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a b s t r a c t

Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug

targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate

of the magnetic forces in play between arrays is required to control devices and fabrication procedures.

Here, we introduce analytical expressions for calculating the attraction force between two arrays of

cylindrical permanent magnets and compare the predictions with experimental data obtained from

force measurements with NdFeB magnets. We show that the difference between predicted and

measured force values is less than 10%.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Permanent magnets may be grouped into arrays to adjust their
mutual magnetostatic interaction and consequently, the force acting
upon them. Recently, permanent magnet arrays have been utilized
in many applications; among others: eddy current dampers [1,2],
magnetic refrigerators [3,4], micropumps [5]. Furthermore, the
repulsive force between permanent magnets and superconducting
samples is utilized for levitation [6]. In the literature related to
permanent magnets, calculations of forces between magnets of
various shapes and geometries have their relevance in the context of
several applications. For example, in Ref. [7], the authors model
magnetic bandages for drug targeting. In Ref. [8], the authors take
advantage of inter-particle magnetostatic interactions for self-
assembly of floating magnetic particles, with the perspective of
employing them in photonic band gap materials fabrication.
Magnetic forces in self-assembled arrays are studied in Ref. [9].
Magnetostatic interactions and forces between two magnetic
nanotubes are examined in Ref. [10].

In our previous study [11] we calculated the attraction force
between two groups of cylindrical permanent magnets for the
purpose of designing magnetic fasteners. However, in [11] the
number of acting permanent magnets in either set was limited to
four. In the present study we extend the formalism to cope with
much larger arrays, and discuss their mean features in terms of
arising forces and optimization of geometrical parameters (mainly:
cylinders’ aspect ratios and distances involved). In our model, we
assume that all the cylindrical magnets are axially magnetized and
ll rights reserved.
all the cylinder axes are parallel, while the cylinders may be laterally
and vertically displaced. In Ref. [12] the author derived the
expression for the interaction between two magnetic bodies
consisting of identical cylindrical magnets arranged in a regular
square grid. We adopt this methodology to predict the forces in play
between two arrays of magnetized cylinders.

In this manuscript we review the formula for the attraction force
between two sets of cylindrical magnets described in Ref. [11]. Then
we calculate the force between two magnetic bodies consisting of
identical cylindrical magnets arranged in regular grids. The magnet
centers of either set are coplanar while the number of magnets of
one of the set is so large to be considered infinite. Finally, we show
the measured dependence of force versus distance between two sets
containing 2�2 and 6�6 magnets, respectively, and discuss the
results. If we exclude the data point when magnets are in contact,
the acquisition of which is problematic (see discussion below), the
measurements and calculations are in excellent agreement in terms
of force decay with distance (reflecting the quadrupole–quadrupole
type of interaction present in our geometry), while the discrepancy
between calculated and measured force values does not exceed 10%.
We observe a systematic discrepancy, as predictions always over-
estimate measurements. The possible reasons for such systematic
trend are discussed in the following.
2. Theoretical framework

2.1. Force between two axially magnetized cylindrical magnets with

their axes parallel

The attraction force between two axially magnetized cylindrical
magnets introduced in [11] is based on an assumption of uniform
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magnetization of the magnets. The assumption may be fulfilled in
permanent magnets with high magnetic anisotropy, or in presence
of strong applied fields. In Ref. [11] we showed that, in spite of the
seemingly unrealistic assumption of uniform magnetization, the
measured force between two NdFeB cylindrical magnets was in
excellent agreement (below 5%) with that calculated using our
expressions.

