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ABSTRACT

Different numerical approaches for the stray-field calculation in the context of micromagnetic
simulations are investigated. We compare finite difference based fast Fourier transform methods,
tensor-grid methods and the finite-element method with shell transformation in terms of computational
complexity, storage requirements and accuracy tested on several benchmark problems. These methods
can be subdivided into integral methods (fast Fourier transform methods, tensor-grid method) which
solve the stray field directly and in differential equation methods (finite-element method) which
compute the stray field as the solution of a partial differential equation. It turns out that for cuboid
structures the integral methods, which work on cuboid grids (fast Fourier transform methods and
tensor-grid methods), outperform the finite-element method in terms of the ratio of computational
effort to accuracy. Among these three methods the tensor-grid method is the fastest for a given spatial
discretization. However, the use of the tensor-grid method in the context of full micromagnetic codes is
not well investigated yet. The finite-element method performs best for computations on curved

structures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetic simulations nowadays are highly important
for the investigation of ferromagnetic materials which are used
in storage systems and electric motors and generators. In these
simulations the magnetic state of the ferromagnet is represented
by a classical magnetization vector field.

The computation of the non-local magnetostatic interactions is
the most time-consuming part of micromagnetic simulations.
Naive implementation of the superposition-based integral opera-
tors (5) or solvers for the underlying differential equation (Poisson
equation (3)) yield computational costs proportional to the square
of the number of grid points, i.e. O(N?). Several methods have been
introduced in the literature in order to reduce these costs.

The magnetic scalar potential can be computed by solving the
Poisson equation. The solution of the Poisson equation with the
finite-element method (FEM) has a complexity of O(N) if bound-
ary conditions are given at the boundary of the sample and
a multigrid preconditioner is used [1]. However, the stray-field
problem has open boundary conditions, where the potential is
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known at infinity. Two possible solutions for the open boundary
problem are the coupling of the boundary element method (BEM)
with the finite-element method [2] and the application of a shell
transformation [3]. BEM gives an additional complexity of O(M?)
where M is the number of boundary nodes. This complexity can
be reduced to O(M log M) by application of the H-matrix approx-
imation for the dense and unstructured boundary element
matrices [4-6]. The storage requirements and computational
complexity of the FEM with shell transformation will be described
in the forthcoming text.

Another class of methods rely on the evaluation of volume
and/or surface integrals for the direct computation of the magne-
tostatic potential or the field, e.g. fast multipole methods [7,8],
nonuniform grid methods [9] and fast Fourier transform (FFT)
methods [10,11], scaling from O(N) to O(N log N). The more
recent tensor-grid method (TG), which also belongs to this class
scales even better under certain assumptions.

In this paper we compare recently developed algorithms,
namely the FFT-based methods for the computation of the
field via the scalar potential (SP) and directly (DM) [10,12],
a recently developed approach from numerical tensor-structured
methods (TG) [14], and the finite-element method with shell
transformation (FES), which is a FEM method that does not rely
on BEM approaches and thus only introduces sparse matrices.
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2. Stray-field problem

Consider a magnetization configuration M that is defined on a
finite region Q = {r : M(r) # 0}. In order to perform minimization
of the full micromagnetic energy functional or solve the Landau-
Lifshitz-Gilbert (LLG) equation it is necessary to compute the
stray field within the finite region Q. The stray-field energy is
given by

edz—MS%/QM-Hd3r. 1)

The Landau-Lifshitz-Gilbert equation reads
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where « is the Gilbert damping constant and H,¢ is the effective
field given by the variational derivative of the energy w.r.t.
the magnetization [15,16]. In both cases the stray field is only
required to be known within Q. The stray field H has a scalar
potential ¢, which is the solution of a Poisson equation [17]
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The stray field H and thus also the scalar potential ¢ are required
to vanish at infinity. This boundary condition is often referred to
as open boundary condition [18].

3. Methods
3.1. FFT Methods (SP and DM)

One way to reduce the computational complexity is to employ
the fast Fourier transform (FFT). FFT methods solve an integral
solution of the Poisson equation by applying the convolution
theorem. The solution to the Poisson equation (3) is given by the
integral, see [17],
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which directly fulfills the required open boundary condition.

Performing integration by parts yields

1 o1
90 = 4 M) VL

D an
———dA, 5
Q |r—r| ©)

d3r (6)

O(r) =S(r—r)=M(r). (7)
By employing the convolution theorem
¢ =SxM = F~1(F(S) - F(M)), 8)

this convolution can be discretized and solved with the fast
Fourier transform. A prerequisite for this procedure is the usage
of an equidistant grid, which is required for a discrete convolu-
tion. The stray field

Hr) = -Vo¢(), ©)]

can be obtained by applying finite differences. This method is
referred to as the scalar-potential method (SP) in the following. It
is described in detail in [10].

