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Abstract

Spin-spin correlation function response in the low electronic density regime and externally applied electric field is evalu-
ated for 2D metallic crystals under Rashba-type coupling, fixed number of particles and two-fold energy band structure.
Intrinsic Zeeman-like effect on electron spin polarization, density of states, Fermi surface topology and transverse mag-
netic susceptibility are analyzed in the zero temperature limit. A possible magnetic state for Dirac electrons depending
on the zero field band gap magnitude under this conditions is found.
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1. Introduction

Subtle relativistic effects on reduced dimensional elec-
tronic systems have brought exciting perspectives on fun-
damental physics and technological advances since the
Rashba’s breakthrough [1, 2, 3, 4]. Spin Orbit Interac-
tion dwells in the always evolving spintronics world, pro-
viding interesting applications based on its subsequent,
wide and sophisticated phenomena. For instance, mag-
netic switching control via induced current on metal/fer-
romagnet/oxide trilayers at room temperature [5], tunable
spin-orbit strength via stoichiometry manipulation on de-
posited concentration of Bi atoms on BixPb1−x/Ag alloys
[6], quantized Hall conductance on doped Bi2Te3 layered
arrays without external magnetic field [7], characteristic
Knight shift behavior in non-centrosymmetric supercon-
ducting CrIrSe3 crystals below critical temperature [8], or
Rashba interaction control for out-of-plane Zeeman spin
polarization on transition metals such as WSe2, MoS2 via
biased voltage [9], constitute few examples that demon-
strate the currently hectic activity in this area. In this
paper, we discuss the zeroth order transverse spin-spin sus-
ceptibility response for 2D Dirac interacting electrons in
the low density regime and zero temperature, under an
externally applied electric field on the plane. We derive
general expressions at finite temperature for the correla-
tions functions on arbitrary Dirac spin directions, as well
as the features of the density of states (DOS) in the limit of
the Fermi energy instability and fixed number of particles.

2. Spin-Spin Correlation Function Formalism

The Hamiltonian formulation for 2D magnetically po-
larized surfaces or interfaces in a non-interacting elec-
tron system under an externally applied electric field E
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might be approached by taking the lowest-order coupling
between the electron momentum in the XY plane k =
(kx, ky, 0), its spin ~̂σ and E: Ĥk ∼ K̂k + ~̂σ · (k×E),
where K̂k = ( h̄2k2/2m?)1̂ corresponds to the single free-
particle kinetic energy operator [10, 11, 12, 13]. For
an arbitrary field orientation, Ĥk ∼ K̂k + σ̂Z(kxEy −
kyEx) + (σ̂Xky − σ̂Y kx)Ez, where the last term is rec-
ognized as the typical Rashba-type interaction. By in-
troducing the appropriate constants, the upper-lower (±)
double band structure for Dirac electrons might be taken
as Ĥ±k = K̂k + σ̂Z∆k − ασ̂Y kx ± ασ̂Xky. Defining the ef-
fective magnetic field γBΣ = (−αky,αkx,−∆k), the com-
plete electron Hamiltonian takes the form:

Ĥ±k = K̂k − γŜ ·BΣ, (1)

with the spin basis Ŝ ≡ (σ̂Z ⊗ σ̂X , I ⊗ σ̂Y , I ⊗ σ̂Z) and I,
σ̂j as the 2× 2 identity and Pauli matrices respectively.
Operators Ŝj satisfy the necessary anticommutation rules
[Ŝi, Ŝj ]+ = 2δij . The Zeeman-like term ĤΣ = −γŜ ·BΣ
in Eq. (1) has a Dirac-type form, and its genesis can be
explained, among several approaches, from fairly simple
geometric-based arguments for materials with inversion
symmetry [14, 15, 16]. Specifically, the 2D Dirac equa-
tion ĤΣ = αγ̂0(~̂γ ·k+αm?) reduces into the Zeeman-like
Hamiltonian straightforwardly under the set of transfor-
mations α2m? ≡ ∆k = ∆0 +(kxĒy−kyĒx), where ∆0 cor-
responds to the energy band gap magnitude at zero field.
The parameter α denotes the typical Rashba spin-orbit in-
teraction constant, although contributions due to crystal
asymmetries might be taken into account via Dresselhaus
Hamiltonian [17]. Upon this representation, the Dirac ma-
trices γ̂µ = (γ̂0, ~̂γ), γ̂µ = (I⊗ σ̂Z , iI⊗ σ̂X , iσ̂Z ⊗ σ̂Y ) must
fulfill the constraint [γ̂µ, γ̂ν ]+ = 2gµν = 2diag(1,−1,−1).
In a matrix-block scheme:

ĤΣ =

(
Ak+ 0

0 Ak−

)
, (2)

Preprint submitted to Journal of Magnetism and Magnetic Materials October 3, 2017



  

where Akσ ≡ Ak± is giving by:

Akσ =

(
∆k iαke−iσφk

−iαkeiσφk −∆k

)
, (3)

and tanφk = ky/kx. Eigenvalues of Ĥσk provides the two-
fold energy spectrum:

ε0
kσ =

h̄2k2

2m?
+ σ

√
α2k2 + ∆2

k, (4)

where σ ≡ ±1 labels the band index. The fi-
nite temperature Green’s propagator associated to Ĥσk
is calculated from its orthonormalized eigenvectors
|uσk↑〉 = |iσFkσe

−iφk , 1, 0, 0〉/(1 + F 2
kσ)

1/2, |uσk↓〉 =

|0, 0, iσFkσe
iφk , 1〉/(1 + F 2

kσ)
1/2 [18]:

G0
ij (k, iωn) =

∑
σ={±}

Mσ
ij (k)

iωn − h̄−1(ε0
kσ − µ)

, (5)

with ωn as the (Fermionic) Matsubara frequencies, µ is
the chemical potential and the matrix elements Mσ (k) ≡∑
s=↑,↓ |uσks〉 〈uσks| are defined through (1 + F 2

kσ) ×
Mσ
ij (k) =

F 2
kσ iσFkσe

−iφk 0 0
−iσFkσe

iφk 1 0 0
0 0 F 2

kσ iσFkσe
iφk

0 0 −iσFkσe
−iφk 1

 ,

(6)
with αkFkσ = σ∆k + (α2k2 + ∆2

k)
1/2. The average value

for the spin operator Ŝ (per unit of surface S) is calculated
from the prescription:

〈Ŝ〉
S

=
1
h̄β

∑
n,k

Tr{ŜG0(k, iωn)}, (7)

where Tr corresponds to the trace operator. Direct calcu-
lation for the Z-compound leads into:

〈ŜZ〉
S

= −2
∑
k

∆k
εgk

[ sinh (βεgk)

cosh (βµ̄k) + cosh (βεgk)

]
, (8)

with β−1 = kBT , εgk = (α2k2 + ∆2
k)

1/2 and µ̄k =

µ− h̄2k2/2m?. Energy gap structure is affected by 〈ŜZ〉
under the minimum spin-effective interaction term ĤI =
−J〈ŜZ〉ŜZ or in equivalent form, by the transformation
∆k → ∆k−J〈ŜZ〉. Integration of Eq. (8) at zero tempera-
ture limit, zero applied field, non interacting spins (J = 0)
and low density regime provides the exact result:

〈ŜZ (0)〉 = −2k2
0S∆̄0
π

√
1 + 2µ̄+ ∆̄2

0. (9)

The existence of this particular state of magnetic polar-
ization is biased by the value of the Fermi energy for the
range µ̄ ≥ −(1 + ∆̄2

0)/2 with µ̄ = µ/2E0, ∆̄0 = ∆0/2E0,

k0 = m?α/ h̄2, 2E0 = αk0. For gapless systems in the
regime J , 0 the average spin orientation on Z direction
is still feasible for µ̄ ≤ (ζ2 − 1)/2, ζ = π/2J̄k2

0S:

〈ŜZ(0)〉 =
1
J̄

√
ζ2 − 2µ̄− 1, (10)

with J̄ = J/2E0. Two mechanisms for possible mag-
netization in out-of-plane direction at zero temperature
and without external field are unveiled: both are intrin-
sically induced by the presence of the component of an
effective Zeeman field due either to the band gap BΣZ ∼
−∆0/γ for J = 0, or the non spin-spin interaction and
BΣZ ∼ −J〈ŜZ〉/γ for ∆0 = 0. The model also suggests
that, for the last case, there is a resulting magnetization
in the range µ̄ < 0 generated by the coupling parame-
ter J only if the size of the sample follows the restric-
tion S ≥ π h̄2/2m?J . The carrier density is calculated
from N/S = ( h̄β)−1∑

n,k Tr{G0(k, iωn)} and in the low
density regime (µ̄ < 0) the number of particles is ob-
tained by integrating N/S upon appropriate limits k̄F± =
(2(1 + µ̄± (1 + 2µ̄+ ∆̄2