The attraction force between two cylinders in the axial
direction is obtained as derivative of the total magnetostatic
interaction energy E with respect to the axial coordinate, that we
choose to name z. In [11], we derived a formula for the attraction
force between two identical, axially magnetized cylinders, with
their axes parallel but laterally displaced

F1=1
z ðr, z, tÞ ¼�F0

Z þ1
0

J0ðrqÞ
J2
1ðqÞ

q
sinh2

ðqtÞe�qz dq, ð1Þ

where F0¼4pm0M2R2 reflects the order of magnitude of the forces
involved (for the magnets used in this study, F0¼42.6 N), M is the
saturation magnetization of the material, R and t are the cylinder
radius and height, respectively, t¼t/(2R) is the cylinder aspect ratio,
r¼r/R and z¼z/R are the reduced lateral and axial distances
between the centers of the two cylinders, respectively, and J0(q),
J1(q) are Bessel functions of first kind [13]. The negative sign in Eq.
(1) indicates an attractive force. If the cylinders’ magnetizations are
anti-parallel, the sign of Eq. (1) is reversed, as force is repulsive. For
long cylinders (tb1), the contact (r¼0, z¼2t) force is F0/8.
2.2. Force between two finite arrays of cylindrical magnets

We express the attraction force between two sets of magnets,
each set consisting of identical cylindrical magnets of radius R and
height t. In each set the magnets are firmly connected together
forming a magnetic body. The magnets’ centers in either set are
located over a square lattice, with lattice parameter 2R (each magnet
touches at least two other magnets in lateral directions). The two
arrays are vertically displaced by an amount zZt, where z is the
distance between the two planes containing the magnets’ centers.
The two grids are aligned and centered: no lateral displacement is in
effect, and cylinders in either set are coaxial. See Fig. 1.

We first assume that one set comprises four magnets whereas
the other set consists of 2N�2N magnets (N40). In either set, first-
neighbor magnets have their magnetization anti-parallel (Fig. 1). The
advantage of the anti-parallel magnetization arrangement is its
stability—the magnets do not repel each other. Furthermore, such
arrangement features an interesting property: the attraction force
between the two sets can be larger than four times the attraction
force between just two of the magnets in the set. As a complement
to the anti-parallel arrangement we also intend to mention the case
of parallel magnetization arrangement.
Fig. 1. A scheme of two sets of cylindrical magnets. One set is formed by the four

upper magnets whereas the other set is formed by the bottom magnets and may

tend to be infinite (see the dashed arrows).
The calculation of the attraction force requires knowledge of
the total magnetostatic interaction energy of the system. We have
to examine the interaction energy of each possible couple of
magnets, one in each set. The interaction energy within each set is
not relevant, as it does not depend on z. Since the magnets are
located over lattice points, the lateral position of each magnet can
be specified by two indexes (i, j), meaning that the center of the
magnet in question lies over the i-th row and j-th column of the
larger grid. Because of symmetry, in the set of four magnets
we consider only that with coordinates (N, N), and then multiply
the energy by four. The total energy is then

E¼ 4
X2N

i ¼ 1

X2N

j ¼ 1

ð�1Þiþ jEðrij,zÞ, ð2Þ

where E(rij, z) is the magnetostatic interaction energy between
two magnets in different sets. The magnet in the set of four has
coordinates (N, N), while the magnet in the underlying set has
coordinates (i, j). Parameters rij and z are their lateral and axial
separation between the two magnet’s centers, respectively. Their
lateral displacement, rij is

rij ¼ 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN�iÞ2þðN�jÞ2

q
ð3Þ

According to Eq. (1), the axial attraction force between the two
groups can be written as

F
4=4N2

z ðz,tÞ ¼�4F0

Z þ1
0

dq

q

X2N

i ¼ 1

X2N

j ¼ 1

ð�1Þiþ jJ0 2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN�iÞ2þðN�jÞ2

q� �8<
:

9=
;

�J2
1ðqÞsinh2

ðqtÞe�qB ð4Þ

If N¼1, then Eq. (4) transforms into

F4=4
z ¼�4F0

Z þ1
0

dq

q
1�2J0ð2qÞþ J0ð2

ffiffiffi
2
p

qÞ
h i

J2
1ðqÞsinh2

ðqtÞe�qB ð5Þ

Eq. (5) is identical with Eq. (2) of [11] since the case N¼1
reduces to the case studied in [11].