It is also possible to compute the stray field H directly as a
result of a matrix—vector convolution.
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Here N denotes the demagnetization tensor. Similar to (8) the
convolution can be solved as an element-wise matrix—vector
multiplication in Fourier space. This method is referred to as the
demagnetization-tensor method (DM) in the following and is
implemented by different finite-difference codes [19,20,12]. For
the numerical experiments we use MicroMagnum [12] which
implements both the SP and the DM method.

3.2. Tensor grid methods (TG)

Tensor grid methods (TG) for micromagnetic stray-field com-
putation were recently introduced in [14,21]. They were devel-
oped for the purpose of handling so called low-rank tensor
or compressed tensor magnetization, see [22] for a survey, in
order to accelerate the computations and relieve storage require-
ments, see [14]. In the following we give a brief introduction into
the ideas behind this method, also see [14] for a detailed
description.

3.2.1. Analytical preparations

The computation of the stray field within the magnetic body is
based on the explicit integral formula for the scalar potential (6).
The main idea is the usage of a representation for the integral
kernel in (6) as an integral of a Gaussian function by the formula
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which leads from (6) to
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Eq. (13) reduces the computation to independent spatial integrals
along each principal direction (the part of the Q integral without
the magnetization is now a product of independent 1D integrals).
This analytical preparation directly results in a reduction of the
computational effort from O(N?) to O(N*3) if discretized on a
tensor-product grid before even using compressed/low-rank tensor
formats for the discretized magnetization components. A similar
method was introduced for the computation of the electrostatic
scalar potential [24].

The additional t-integration is carried out by the exponentially
convergent Sinc quadrature [25], the spatial integrals are com-
puted by Gauss-Legendre quadrature, both resulting in a numer-
ical error of about the machine epsilon.

3.2.2. Discretization on a tensor-product grid

The magnetic body Q is discretized on a tensor-product grid
arising from the tensor outer product of three vectors hp € RN,
p=1...3 related to the grid spacings along each axis (see Fig. 1).
This results in a not necessarily uniform Cartesian grid but in
contrast to methods like DM/SP described before, tensor-grid
methods make use of the tensor-product interpretation of
such grids.

The magnetization on the center points of the cells is given as
a 3-tensor [22] for each component, i.e.

M®P e RNN2Ns -y 13 (14)

where N1,N,,N3; are the number of cells in the principal direc-
tions. Thus it is possible to use low-rank representation for the
magnetization like Canonical/Parallel Factors Decomposition (CP) or
Tucker formats, see Appendix A or [22]. We obtain the potential on
the center points of the computational cells, as the discrete
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Fig. 1. Grid spacing and midpoint spacing in TG methods.

analogue of (13), by a so-called block-CP tensor [14]
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Here (t,,w;) are the nodes and weights arising from the Sinc-
quadrature of the integral kernel (12) with R terms, chosen as in
[14], where R=50 turned out to give sufficient accuracy for grids up
to 8 x 10° nodes.! The Gaussian matrices Dg e RVo*Na come from

d, = / 2 X, 7)) dX, (16)
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where Q denotes the j-th interval on the (partitioned) g-th axis
with length (hg); and xC is the midpoint of the i-th interval on the
g-th axis. The Gau551an 1ntegrands are given by
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and are approximated using Gauss-Legendre quadrature, as men-
tioned above. The field within Q is derived from (9) by finite-
difference operators of second order.

3.2.3. Low-rank magnetization

Eq. (15) allows the treatment of specially structured magne-
tization tensors, like CP or Tucker tensors [22] that have a reduced
number of degrees of freedom, see Table 1, and accelerates the
computation up to sub-linear effort (below the volume size N),
see Table 2. As a consequence TG methods using low-rank
magnetization allow larger models with finer discretization
density than conventional methods.

We now show by means of numerical experiments that typical
single domain states [26] have highly accurate low-rank representa-
tions. Fig. 2 shows the approximation properties of a flower and a
vortex state as described in Section 5 via the CP format and the
Tucker format using an alternating least squares algorithm (ALS) [22]
for the approximations. The plots 2a and b are computed indepen-
dently from random initial guesses used in the ALS algorithm. We set
the parameters in (30) as a=c=0.5, b=1 and in (31) as r.=1/2.
Fig. 2(a) shows the dependence of the relative error (19) w.r.t. the

1 A value of R=65 was used in the experiments for much larger grids.

Table 1

Storage in number of floating point values w.r.t. number of computational cells/
degrees of freedom N. In TG methods r denotes the tensor rank and R denotes the
number of Sinc-quadrature nodes.