0)
1/2))1/2, kFσ = k0k̄Fσ, with the

result: N−/S = (2k2
0/π)(1 + 2µ̄+ ∆̄2

0)
1/2. Bare suscep-

tibility χ0 can also be written in terms of the spin-spin
correlation function D0 by setting χ0

ij (q) = −µ2
0D0

ij (q),
and

D0
ij (q) =

2
S

1
β

∑
n,k

Tr{G0 (k) ŜiG0 (k+ q) Ŝj}, (11)

with the reduced notation k ≡ (k, iωn), and q ≡ (q, iνm)
[19]. Wavevector q might be interpreted as the exchang-
ing momentum for (Dirac) spin-spin collective excitations.
Similar developments have been performed for describing
the plasmon dispersion relationships on helical liquid state
in Bi2Se3 [20] and intrinsic graphene layers [21]. Equation
(11) may be expressed in terms of the generalized prod-
ucts:

1
β

∑
n,k
G0
ij (k)G0

kl (k+ q) =∑
k

∑
σσ′

Mσ
ij(k)Mσ′

kl (k + q)Π0
σσ′ (iνm, q, k) ,

(12)

where

Π0
σσ′ (iνm, q, k) = −

n0
k+qσ′ − n

0
kσ

i h̄νm − (ε0
k+qσ′ − ε

0
kσ)

, (13)

with n0
kσ = (1 + exp [β(ε0

kσ − µ)])
−1. In the static case,

νm → 0, with q→ 0, the term D0
ij (0) takes the form:

D0
ij (0) = −

β

S
∑
k,σ

Bijk sech2
(
βXkσ

2

)
(14)

− 4
S
∑
k

Cijk
(Xk+ −Xk−)

[
tanh

(
βXk+

2

)
− tanh

(
βXk−

2

)]
,
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Figure 1: Fermi surface topology for two dimensional electronic sys-
tems under Rashba interaction effect in the low density regime, with
∆0/2E0 = 0.1 and J = 1. (Left) Ēx = 0, (Right) Ēx = 1.15. Cal-
culations in both cases are performed under the constraint N−/S =
2k2

0/π=constant.

with Bijk , Cijk and Xkσ defined in [22]. Bare susceptibility
can be calculated from (14) with the particular choice Ŝi =
Ŝj ≡ 1̂ in Eq. (11), or under the conditions Bijk = 1,
Cijk = 0, leading into χ0 = µ2

0β/S
∑

k,σ sech2(βXkσ/2),
whose zero temperature limit converges to the well known
result χ0 = 4µ2

0/S
∑

k,σ δ(ε
0
kσ − µ).

3. Results and Discussion

Figure (1) represents the Fermi surface transformation
under an applied field Ēx, low density regime and con-
served number of particles N−, calculated from Eq. (4).
Ēy is taken as zero throughout all numerical calculations.
Fermi surface topology at zero field corresponds to an an-
nulus with radii kFσ [23]. Applied field shifts the Fermi
surface towards ky axis and it might eventually create a
spin current on the same direction [24]. Allowed states for
non applied field lie into a circular Fermi disk with approx-
imated radius 2k0. Compactness in the Fermi disk breaks
into unconnected and asymmetric lobes at Ēx = 1.15, phe-
nomenon which is directly reflected in a strong peak on the
DOS distribution (Figure 4). Self consistent solutions of
Eq.(7) are shown in Fig. (2)-(Left). The normalized av-
erage spin polarization decreases with Ēx and depends on
the strength of J . Variations of 〈ŜZ〉 are more sensitive for
small intensities of Ēx, and it tends to reach a weaker sat-
uration state for greater intensities. Strong Zeeman cou-
pling favors the effective spin alignment in the calculated
range since 〈ŜZ(J = 1)〉 < 〈ŜZ(J = 0)〉 < 0. Fermi en-
ergy increases monotonically and is highly sensitive to the
electric field intensity, although its rate of growing is lesser
as the parameter J gets stronger (Fig. 2)-(Right).