2.3. The N-N limit

Eq. (4) becomes impractical if N is large. Therefore, to examine
the scenario where one of the arrays contains a very large number
of magnets, we chose a different approach. According to [12] (see
also the Appendix), in the N-N limit the force becomes

F4=1
z ðz,tÞ ¼�8pF0

Xodd

i,j40

J2
1ðrijÞ

r2
ij

sinh2
ðtrijÞe

�zrij ð6Þ

where

rij ¼
p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
i2þ j2

q
ð7Þ

As a further generalization of the model, we now allow the
finite set of magnets to comprise 2L�2L cylindrical magnets,
where L¼1,2,3, y In this case, the force between a set of 2L�2L

magnets and an infinite set, F4L2=1
z ðz,tÞ, is simply L2 times the

force between four magnets and an infinite set

F4L2=1
z ðz,tÞ ¼ L2F4=1

z ðz,tÞ ð8Þ

As mentioned in the introduction, the resulting attraction
contact force between the two sets of 2�2 magnets can be larger
than four times the attraction contact force between just two



Fig. 2. The ratio f(t) versus magnet aspect ratio t.
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magnets. In general, let us assume two arrays, 2L�2L and 2N�2N

where N-N. We define a force ratio f(t) as follows:

f ðtÞ ¼ F4L2=1
z ð2t,tÞ

4L2F1=1
z ð0,2t,tÞ

�����
�����¼ F4=1

z ð2t,tÞ
4F1=1

z ð0,2t,tÞ

�����
����� ð9Þ

As visible in Fig. 2, f(t) has a non-monotonic behavior with a
maximum (1.45) at t¼0.2. As the aspect ratio increases, the force
ratio converges to the value of 1, as expected. This force ratio may
be a useful parameter to keep in mind when tailoring magnetic
arrays for fastener applications. However, when thinking of
different applications, one should also consider that in the studied
sets with periodically changing magnetization orientation, the
attraction force decreases fast with increasing distance between
two sets of magnets as shown in Ref. [11].

As already mentioned, the anti-parallel magnetization ar-
rangement within the arrays is advantageous in that the magnets
do not repel each other. However, if we overcome the repulsion
force and form arrays 2N�2N and 2�2 using identical magnets
aligned in parallel, and if N-N while we maintain all other
assumptions we considered previously, then the attraction force
between the two sets is calculated according to Eq. (6) but
summing over even indexes i, j. We denote the attraction force
between sets in parallel alignment by F4�=1�

z ðz,tÞ.
Fig. 3. Experimental and calculated (according to Eq. (4)) data for attraction force

between two magnet sets (2�2) and (6�6).
3. Experimental setup

To validate our theoretical framework, we carry out a set of
experiments to measure the attraction force between various sets of
magnets as a function of distance, and compare the results with
predictions from the expressions we have developed. We use NdFeB
permanent magnets purchased directly from their manufacturer
Magsy s.r.o. Our measurement of magnetic induction with a
gaussmeter (F.W. Bell, Model 6010) and Hall-effect probe (STD61-
0202-05) gives a value, B¼(1.03270.008) T, corresponding to a
saturation magnetization M¼(0.82170.006) MA/m. The magnets are
shaped as cylinders with a radius R¼2 mm and a height t¼8 mm.
They are magnetized axially by the producer. The magnets are coated
with a thin layer of Ni to prevent oxidation. The samples are produced
as follows: (i) either square array of magnets (6�6 or 2�2) is put
onto a flat substrate surrounded by an Al frame; (ii) the magnets are
glued together by hardened resin poured into the frame before a
polymerization; (iii) after resin hardening, substrates are removed.
The attraction force measurements are carried out at room
temperature with a tensile testing machine equipped with a
100 N load cell (HBM, Type S2). Great attention is paid to
clamping magnet samples and their alignment since a small
misalignment may result in discrepancy between measured and
calculated force values. While one of the samples is firmly
clamped the other sample is placed on the clamped magnet and
glued to the free clamp. During the process of applying the glue,
the measured force is zero. A non-negligible force develops during
glue hardening (ideally, the force should remain zero). However,
this force is smaller than that in the case when the other magnet
sample is fixed by screws.
4. Comparison of the experimental and calculated data