Method Scratch space Magnetization Potential Field

DM 30N 3N - 3N

SP 27N 3N N 3N

TG (dense) gRN?/3 3N N 3N

TG (Tucker) 6RN?/3 3(r*+3iN'?)  9R(3+3rN'/3) 27R@3 +3rN'?)
TG (CP) 6RN?/3 3(r+3rN?%)  9(r+3rRN'3)  27(r+3rRN'/?)
FES ~ 48N 3N N 3N

rank for fixed discretization density, where Fig. 2(b) indicates the
dependence w.r.t. the discretization density N for fixed rank.
The relative errors are measured in the Frobenius norm, i.e.

1/2 1/2
2 2
relerr = QZ IMEP —~mP) mkF) /< Z IAME) 112 ) )
=XYZ pP=Xy.z

(19)

The Tucker format generally leads to a better approximation,
where Fig. 2(b) essentially shows no loss of accuracy while
increasing the mesh density.

We next perform energy minimization for the parameterized
vortex to gain results on the separation rank in a more realistic
situation. For this purpose we augment the micromagnetic energy
with a Lagrange multiplier and penalty term for the micromag-
netic constraint (|m| =1 a.e., where m=M/M;) and update the
multipliers with a first order rule while increasing the penalty
parameter. Each subproblem is therefore unconstrained and
we can address it by a limited memory BFGS quasi-Newton
method, i.e.

For given multipliers-vector ie R", penalty parameter u >0
and constraint violation ¢(my,my,m;) = mZ +m’+m2—1¢ RN the
corresponding subproblem reads

min_ eqo(my,my,my)+ A c(my,my.m,)+ X icam,m,m,)12,  (20)
my,my,m, 2

where (m},mJ,m])" e R*" denotes the discretized magnetization
cosines. The multipliers are updated according to the rule

Anew = Aolg + C(1y, My, M), (21)

which follows by requiring the first order Karush-Kuhn-Tucker
(KKT) optimality conditions. The method described above is
known as augmented Lagrangian method or method of multipliers
[27]. We relax the magnetization for zero external field and
differing length L of the cube and two different constants for
the anisotropy energy (Q=0.1 (soft) and Q=2 (hard) in reduced
units, see [26]). The approximation rank is then calculated by ALS
algorithms for a given accuracy, both for CP and for Tucker
tensors. The results in Fig. 3 show again lower ranks for the
Tucker case and better compression factors. Moreover it can be
observed that for increasing length of the cube the ranks grow.
This is reasonable particulary in view of the fact that above the
single domain limit more complex structures appear. The results
for soft and hard material only differ slightly.

3.3. FEM Methods (FES)

Within the finite-element framework the Poisson equation (3)
is solved by the weak formulation

/V¢~Vvd3x=/M~Vvd3x VupeV 22)
JQ JQ
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Table 2

179

Computational complexity w.r.t. number of computational cells/degrees of freedom N. In TG methods r denotes the tensor product rank,
where we assume the same rank for each magnetization (and mode in case of Tucker tensors) for sake of simplicity. Every column depends
on its left neighbor, e.g. the calculation of the field requires the previous calculation of the potential etc.

Method Setup Potential Field Energy
DM O(N log N) - O(N log N) O(N)
SP O(N log N) O(N log N) O(N) O(N)
TG (dense) ORY}_ N ORNY?_ | N O(N) O(N)
TG (Tucker) ORY}_ N} OR}_ N7+ 337 Njr?)) OMRY}_ | Ny ORY}_ Nj+r*R)
TG (CP) ORY}_ N ORY}_ NI OMRY}_ | Ny O@RY}_ 1N
FES O(N) O(N log” N),o0 < 1 O(N) O(N)
0.01 T T T T T T 0001 T T T T T T T
a 0 Flower /CP - b Flower/CP -
0001 L Flower/Tucker -x ] i Flower/Tucker = ]
0oL ¥ > Vortex/CP @ 0.0001 Vortex/CP @
. 0.0001 % % .~ Vortex/Tucker 1 . Vortex/Tucker
5 : R R I — T
g 1e-05 F . {1 3
© “ e 2 le06 | b
'E le-06 F ., R p E
5 W, a. g 1e-07 fos.g E
10-07 3 ’ ® ” E: ) B... . 7 ’ {23 u C} o -
1le-08 | e Te-08 pr e i ™ g 1
1e-09 L L L L 1 1 1 J 1e-09 N N N N N N N N N

