. In order to extrapolate these PT(n) series to the isotropic
limit it is necessary to make some appropriate analytic continuation,
and the approximate methods to do so lie at the heart of all linked-
cluster SE approaches (and see, e.g., Refs. [12,15,25,59,60]). For
example, in the present case, it is usual (and see, e.g., Refs.
[12,15,25]) to first transform the PT(n) series in

Δ
1 to a new variable

δ Δ≡ 1 − (1 − ) ,−2 1/2 so that according to SWT the series should then be
analytic in δ. The δ-series is then extrapolated to the point δ = 1 by
some suitable (e.g., Padé or an integrated first-order inhomogeneous
differential) approximant. Clearly, the extrapolated values so obtained
do depend on the assumptions about the singularity exponents, which
are numerically only very poorly determined by the series themselves.

It is worth pointing out that our CCM results based on the z-aligned
Néel model state at the LSUBm level of approximation reproduce
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PT(12)
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Fig. 10. Results for the scaled zero-field, uniform transverse susceptibility Δχ as a

function of the inverse anisotropy parameter Δ1/ , in the region Δ ≥ 1, from both our CCM
LSUB∞(1) extrapolation using LSUBm data with m = {4, 6, 8, 10} and the nth-order

PT(n) expansions about the Ising limit Δ( → ∞) with n = 12 and n = 13.
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exactly the large-Δ perturbative expansions at the same PT(m) order.
Whereas such PT(n) expansions are generally calculated by linked-
cluster techniques (and see, e.g., Ref. [68]), the linked-cluster SE
method that utilizes them (and see, e.g., Refs. [12,15,25]) must then
use appropriate extrapolation methods to evaluate the series at the
required parameter value (e.g., Δ = 1 for the isotropic Heisenberg
model). Other similar methods, such as the t-expansion method [69],
the connected-moments expansion (CMX) method [70,71] and the
(plaquette expansion or) analytic Lanczos expansion (ALE) method
[72,73], each of which has also been applied to the present model
[59,60], also require similar extrapolations to be performed. Each of
these methods (viz., the linked-cluster SE, the t-expansion, the CMX
and the ALE methods) shares with the CCM, however, that they are all
based on linked-cluster theorems, such that thermodynamically ex-
tensive variables, such as the ground-state energy, can be computed in
terms of connected diagrams. The strength of the CCM is that it both
works directly in the large-lattice N( → ∞) limit from the outset at all
LSUBm levels of approximation, and that it never needs to extrapolate
any intrinsically perturbative series. Since it is well known that any
uncertainties in the knowledge of the global analytic properties of such
series are usually the biggest source of poor convergence and associated
errors, the CCM has a unique advantage over these other methods in
this regard.

In conclusion, we have provided results for this prototypical model
of quantum magnetism over a wide range of values of the anisotropy
parameter in both graphical and tabular formats, in order to facilitate
their quantitative comparison with those from other approximate
methods and from experiment. We hope that the CCM results
presented here will thus provide a useful yardstick for both theorists
and experimentalists studying related magnetic materials.
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