Fig. 3 shows measured and calculated (according to Eq. (4) for
N¼3) data for the attraction force between two magnet sets
(2�2) and (6�6) for various vertical displacements. Due to some
small misalignment and the final rigidity of the clamps we are not
able to measure the contact force accurately. The offset of Fig. 3
shows the large difference between the measured and the
calculated contact force. We see that the measured force values
are systematically smaller than those calculated. Excluding the
data point for the contact force, the difference between the
measured and calculated attraction forces is always below 10%
(see Table 1), as their ratio ranges between 0.96 (gap 0.1 mm) and
0.91 (gap 2 mm). Since the ratio between measured and
calculated values is not constant, we cannot explain the
discrepancy with a simple rescaling of some quantity, either the
magnets’ field or its volume. The effect is, most likely, related to
the actual shape of the magnets, which differs from an ideal
cylinder in the rounded edges. The effective aspect ratio of the
cylinders may also be a little different from the value we set
(t¼2) since there may be a layer of non-magnetic material (or
magnetic but with different material parameters) coating the
lateral surfaces. Finally, non-uniformity effects are also very likely
to play a role. In particular, it is reasonable to imagine that when
the two sets are in proximity, interaction fields are effectively
enhancing the alignment of the magnetic moments, resulting in a
better uniformity, while when magnets are far apart, the degree of
uniformity decreases.

To investigate further what effects the magnet coatings may have
on our results, we peeled off the Ni layer covering our NdFeB magnets



Table 1
A comparison of measured and calculated attraction force values according to various formulas and for various distances between the two sets of magnets.

Distance between the

magnet sets (mm)

The measured

force (N)

The calculated force

according to Eq. (4) (N)

The calculated force

according to Eqs. (6)

and (7) (N)

The calculated force according

to Eqs. (6) and (7) with i¼ j¼1

(only one addend) (N)

0 370.03 21.0070.32 21.2670.32 16.5770.25

0.1 17.0570.17 17.6970.27 17.7170.27 14.8370.22

0.2 14.6870.15 15.2770.23 15.2770.23 13.2770.20

0.3 12.7470.13 13.3270.20 13.3270.20 11.8870.18

0.4 11.1370.11 11.6970.18 11.6970.18 10.6370.16

0.5 9.7670.10 10.3070.15 10.3070.15 9.5170.14

0.6 8.5970.09 9.1170.14 9.1170.14 8.5170.13

0.7 7.5770.08 8.0770.12 8.0770.12 7.6270.11

0.8 6.6970.07 7.1670.11 7.1670.11 6.8270.10

0.9 5.9270.06 6.3670.10 6.3670.10 6.1070.09

1.0 5.2570.05 5.6670.08 5.6670.08 5.4670.08

1.2 4.1570.04 4.4970.07 4.4970.07 4.3770.07

1.4 3.2870.03 3.5770.05 3.5770.05 3.5070.05

1.6 2.6170.03 2.8470.04 2.8470.04 2.8070.04

1.8 2.0770.02 2.2770.03 2.2770.03 2.2470.03

2.0 1.6570.02 1.8170.03 1.8170.03 1.8070.03

Fig. 4. Force ratio fL(t) or its estimate, versus aspect ratio t.
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and measured its thickness. As the mean measured thickness was
27714 mm, the average Ni content of our magnets was about 3% in
volume. According to Ref [14], the saturation magnetization of Ni is
about 0.6 T, which is smaller than the saturation magnetization of
NdFeB as measured and described in part 4. In order to ascertain
whether or not the presence of a thin Ni layer might influence our
measurement of the NdFeB magnetization, we repeated the measure-
ments on magnets with and without Ni coating, finding only a
negligible influence within statistical errors. Taking also into account
the non-uniformity of the magnetization distribution in the Ni layer,
we conclude that the presence of Ni coating most likely results in a
slight decrease of the measured attraction force. Consequently, the
calculations, carried out neglecting coatings, predict higher values for
the attraction forces, which might explain the systematic theoretical
overestimates visible in the comparative Table 1.

Another interesting point is that if we use Eq. (6) for the 4�4
case we obtain values close to those obtained from Eq. (4) for
6�6 and 2�2 (see Table 1). This means that in the case of our
magnets (t¼2) the increasing size of the larger set does not
matter too much for the value of the attraction force. This is most
likely a consequence of the rapid decay of the field generated by
the outer regions of the larger set, decay established by the anti-
parallel alignment of magnets. Furthermore, for t¼2, the sum in
Eq. (6) converges fast since the first addend approximates the
attraction force relatively well (Table 1).