2 3 4 5 6 7 8 9 10

Rank r

0 1 2 3 4

&)
(=]
-
oo
©

10
N[10%]

Fig. 2. Low-rank approximation of flower and vortex state via Tucker and CP decomposition. (a) Relative error w.r.t. approximation rank r. N = 1e+06. (b) Relative error

w.r.t. discretization density N. Rank r=5.
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Fig. 3. Minimal tensor product and Tucker rank for the representation of a relaxed magnetic cube for a given tolerance (vortex-configuration (31) as the initial state). The
anisotropy Q and the side length L of the cube are varied. The labels of the measure points give the storage in percent compared to full magnetization (100%). (a) Minimal

rank for a tolerance of 1 x 103, (b) minimal rank for a tolerance of 5 x 1073,

where Dirichlet boundary conditions are embedded in the trial
function space V, i.e. the function space of the solution ¢. In the
case of the stray-field problem the boundary conditions at the
sample boundary oQ are unknown. They are defined as zero at
infinity. The treatment of these open boundary conditions is the
main difficulty for finite-element stray-field calculations.

We present the results for a transformation technique. The
sample is surrounded by a finite shell which is also meshed. A
bijective transformation from the finite shell to the complete
exterior of the sample is applied by introducing a metric tensor to
the weak formulation. The particular transformation we use is
known as “parallelepipedic shell transformation” [3]. The sample
is put into a cuboid volume and a shell consisting of six
parallelepipeds is created (see Fig. 4a).

The transformation is chosen such that points located at the
inner boundary of the shell are mapped to themselves. Points on
the outer boundary of the shell are mapped to infinity. The
Jacobian of the transformation is requested to be 1 on the inner
boundary of the shell in order to be continuous across the sample
boundary.

These conditions still leave some space for the choice of
transformation. The most important aspect of this method is the
distortion of the test and trial functions in the transformed area.
In order to get a good result, the test and trial functions must be
distorted such that they are able to model the natural decay of the
magnetic potential. This obviously also depends on the choice of
test and trial functions. From (6) it is seen that the potential
decays with 1/r?. We choose our test and trial function ¢;,v, € Vy,
to be continuous and piecewise third-order polynomial (P3)
Vi ={vn e H(Q): vy|; € P3(T)VT € T} (23)
where H! is a Sobolev space and 7, is a tetrehedron tesselation
(see Fig. 4(b)). The transformation per shell patch is carried out in
a radial sense as sketched in Fig. 5. The scalar transformation is
given by

Ry—Ry

X=R
"Ry~ x|

(24)
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Fig. 4. Parallelepipedic shell surrounding the cuboid sample. (a) The transformation is carried out along the blue line. The origin of the transformation moves along the
yellow middle plane. (b) Since the area of interest is the sample, the mesh is coarsened in the shell. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)

Fig. 5. Sketch of the shell transformation in two dimensions. Within each shell
patch the shell points are transformed in a radial sense. In order to achieve
continuity between the patches the origin O of the one-dimensional transforma-
tion has to be continuous between the patches. We choose the origin O to move on
the middle plane of the sample. The third dimension is treated in the same
manner.

with Ry, Ry, x, and X as shown in Fig. 5. This transforms the third
order polynomial test and trial functions as

1 1 1
2 3 =da /2 ;- -
a+bx+cx*+dx” —>a +b X +c e +d ek (25)
The discretized weak formulation then reads
/(ngh)Tngh dx= /M~ Vo, d&3x Yo, eV, (26)
Q Q
1 if xe -Qsample,
g= 27)

T .
.’71 UU71 if X € Qpeln,

where Qg,mple and Qg denote the disjoint regions of the sample
and the transformed shell with Qgmpie U Qshen =€ and J is the
Jacobian matrix of the transformation. This directly translates to a
linear system of equations, where the solution vector contains the
coefficients in terms of the discrete function basis. The size of this
solution vector is referred to as degrees of freedom (DoF). The
implementation of this method is done with FEniCS [28].

4. Storage requirements and computational complexity

The costs of the different methods are compared in terms of
storage requirements and computational complexity. Tables 1 and 2
show the results. We choose N to be the number of computational
cells in the case of DM, SP and TG methods. In the case of finite-
element methods (FES) N refers to the number of degrees of freedom.

