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The thermodynamic Bethe ansatz equations of the Cogblin-Schrieffer model have been solved numerically. The
full N = 6 (J = 5/2) degeneracy of the Hund’s rule ionic ground state of Ce is taken into account. Results for the
temperature dependent magnetic susceptibility parallel and perpendicular to the crystal axis are presented. The
deviations, due to the Kondo effect, to the non-interacting ion results are pointed out.

1. Introduction

The complex behavior of Cerium compounds is still attracting in-
terest among experimentalist. The change of the effective spin-degen-
eracy N due to the interplay between Kondo and crystal field effects has
been studied experimentally by investigating various Cerium based
pseudo-ternary intermetallic substitution series [1].

The single ion Kondo model and its generalization to a N-fold de-
generate ionic configuration, the SU(N) Cogblin-Schrieffer model [2],
has been used successfully to describe the thermodynamic properties of
dense Kondo systems [3-5]. However, for fitting the influence of crystal
fields on the paramagnetic susceptibility experimentalists have had to
resort to the text-book result for non-interacting ions [6-9].

A broad basis for comparison with experiments on the specific heat
in zero magnetic field over the whole temperature range has recently
been provided [10] and applied successfully [11]. The numerical so-
lution of the thermodynamic Bethe ansatz equations for the N = 6
model (Cerium 3+ ions) with general crystal field configurations was
achieved by a new high field/low temperature expansion to calculate
the limiting values of the unknown functions. In a subsequent paper
[12] the method was extended to the calculation of the magnetic sus-
ceptibility. However, this was restricted to the case of N = 4 that is
applicable to Cerium in a temperature range in which the highest
Kramers doublet may be neglected.

For the present work the method to calculate the magnetic sus-
ceptibility has been further developed to the N = 6 model with axial
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crystal fields that split the 6-fold degenerate ground state of the Ce®*
ions into three doublets that are eigenstates of the total angular mo-
mentum operator J,. Here results are presented for the case that the
energy levels corresponding to the eigenstates | = 1/2 >, | = 3/2 >,
| £ 5/2 > are sequenced in that order.

The new results allow for a quantitative comparison with experi-
mental data with relevance to e.g. CePts/Pt(111) [13].

2. Model and methods

The Bethe ansatz solution of the Cogblin-Schrieffer model [14,15]
was used by Schlottmann [16] to calculate the anisotropic magnetic
susceptibility at zero temperature for the ionic crystal field Hamiltonian
given by [16,17]:

Hion = b, O20 + by O‘? — g up S Hy — g ug SxHy (€8}

Here 07 and O, denote the usual Stevens operators [18], and H, and
H, are the parallel and transversal projection of the magnetic field onto
the crystal field axis, respectively.

For a parallel magnetic field the energy levels of the three doublets
are given by:

Eijy = =8 byt 120 byF SgupH,
Ey/ = —2 by 180 byF SguyH,
Esjy = 10 by+ 60 by ¥ SguyH. @
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Fig. 1. Inverse magnetic susceptibility  ~! as function of temperature T scaled
by the Kondo temperature in the absence of crystal fields compared with the
corresponding non-interacting ion curves (dashed lines).

The calculation for a transversal magnetic field is done by second
order perturbation theory [19] including van Vleck terms quadratic in
H.

The calculation of thermodynamic properties follows the lines pre-
sented in the preceding publications [10,12]. Details will be published
elsewhere [20]. The splittings between adjacent ionic energy levels
A, =E ;1-E, 1 <r <N, serve as generalized fields determining the
limiting values of the unknown functions of the infinite system of
nonlinear integral equations. The energy levels according to Eq. (2)
have to be put into sequence such that A, = 0. For reasons of brevity we
restrict ourselves to the case E;,» < E3,» < Es/5, region II in the no-
tation of Schlottmann [16]. The extrapolation of our results to zero
temperature has served as a check on our calculation for A, = Ay.