It is worth noting that if we compare the anti-parallel and parallel
magnetization arrangement in the case 2�2 over 2N�2N where
N-N and t¼2, M¼0.821 MA/m then using Eq. (6) summing over i, j

both either odd (anti-parallel) or even (parallel), we obtain the
following contact forces 9F4=1

z ð4,2Þ9¼ 21:26 N and9F4�=1�
z ð4,2Þ9¼

1:83 N. The contact force between two magnet arrays is defined as
the attraction force with zero axial gap between the arrays (z¼2t).
The contact force between anti-parallel magnets is much stronger
than that of parallel magnets. This is a direct consequence of the slow
decay of the magnetic field generated by the infinite array of parallel
magnets, which acts on the north and south poles of the small set
very differently than in the anti-parallel case. On the other hand, if we
compare the 4/4 cases (2�2 over 2�2), contact forces are
comparable: 9F4=4

z ð4,2Þ9¼ 20:92 N and 9F4�=4�
z ð4,2Þ9¼ 17:87 N.
5. Magnet sets versus single magnets

In the context of magnetic fasteners, it may be interesting to
assess whether arrays or single magnets are preferable. To this
purpose, we analyze the contact force between two sets of 2L�2L

magnets, and the contact force between two single cylindrical
magnets, where we choose the thicknesses and radii of the single
magnets in such a way to conserve the total volume of magnetic
material as well as the contact surface area. This implies that t0 ¼t,
and R0 ¼2LR, and therefore a factor 4L2 is needed to rescale F0. We
then define the ratio fL(t)¼F1/F2 where F1 [F2] is the contact force
attributed to the magnet sets [single magnets].

fLðtÞ ¼
F4L2=4L2

z ð2t,tÞ
4L2F1=1

z ð0,t=L,t=2LÞ
�

F4=1
z ð2t,tÞ

4F1=1
z ð0,t=L,t=2LÞ

¼

2p
Podd

i,j40
J2
1
ðrijÞ

r2
ij

sinhðtrijÞe
�2trij

R1
0

J2
1
ðqÞ

q sinh2 qt
2L

� �
e�

qt
L dq

ð10Þ

In the L¼1 case we can use Eq. (5) for F1. Fig. 4 shows the
curves f1(t) as a function of the aspect ratio for L¼1,2,3,4. It is
clear that for large arrays and small aspect ratios, the contact force
between two array sets of magnets is much larger than the
contact force between two cylindrical magnets of equivalent
volume and contact area.
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6. Conclusion

We have reviewed formulas for calculating attraction forces
between two cylindrical permanent magnets or two sets of
permanent magnets and additionally, we derived the formulas for
more general case of cylindrical permanent magnets of various
radii and heights. For all the formulas we assumed (i) uniform
magnetization in each cylinder and (ii) parallel magnetization
directions and magnet axes.

The attraction force measurements were performed at room
temperature using two sets of magnets consisting of 2�2 and
6�6 NdFeB magnets with a diameter of 4 mm and a height of
8 mm. In both samples the magnets were arranged in square
arrays in such a way that magnetization vectors of any two closest
magnet neighbors were oriented anti-parallel. The calculated
force overestimated the measurements by less than 10%. The
rather large discrepancy between the measured and the calcu-
lated contact forces (Table 1) may be explained by a combination
of: (i) misalignment of sets when measuring forces; (ii) spread in
the saturation magnetization of each individual magnet, including
the influence of Ni coating; (iii) the assumption of uniform
magnetization in the cylindrical magnets. For large arrays and
small aspect ratios, the contact force between two array sets of
magnets is much larger than the contact force between two
cylindrical magnets of equivalent volume and contact area.
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Appendix

In this appendix we illustrate how to calculate the interaction
energy between two magnet arrays: 2�2 and 2N�2N, where
N-N. We refer to [12] for additional details. The force can be
obtained by differentiating the energy with respect to the axial
coordinate. Calculations are carried out in Fourier space according
to the formalism described, e.g., in Ref. [15].