Besides the memory needed for the storage of the magnetiza-
tion configuration and the stray field, all methods require a

certain amount of extra storage for auxiliary constants. In case
of the DM and SP methods this includes the convolution kernels,
TG needs the one dimensional Gaussian matrices, and finite-
element methods (FES) require the stiffness matrix as an auxiliary
constant. These constants depend on the geometry and discreti-
zation only. This means that the computation of auxiliary con-
stants has to be done only once for different magnetization
configurations. Thus their complexity is almost irrelevant in the
context of LLG computations and energy minimization. The
storage requirements for these constants as well as the computa-
tional complexity of their calculation are summarized in the
scratch space column and the setup column respectively.

Storage requirements for TG methods depend on the rank r
used for the low-rank tensor representation of the magnetization
components. Often the rank is much smaller than N'/3, the
discretization size in one spatial dimension. This makes the storage
requirements for the magnetization, potential and field propor-
tional to rN'/3. For the setup the (N> x N'/3) Gaussian matrices
need to be computed and stored, thereby R in Tables 1 and 2
denotes the number of Sinc-quadrature nodes. The computational
effort in TG methods also depends on the tensor format used
for the representation of the magnetization, see Table 2. If the
magnetization has a low-rank representation, TG methods usually
reduce this complexity below the number of computational cells
(sub-linear), making this methods the fastest available nowadays.

However, the constant in the operation count of methods
using a Cartesian grid depends on the relative sizes of Nq,N,
and Ns. In particular, for a thin film N; and N, will be closer to
N'/2 than N'/3, e.g. in this case the costs for the dense TG method
is rather O(N*/2) than O(N*/>).

The storage requirements for the other three methods are
proportional to N, which is a result of the dense representation
of the magnetization, see Table 1. For both the DM and the SP
method an acyclic convolution needs to be computed. Thus the
inputs of the Fourier transform in (8) have to be zero-padded in
each spatial dimension [29]. Since the demagnetization tensor N
is a symmetric 3 x 3 matrix in each point the storage requirement
amounts to 6 - 23N = 48N. However all components of the tensor
field are functions with even or odd properties in all spatial
dimensions. These symmetries carry over to Fourier space and
lead to noncomplex frequencies, which reduces the storage
requirement to 6N. Additional storage is also required for the
zero-padded magnetization. In a straightforward implementation
this amounts to 3 - 23N = 24N. The same value holds in Fourier
space, since the real valued magnetization is complex in Fourier
space, but is conjugate-symmetric with respect to one axis. By
interleaving the FFT, the multiplication and the inverse FFT in (8)
as described in [30], the amount of storage can be reduced, but



C. Abert et al. / Journal of Magnetism and Magnetic Materials 326 (2013) 176-185 181

this technique is not considered here. The same considerations
apply to the SP method, which leads to a scratch storage require-
ment of 30N for the DM method and 27N for the SP method.

A well-known result is the N log N complexity of the convolu-
tion in FFT methods (DM/SP), likewise this is the asymptotic
operation count for those methods, Table 2. In the FES method
sparse linear systems have to be solved for the computation of the
scalar potential. We used a conjugate gradient solver (CG) with
an algebraic multigrid preconditioner (AMG) and measured the
complexity w.r.t. N (DoF) experimentally, finding a linear depen-
dence on the system size (with a small logarithmic scaling factor).

5. Numerical experiments
5.1. Homogeneously magnetized cube

As a first benchmark we take a homogeneously magnetized
unit cube and compute the magnetostatic energy for varying grid-
size N, where the exact value is e; =1/6 [,uOMf]. Table 3 shows for
each of the described methods the relative errors in the energy
w.r.t. the exact value and the relative error in the field computed
by (28), as well as the angular deviation (error in the field-angle)
to a reference field. This reference field is computed with the DM
method with quadruple precision in every spatial dimension and
then averaged on the 40 x 40 x 40 Cartesian grid. For the compar-
ison the same grid is used for the DM, SP and TG methods. The
results of the IFE method are interpolated on the Cartesian grid
with a simple oversampling method. We take the relative l,—
error as a measurement for the field-error, i.e.

1/2
1
relerr = <N > IHﬁfe)mag—H(rﬁLthod%> . (28)
D =XYz

The errors in the field-angle in Table 3 mostly occur at the
edges of the cube. We further mention that for full micromagnetic
simulations the system evolution depends not on the field

Table 3

Errors for the homogeneously magnetized unit cube: relative error of the energy,
relative error of the field/field-angle (w.r.t. 160 x 160 x 160 calculations with the
DM method).