Temperature, magnetic, and crystal fields are scaled by the Kondo
temperature in the absence of all fields Tx(N = 6). At low temperatures
and large crystal fields the influence of the higher doublets may be
neglected so that the thermodynamic properties are governed by an
effective spin-1/2 system with an effective Kondo temperature
Tx(N = 2) given by the relation

(gup)?

T(N=2) = T =0

3

For small temperatures compared with this low temperature scale
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the susceptibility decreases quadratically.

In this case Eq. (3) may be used to determine Tx(N = 6) from the
scaling relation T3 ( N= 6) = C4ATx( N= 2) where the numerical factor
C,4 has been approximated by C, = 17.08 + 17.05 A4/A, [10].

For small values of the crystal fields the sixfold degeneracy at
vanishing magnetic field is almost restored even at small temperatures.
The qualitative behavior of the susceptibility is then the same as
without crystal fields [21].

3. Results and conclusion

The numerical solution of the thermodynamic Bethe ansatz equa-
tions has been achieved for a number of crystal field splittings. The
relative accuracy is expected to be better than 1%. All results are de-
picted in the form of the inverse magnetic susceptibility x~'. The
symbols indicate the finite temperature grid. All energies are measured
in units of temperature (kg = 1).

In Fig. 1 results for the Cogblin-Schrieffer model with axial crystal
fields (solid lines) are compared with the corresponding curves for non-
interacting ions [22] (dashed lines). A parallel magnetic field is con-
sidered exemplarily for energy splittings A,/Tx(N = 6) = 1 while A4/
Tx(N = 6) is varied.

The main point to show here is: While the principal outlook of the
two sets of curves is similar there is a consistent quantitative dis-
crepancy. This means that - if the Kondo effect plays a role in the low
temperature physics of a certain compound - the fitting of the (inverse)
susceptibility curves with the model of non-interacting ions cannot
reliably be used to determine the crystal field splittings.

To facilitate a quantitative description of experimental results the
numerical results for the Cogblin-Schrieffer model with axial crystal
fields are depicted in Fig. 2 for a fixed ratio of crystal field splittings A4/
A, = 1.0, 2.0, and 4.0, respectively.

Here, the full symbols represent the results for a parallel magnetic
field while the open symbols correspond to a transversal magnetic field.
The dashed line shows the Cogblin-Schrieffer result without crystal
fields [21].

Unless the crystal field splitting is too small, the inverse suscept-
ibility in a parallel magnetic field has its minimum at T = 0 and in-
creases steeply at low temperatures. It then shows a pronounced peak
for smaller values of A4/A,. The peak decreases in height and turns into
a plateau at intermediate values of A4/A,. On increasing A4/A, further
the plateau turns into a shoulder with an inflection point before the
Curie-Weiss like high-temperature behavior (i.e. a straight line) is
reached.

The inverse susceptibility in a transversal magnetic field in com-
parison does not display such distinct features. However, the curves
bend to a straight line in about the same temperature range as the
curves for the parallel magnetic field.

4. Summary

On the basis of a recently found new method the infinite set of
coupled, nonlinear integral equations describing the thermodynamics
of the N = 6 Cogblin-Schrieffer model has been solved. Thereby the full
degeneracy of the J = 5/2 Hund’s rule ionic ground state of Ce is taken
into account. Results for the (inverse) anisotropic magnetic suscept-
ibility for ions in an axial crystal field are presented to provide material
for a quantitative analysis of experimental results [23].

The deviations, due to the Kondo effect, to the non-interacting ion
results are pointed out.
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Fig. 2. Inverse magnetic susceptibility x ~* as function of temperature for parallel and transversal magnetic field. The ratio of crystal field splittings is kept fixed to a)
1.0, b) 2.0, and c) 4.0.

248



H.-U. Desgranges

Acknowledgment

I thank Kai Fauth for providing some valuable references.