Within a Cartesian reference frame {ex, ey, ez}, the magnetiza-
tion of a cylindrical magnet of radius R and height 2d with its
center in the origin can be written as

M1ðrÞ ¼MD1ðrÞez, ðA1Þ

where D1(r) is the shape function, whose value is 1 inside the
cylinder and 0 outside it. The function M4(r) defined as

M4ðrÞ ¼
X

i,jA f�1,1g

ð�1Þiþ jM1ðr�Riex�RjeyÞ ðA2Þ

expresses the magnetization of four antiparallel axially magne-
tized cylinders with their centers in (7R, 7R,0). It is convenient
to introduce a function D4(r):

D4ðrÞ ¼
X

i,jf�1,1g

ð�1Þiþ jD1ðr�Riex�RjeyÞ ðA3Þ

that, strictly speaking, is not a shape function. However the
following relationship holds:

M4ðrÞ ¼MD4ðrÞez ðA4Þ

so that D4(r) can be interpreted as an effective shape function. In
the set of 2N�2N magnets, the unit of the four magnets with
magnetization characterized by M4(r) is periodically repeated,
with periodicity 4R. Therefore we can express the effective shape
function of the whole 2N�2N array where N-Nas

D1ðrÞ ¼
X1

i,j ¼ �1

D4½r�4Rðiex�jeyÞ� ðA5Þ

Finally, the second set of 2�2 magnets, is characterized by the
effective shape function D2� 2(r)¼D4(r�Zez), where Z is the
vertical distance between the two arrays’ centers.

We denote Fourier-transformed quantities by a superimposed
hat and indicate a position vector in Fourier space with k¼(kx, ky, kz).
We further define k? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
y

q
. The shape amplitude of a single

cylinder is [16]

D̂1ðkÞ ¼ 2V
J1ðRk?Þ

Rk?

sinðdkzÞ

dkz
ðA6Þ

where V¼2pR2d is the volume of the cylinder. According to the
general properties of Fourier transforms, we have

D̂4ðkÞ ¼�4sinðRkxÞsinðRkyÞD̂1ðkÞ

D̂2x2ðkÞ ¼ expðiZkzÞD̂4ðkÞ

D̂1ðkÞ ¼
p

2R

� 	2 Xþ1
i,j ¼ �1

D̂4
ip
2R

,
jp
2R

,kz


 �
d kx�

ip
2R


 �
d ky�

jp
2R


 �
ðA7Þ

The magnetostatic interaction energy between two bodies
with magnetizations MA and MB can be conveniently expressed as

Ei ¼ m0Re I�1 ½M̂AðkÞUk�½M̂
�

BðkÞUk�

k2

( ) !
ðA8Þ

where I�1 is the inverse Fourier transform operator, and the
asterisk * denotes complex conjugation. For our geometry, the
energy integral is

Ei ¼ Re
m0M2

8p3

Z
k2

z

k2
z þk2

?

D̂1ðkÞD̂2x2ðkÞd
3k


 �
ðA9Þ

which, after introducing rij �
p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
i2þ j2

p
and t¼d/R, evaluates to

Ei ¼
2m0M2

p
V

R


 �2 Xþ1
i,j ¼ �1

J2
1ðrijÞ

r2
ij

sin2 i
p
2

� 	
sin2 j

p
2

� 	Z 1
�1

sin2
ðdkzÞcosðZkzÞ

dkzð Þ
2
þt2r2

ij

dkz

ðA10Þ

The integral along kz can be carried out explicitly, yielding

Ei ¼ 32m0p2M2R3
X1

i,j ¼ 1

J2
1ðrijÞ

r3
ij

sin2 i
p
2

� 	
sin2 j

p
2

� 	
sinh2

ðtrijÞe
�zrij

ðA11Þ

from which the force can be derived as in Eq. (6) by direct
differentiation with respect to Z¼zR.

In case of parallel alignment of all magnets involved (both
sets), the energy is as in (A11) with the exception of the two sin2

terms that are replaced by cos2. As a consequence, the sum is
evaluated with even-only indexes (as opposed to odd-only
indexes when magnets are anti-parallel).
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