Method N relerr e relerr h  av. relerr h max. err h
[deg.] [deg.]
DM 40x40x40 2.9e—-09 O 0 0
SP 40x40x40 1.1e—03 1.1e—03 2.3e—-05 5.0e+00
TG 40x40x40 3.8e—04 2.3e—03 6.9e—06 2.5e+00
(CPr=1)
FESr 7.2e+04 8.6e—04 2.2e—03 3.2e—05 5.2e+00
a b
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directly but rather on the torque, i.e. M x H. It is easily seen that
for the normalized magnetization m there holds pointwise

lm x H—m x Hexactll < IH—Hexactl. (29)

Therefore the field errors given below are upper bounds for the
torque error.

Fig. 8(a) shows magnetostatic energy calculations for different
spatial discretizations. The DM method is almost exact and does
not depend on spatial discretization. The reason is that the
discretized demagnetization tensor is computed assuming homo-
geneously magnetized computational cells. Also the resulting
stray field is analytically averaged per cell. Since the energy
calculation is bilinear in the magnetization M and the stray field
H, the error is a pure rounding error.

The FES method is the slowest converging method for this
problem. A possible reason is the large external stray field of this
setup. The numerical integration of the diverging metric tensor g
leads to an underestimation of the external space and conse-
quently to an underestimation of the magnetic potential in the
sample. Thus the FES method is particularly sensitive to setups
with large external stray fields.

SP and TG methods are also based on the computation of the
scalar potential, whereby the field is obtained by finite differences.
In [14] it is shown that the TG method essentially computes the
scalar potential exactly for piecewise constant magnetization. The
error in the energy in both methods (SP and TG) is mostly caused
by numerical approximation of the gradient in the field computa-
tion, whereas TG shows the better approximation properties for
this problem. In addition to it, TG uses an exact rank—1 repre-
sentation for the uniform magnetization which makes the com-
putation sub-linear (namely O(N%/3)) with small scaling factor and
allows computations for dozens of millions cells without any
problems related to storage and computational cost.

5.2. Flower and vortex state in a cube

We do the same comparison as in Section 5.1 for the flower
state, see (30) and Fig. 6(b), and Table 4 for the results. The main
magnetization direction is taken to be along the z-axis, and the
flower is obtained through an in-plane perturbation along the
y-axis and an out-of-plane perturbation along the x-axis. Assum-
ing polynomial expressions for the perturbations, as in [31], our
flower is the normalized version of

mx(r)zéxz,
1 1
mm=gﬂ+§fﬁ
my(r)=1, (30)
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Fig. 6. Magnetization configurations in a 1 x 1 x 1 cube used for numerical experiments. The magnetization is normalized, its direction is color coded. (a) Homogeneous

magnetization. (b) Flower state. (c) Vortex state.
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Table 4
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Errors for the flower state in a unit cube: relative error of the energy, relative error of the field/field-angle (w.r.t. 160 x 160 x 160
calculations with the DM method).

Method N e relerr h av. relerr h [deg.] max. err h [deg.]
DM 40 x 40 x 40 1.528e—-01 1.6e—05 1.1e—-09 4.0e—02
SP 40 x 40 x 40 1.526e—-01 1.8e—03 5.0e—-05 7.2e+00
TG (CP, r=6) 40 x 40 x 40 1.529e-01 1.8e—03 7.9e—06 2.6e+00
FES 7.2e+04 1.526e—01 2.5e—-03 6.1e—05 6.8e+00
a y b e
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Fig. 7. Magnetization configurations in a 1x1x0.1 cuboid used for numerical experiments. The magnetization is normalized, its direction is color coded. (a)
Homogeneous magnetization. (b) Vortex state. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 8. Convergence of the calculated stray-field energy for different geometries and magnetization configurations. Like in Tables 1 and 2, N is the number of cells for the
tensor-grid methods (DM, SP and TG) and the number of degrees of freedom in the case of finite elements (FES). (a) Homogeneously magnetized 1 x 1 x 1 cube, (b) flower
state in 1 x 1 x 1 cube, (c) vortex state in 1 x 1 x 1 cube, (d) homogeneously magnetized sphere with radius 0.5.

where the center of the cube is located at (0,0,0). We choose
a=c=1 and b=2 (Fig. 7).

The results are similar to those of the homogeneously magne-
tized sample. In contrast the results of the DM method are not
exact in this case, but Fig. 8(b) shows that the DM method
converges faster than all other methods. Fig. 9 shows a log-log
plot of the average cell size h against the error of the energy
calculation and a table with the associated convergence rates. As
reference for the error calculation the energy was computed on
a 160 x 160 x 160 grid with the DM method. All methods show
approximately a quadratic convergence in the cell size.