References

[1]

[2]
[3]

[4]

[5

—

[6]
[7]
[8]
[91

See for example, C. Gold, L. Peyker, W. Scherer, G. Simeoni, T. Unruh, O. Stockert,
H. Michor, E.-W. Scheidt, J. Phys.: Condens. Matter. 24 (2012) 355601.

B. Cogblin, J.R. Schrieffer, Phys. Rev. 185 (1969) 847.

A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press,
Cambridge, 1993.

1. Aviani, M. Miljak, V. Zlati¢, K.D. Schotte, C. Geibel, F. Steglich, Phys. Rev. B 64
(2001) 184438.

A.P. Pikul, U. Stockert, A. Steppke, T. Cichorek, S. Hartmann, N. Caroca-Canales,
N. Oeschler, M. Brando, C. Geibel, F. Steglich, Phys. Rev. Lett. 108 (2012) 066405.
G. Motoyama, M. Watanabe, A. Sumiyama, Y. Oda, J. Phys. Conf. Ser. 150 (2009)
052173.

H. Mendpara, Devang A. Joshi, A.K. Nigam, A. Thamizhavel, JMMM 377 (2015)
325.

A. Maurya, R. Kulkarni, A. Thamizhavel, S.K. Dhar, D. Paudyal, J. Phys. Soc. Jpn. 85
(2016) 034720.

V.K. Anand, D.T. Adroja, A.D. Hillier, K. Shigetoh, T. Takabatake, J.-G. Park,

K.A. McEwen, J.H. Pixley, Q. Si, J. Phys. Soc. Jpn. 87 (2018) 064708.

249

[10]
[11]

[12]
[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

Journal of Magnetism and Magnetic Materials 474 (2019) 246-249

H.-U. Desgranges, Phys. B 454 (2014) 135.

S. Patil, A. Generalov, M. Giittler, P. Kushwaha, A. Chikina, K. Kummer, T.C. Rodel,
A.F. Santander-Syro, N. Caroca-Canales, C. Geibel, S. Danzenbacher,

Y. Kucherenko, C. Laubschat, J.W. Allen, D.V. Vyalikh, Nature Comm. 7 (2016)
11029.

H.-U. Desgranges, Phys. B 473 (2015) 93.

C. Praetorius, K. Fauth, Phys. Rev. B 95 (2017) 115113.

AM. Tsvelick, P.B. Wiegmann, J. Phys. C 15 (1982) 1707; J.W. Rasul, in Valence
Instabilities, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam,
1982), pp. 49.

For reviews see N. Andrei, K. Furuya, J.H. Lowenstein, Rev. Mod. Phys. 55 (1983)
331 and A.M. Tsvelick, P.B. Wiegmann, Adv. Phys. 32 (1983) 453.

P. Schlottmann, JMMM 52 (1985) 211.

E. Segal, W.E. Wallace, J. Solid State Chem. 13 (1975) 201.

See for example: A. Abragam, B. Bleany, Electron Paramagnetic Resonance of
Transition Ions, Clarendon Press, Oxford, 1970.

H. Lueken, M. Meier, G. Klessen, W. Bronger, J. Fleischhauer, J. Less-Common
Metals 63 (1979) 35.

H.-U. Desgranges, in preparation.

V.T. Rajan, Phys. Rev. Lett. 51 (1983) 308.

J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford
University Press, London, 1932.

Numerical data, also for different crystal field parameters, can be made available
upon request to the author.


http://refhub.elsevier.com/S0304-8853(18)31803-1/h0005
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0005
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0010
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0015
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0015
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0020
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0020
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0025
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0025
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0030
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0030
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0035
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0035
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0040
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0040
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0045
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0045
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0050
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0055
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0055
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0055
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0055
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0060
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0065
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0080
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0085
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0090
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0090
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0095
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0095
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0105
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0110
http://refhub.elsevier.com/S0304-8853(18)31803-1/h0110

	Crystal fields and Kondo effect: Magnetic susceptibility of Cerium ions in axial crystal fields
	Introduction
	Model and methods
	Results and conclusion
	Summary
	Acknowledgment
	References