Figure (3) shows the bare susceptibility at zero tem-
perature as a function of the Fermi energy. This quan-
tity recasts the density of states for the 2D case with-
out interaction, exhibiting a strong peak at µ̄ = −1/2
[line (a)] [23]. Line (b) describes the DOS distribution for
Ēx = 1.15. Peaks on the DOS are also centered around
µ̄ = −1/2, with cut off points and intensity depending on
the electric field magnitude. Line (c) describes the DOS
for a free electron system, constant for positive Fermi en-
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Figure 2: (Left.) Average Z-spin density as a function of Ēx at zero
temperature and low carrier density at ∆̄0 = 0.1, with 〈ŜZ (0)〉J =
−2m?∆0/π h̄2. (Right.) Normalized Fermi energy behavior as a
function of Ēx. In all cases, (a) J = 0, (b) J = 0.25, (c) J = 0.5
and (d) J = 1. The total number of particles on the low energy sub
band N− is conserved.
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Figure 3: Real part of bare susceptibility response χ0 (µ̄) for non
interacting spins (J = 0) at zero temperature. (a) ∆̄0 = 0, Ēx = 0
(b) ∆̄0 = 0.1, Ēx = 1.15. (c) Density of states line for a free electron
system at zero field calculated from χ0. (d) D0

ZZ (µ̄) [right axis] at
Ēx = ∆̄0 = 0, (e) Ēx = 1.15, ∆̄0 = 0.1.

ergy and zero otherwise. The spin-spin correlation func-
tion D0

ZZ (µ̄) [line (d)] decreases to zero in the interval
−1/2 < µ̄ < 0 at zero field and no gap. Line (e) takes
into account the gap and the applied field simultaneously,
showing a higher cut off value for µ̄. No restriction for the
total number of particles has been imposed here, never-
theless, this results shall be considered as the benchmark
for comparative purposes and further calculations. Cor-
relation function and DOS response for interacting spins
at zero temperature are shown in Figure (4). Real part
of D0

ZZ (Ēx) behaves uniformly for Ēx < 1.15 and rapidly
decays for Ēx > 1.15 at J = 1. The coupling effect J on
the spin-spin correlation D0

ZZ(Ēx) is important for smaller
values of Ēx (Ēx < 1.15 in this case) and it is insignificant
for stronger intensities, providing a signature for which
〈ŜZ〉 enters into a state of saturation dominated by the
electric field over the band gap energy effect ∆̄0; i.e., the Z-
spin susceptibility χ0

ZZ(Ēx ∼ 0) tends to decrease in mag-
nitude as the J parameter augments in the difference asso-
ciate to the intrinsic Rashba field γBΣZ = −∆0 − J〈ŜZ〉,
since 〈ŜZ〉 < 0. The function χ0(Ēx) exhibits a strong
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maximum associated to the geometric breach for the Fermi
surface at Ēx = 1.15 and J = 1.
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(Ē

x
)

(a
.u

.)

(a)

(b) (c)

(d)

1.15

0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

Ēx
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Figure 4: (Left) Spin-spin correlation as a function of an externally
applied field. For ∆̄0 = 0.1, (a) J = 0, (b) J = 0.25, (c) J = 0.5 and
(d) J = 1.0. (Right) DOS response. Case (b) (not shown) mostly
overlaps on line (a).

4. Concluding Remarks

The classical two bands Rashba-type Hamiltonian re-
sembles the Dirac electron equation and it may recast a
Zeeman-like behavior for expanded spin basis and exter-
nally applied electric field. By using standard finite tem-
perature formalism, we have computed the average spin
polarization perpendicular to the confinement layer, the
DOS and the generic spin-spin correlation functions in the
long wavelength approach. The value Ēx ≈ 1.15 yields in
the order of α/e`2, (e−electron charge) providing an esti-
mation for the lateral gate voltage in terms of the length
scale `. The bare polarization propagator χ0 recalls strong
DOS fluctuations for an applied electric field, indicating a
close relationship between its geometric distribution over
the Fermi surface and the outbreak limit for conserved
number of carriers. This model suggests the formation
of a magnetic state via Zeeman-Rashba-type field BΣZ at
zero temperature and zero electric field due to presence of
the energy band gap, or even for gapless configurations,
where exchange spin spin-average interaction is taken into
account. Temperature effects, different average spin direc-
tions associated to BΣ, as well as the nature of the spin-
spin interaction have to be reconsidered beyond the purely
on-site and collinear coupling, possibly a RKKY-type in-
teraction [25], issues that shall be addressed on further
investigations.
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HIGHLIGHTS

• A double energy band effective Rashba Hamiltonian in two-dimensional
low density electronic system is studied.

• Fermi surface compactness breaks into unconnected and asymmetric lobes
for a critical applied electric field intensity.

• Many body finite temperature formalism is used for calculating a magnetic
state perpendicular to the plane of the electron dynamics.

• Transverse correlation function is sensitive to the exchange spin-spin cou-
pling interaction for small intensities of the applied electric field.
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