The next comparison is for a vortex state in a unit cube, see
Fig. 6(c), described by the model in [32], i.e.

1/2

my(r) = _JF/ (l—exp <—4:—§)> ,

12

2
my(r)= );( (1 —exp <—4 ;—2>> R

2
my(r) = exp <72 g) 31

where r = \/x2 +y2, and we choose the radius of the vortex core as
r.=0.14. The vortex center coincides with the center of the cube,
and the magnetization is assumed to be rotationally symmetric
around the x/y-axis and translationally invariant along the z-axis.
The results can be found in Table 5.

The most notable difference to the previous tests is the large
field error in the FES method. It shows that the error occurs in the
center of the vortex, where the gradient of the magnetization
peaks. A possible solution for this problem would be an adaptive
meshing, which is currently not implemented in our FES code.
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Fig. 9. Convergence rates of the energy calculation of a flower state in a 1x 1 x 1 cube, where h=1/N"/ 3 and the error is computed against an asymptotic solution of the DM
method.
Table 5
Errors for the vortex state in a unit cube: Relative error of the energy, relative error of the field/field-angle (w.r.t. 160 x 160 x 160
calculations with the DM method).
Method N e relerr h av. relerr h [deg.] max. err h [deg.]
DM 40 x 40 x 40 2.189e—-02 9.2e—04 2.9e-04 1.1e+01
SP 40 x 40 x 40 2.163e—-02 2.3e-03 2.1e—-05 3.4e+00
TG (Tucker, r=10) 40 x 40 x 40 2.193e—-02 3.9e-03 1.5e—-05 4.2e+00
FES 7.2e+04 2.160e—02 2.1e—02 6.1e—02 1.8e+02
Table 6
Errors for the homogeneously magnetized 1 x 1 x 0.1 thin film: relative error of the energy, relative error of the field/field-angle
(w.r.t. 320 x 320 x 32 calculations with the DM method).
Method N e relerr h av. relerr h [deg.] max. err h [deg.]
DM 80x80x8 4.025e—02 0 0 0
SP 80x80x8 4.021e—-02 1.7e-03 2.6e—05 4.5e+00
TG (CP, r=1) 80x80x8 4.025e—-02 3.7e-03 6.4e—06 2.1e+00
FES 4.9e+04 3.983e-02 5.5e—03 1.9e—-05 5.0e+00
Table 7
Errors for the vortex state in a 1 x 1 x 0.1 thin film: Relative error of the energy, relative error of the field/field-angle (w.r.t.
320 x 320 x 32 calculations with the DM method).
Method N e relerr h av. relerr h [deg.] max. err h [deg.]
DM 80 x80x8 1.569e - 03 2.3e-04 2.8e—06 6.8e—01
SP 80x80x8 1.555e—03 2.5e—-03 4.6e—05 3.6e+00
TG (Tucker r=38) 80x80x8 1.569e—-03 3.0e—-03 1.8e—05 4.0e+00
FES 4.9e+04 1.496e—-03 6.1e—03 6.6e—04 2.1e+01
5.3. Thin film center lies within the sphere. This leads to staircase artifacts as shown

We first take a homogeneously magnetized 1 x 1 x 0.1 thin
film (magnetization out of plane), see Table 6 for the results.
Table 7 shows the results for the vortex state (out of plane) in the
same thin film geometry.

The results for methods that do not rely on spatial discretiza-
tion outside the sample perform equally well on this geometry.
FES, instead, shows a deterioration of performance due to the
worse ratio of shell and sample elements while leaving the
number of DoF unchanged.

5.4. Sphere
As the last test a homogeneously magnetized sphere with radius

R=0.5 is simulated. The spatial discretization in case of cuboid grids
is done by setting the magnetization M = (0,0,M;) in cells whose

in Fig. 10(a). For the FES method the sphere is discretized such that
the volume of the discretized sphere matches the analytical volume.
The magnetostatic energy for different spatial discretizations is
displayed in Fig. 8(d). The FES method shows the fastest conver-
gence, which is obviously a consequence of the better approxima-
tion of the curved surface, see Fig. 10(b). Also the field computation
benefits from this better approximation, see Fig. 10(c) and (d).
Work was done on the treatment of curved surfaces within
Cartesian grid methods [33]. Still the use of irregular grids is a more
natural way of describing curved surfaces and is thus preferable.

6. Conclusion

We investigated several test magnetization configurations
with different methods for the stray-field computation and
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Fig. 10. Spatial discretization and stray field of a homogeneously, in z-direction magnetized sphere in the middle xz-plane. (a) Finite difference approximation of the
spherical sample with 50 x 50 x 50 cells. (b) Finite element approximation of the spherical sample with 9429 tetrahedra (including the shell elements). (c) z component of
the stray field, calculated with the DM method. (d) z component of the stray field, calculated with the FES method.

compared the results. There is no clear winner in this comparison
of numerical methods for the stray-field calculation. Computa-
tions on cuboid structures are best done with methods that
compute on cuboid grids, namely the DM, SP and TG methods.
The TG method is not only the fastest choice for a given spatial
discretization, it is also able to handle very large grids due to low-
rank tensor approximation or representation of the magnetiza-
tion. However the TG method is not yet well investigated in the
context of full micromagnetic simulations. In order to preserve
the sublinear complexity and storage requirement features
further research on the behaviour of low-rank magnetization
during energy minimization or LLG integration has to be done.

The SP method is faster than the DM method by a factor of
1.5 and needs about 30% less memory. This speedup comes at the
expense of accuracy. Among the Cartesian grid methods, the DM
method is most accurate for a given spatial discretization since
the stray field is computed directly. Both the SP and the TG
method show an additional error due to the finite-difference
gradient computation.

For curved structures FES is a good choice. The obvious reason
for this is the use of irregular meshes, which are able to model
the curvature much better than cuboid grids. The alternative
FEM/BEM approach by Fredkin/Koehler [2] makes the ansatz
¢ = ¢, + ¢, for the scalar potential. First a Neumann-problem is
solved for ¢, (sparse system), followed by the calculation of the
boundary values for ¢, due to ¢, (dense matrix multiplication).
Then ¢, is obtained inside the volume by solving a Laplace
equation with Dirichlet boundary conditions from the previous

step (sparse system). The computational complexity is therefore
O(N+M?), where N denotes the total number of degrees of
freedom (DoF) and M the number of boundary nodes. When
compression techniques like - or H?-matrices are used for the
boundary element matrix, costs reduce to O(N+M log M) or even
O(N+ M) respectively, but at an expense of accuracy because the
boundary conditions in the last step underlie approximation
errors.

FES solves one sparse preconditioned system, but needs the
discretization of some outdoor space. The transformation, in
general, leads to badly conditioned systems, which we addressed
with algebraic multigrid preconditioners, leading to an overall
complexity of O(Nlog” N),« <1, and N the total DoF including
those of the outdoor space.

For the thin-film case, both methods scale worse, costs for
FEM/BEM are dominated by the boundary element method, for
FES the DoF in the outdoor space become significant.
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Appendix A. Low-rank tensor formats
A tensor Ae RV >M>Ns s said to be in canonical format
(CANDECOMP/PARAFAC (CP) decomposition) with tensor product
rank r, if

.
. 3
A= ZA[U}UOU;Z)OUf) (A1)
=1
with 4; e R, vectors u}” e RV, and o is the vector outer product. A
particular entry of a canonical tensor is given by

.
Q=Y APy ). (A2)
=1
Abbreviating notation as in [22], a tensor A e RV *N2*Ns jp cp
format can be written as

A=[4UD U U, (A3)

with weight vector A=[4y,...
wf| ... |ul1e RN,

From (A.3) it can be seen that the number of degrees of
freedom (DoF) of a CP tensor is r+r) ;N; (compare with [];N;
for a dense tensor), also see Table 1.

A tensor Ae RV*N2*Ns is said to be in Tucker format (Tucker
tensor) if it can be represented in the form

,A-]e R™ and factor matrices UY =

AZCX]U]X2U2><3U3, (A4)
with the so-called core tensor Ce R™"*2*"> and factor matrices
Uj € RNJ xTj .

The key-operation is the n-mode (matrix) multiplication of
a tensor Ae RVN2Ns with a matrix Ue RMM which is the
multiplication of each mode-n fiber of .4 by the matrix U, i.e.
{ Nj, ] #Nn

AxpU e R-1M M, = (A5)

M, j=n.

In contrast to CP tensors, the ranks in the Tucker representa-
tion can be different in each mode (dimension). In the discussions
of Section 4 and the experiments in Section 5 we used the same
rank r for each mode, i.e. r=1;.

For a tensor in Tucker format [];r;+3;1; N; entries have to be
stored, which is a compression for r; < N;, also see Table 1. For a
sum of Tucker tensors one can only store the factor matrices and
core tensors of the summands, which is called block-CP format.

Linear algebra operations for low-rank tensors, like the inner
product, tensor-matrix product etc., can be performed without
forming the dense tensors [34], which makes these operations
faster than their conventional counterparts.
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