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1. Introduction

Cooperative phenomena in magnetic systems are often in-
vestigated within some approximation methods in statistical
physics. There are still a few exact results in the literature [1], since
the partition function is not tractable in most of the systems. The
most known example of this situation is that there is still no exact
result for the most basic model of magnetic systems, namely Ising
model [2] in three dimensions, although the exact result for two
dimensional system was presented in 1944 [3]. There are numer-
ous approximation and simulation methods for these systems.
Each of these methods have their own advantages, as well as
disadvantages. A class of these approximation methods is called
effective field theories (EFT) [4]. Recent developments in these
formulations, especially in correlated effective theories can be
found in Ref. [5].

Early attempts to solve Ising model yield mean field theories
(MFT), which reduce the many particle Hamiltonian into one
particle, by replacing the spin operators in the Hamiltonian with
their thermal (or ensemble) averages. This means that neglecting
all self-spin and multi-spin correlations in the system. After that,
by handling the self-spin correlations, EFT formulations have been
constructed. First successful variants of these approximations are
Oguchi approximation [6] and Bethe-Peierls approximation (BPA)
[7,8]. After that, many variants of the EFT were constructed with
their own advantages and disadvantages, also with some limita-
tions [5].

Most of the EFT formulations start by constructing a finite
cluster within the system. Interactions between the spins which
are located in this cluster are written exactly as much as possible
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and the coupling of this cluster with the outside of it is written
approximately. The problem arises when we work with finite
clusters which represent the whole system. Let us call the spins
located in the chosen cluster as inner spins, spins located at the
borders of the chosen finite cluster as border spins and all other
spins as outer spins, i.e. an outer spin is any spin which is outside
of the chosen cluster. The interactions between the inner spins and
the other inner spins or border spins can be calculated with a
given Hamiltonian of the system. The problem comes from the
interactions of the border spins with their nearest neighbor outer
spins. These interactions have to take into account an approximate
way. In a typical MFT for these systems, this approximation can be
made via replacing all these nearest neighbor outer spin operators
with their thermal (or ensemble) average. Although in the spirit of
the mean field approximation, it means reducing the many par-
ticle system to one particle system, we may call aforementioned
approximation for N-spin cluster as MFT-N.

On the other hand, EFT can include the self-spin correlations
in the formulation. Then, it is superior to the MFT. One class of
the EFT for the Ising model starts by using single-site kinematic
relations, which gives the magnetization of the system, such as
Callen identity [9] or Suzuki identity [10]. Although these types of
identities are exact, since they are in a transcendental form,
calculation with these identities requires some approximations.
Most widely used method here is differential operator technique
[11]. Neglecting the multi-spin correlations within this method,
namely using decoupling approximation (DA) [12] produces the
results of the Zernike approximation [13]. In order to reduce that
transcendental function given in the Callen identity to a poly-
nomial form, there are also combinatorial techniques [14,15],
integral operator technique [16] and probability distribution
technique [17].
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On the other hand, larger clusters for obtaining critical prop-
erties of the Ising model for several lattices have also been utilized.
For instance, 2-spin cluster (EFT-2) [18] and 4-spin cluster (EFT-4)
[19] approximations have been successfully applied to the Ising
systems. But, to the best of our knowledge, there is no general
formulation for given EFT-N. Besides, working with larger clusters
is important for obtaining the critical temperature of the system
within the renormalization group technique, which are within the
mean field renormalization group (MFRG) [20] and effective field
renormalization group (EFRG) [21,22] techniques for the Ising
model. Using larger clusters gives closer critical temperatures in
comparison with the exact ones. For instance, clusters up to
number of 6 spins for the honeycomb lattice, number of 9 spins for
the square lattice and 8 spins for the simple cubic lattice have been
used within the EFRG and more accurate critical temperatures
have been obtained [23].

As seen in this brief literature, working with larger clusters is
important for obtaining more accurate results for the critical and
thermodynamical properties of the Ising model. Since enlarging
the cluster comes with some computational cost, it is important to
answer the question: How large is it enough? Besides, as discussed
in Ref. [24], for the Heisenberg model in nanomaterials, it is not an
arbitrary choice to use larger clusters, but it is necessity in some of
the systems. This point will be discussed again in the following
sections. In light of these points, the aim of this work is to con-
struct a general EFT-N formulation for an arbitrary lattice and
compare the results of the solutions in different sized clusters with
the exact ones. For this aim, the paper is organized as follows: in
Section 2 we briefly present the model and formulation. The re-
sults and discussions are presented in Section 3, and finally Section
4 contains our conclusions.

2. Model and formulation

We start with a standard spin-1/2 Ising Hamiltonian with ex-
ternal magnetic field,

H=-]YS§Si-HY S,
{ih i (1)
where S; denotes the z component of the Pauli spin operator at a
site 1, | stands for the exchange interactions between the nearest
neighbor spins and H is the longitudinal magnetic field at any site.
The first summation is carried over the nearest neighbors of the
lattice, while the second one is over all the lattice sites.

In a typical EFT-N approximation, we start by constructing the
N-spin cluster and writing N-spin cluster Hamiltonian as

N
HM =~ ] 3 55~ Y hs,

@) i=1 (2)
where the first summation is over the nearest neighbor pairs of
the inner and border spins, while the second summation is over all
the inner and border spins. Here h; is the local field acting on the
site i and it denotes all the interactions between the border spin at
the site i and the outer nearest neighbor spins of it and magnetic
field at a site i. We note here that, not all of the inner spins are the
border spins. In this case, some of the h; terms in this summation
may be zero (for the inner spins that are not border spins at the
same time). The term h; may be called as mean field or effective
field which depends on how we handle it. Let the site i be the
number of §; nearest neighbor outer spins, then h; can be written
as

L2l
=) Y S+ H,
Z (3)

where S{¥ denotes the kth outer nearest neighbor of the spin i and
O; stands for the number of nearest neighbor outer spins of the
spin i. Then we try to calculate the thermal average of the quantity
S; via

TS exp(—ﬂ‘H (N))

<S > T['N exp(—ﬁ?—(("’)) (4)
In Eq. (4) Try stands for the partial trace over all the lattice sites
which are belonging to the chosen cluster, g = 1/(ks T) where kg is
the Boltzmann constant, and T is the temperature. Replacing S;
with any other quantity related to the system will give the thermal
expectation value of that quantity. Calculation with Eq. (4) requires
the matrix representation of the related operators in a selected
basis set, which can be denoted by {y; }, wherei =1, 2, ..., 2N. Each
of the elements of this basis set can be represented by [s1sz...5v )
where s =+ 1 (k=1, 2, ..., N) is just one-spin eigenvalues of the
z component of the spin-1/2 Pauli spin operator. In this represen-
tation of the basis set, operators in the N-spin cluster act on a base
via

SSi| S5 ) =887 ]5850), (5)

It is trivial from Eq. (5) that matrix representation of Eq. (2) is
diagonal, then just calculating the <y4 ‘—/;"H (N)’W > then ex-
ponentiate it is enough for the calculation of Eq. (4). Let the di-
agonal elements of the matrix representation of H ™ be

= (). (6)

and the diagonal elements of the matrix representation of the Sy in
the same basis set be

% = (e[S o ). )
Eq. (4) can be written by using Egs. (6) and (7) as
N
52, 9 el -1

me=(S)={ ———F——= ),

" k=1,2,...,N.
7 o)

(8)

The order parameter (i.e. magnetization) of the system can be
defined as

1
m=— 3 m.
N&
Eq. (8) can be written in a closed form as

me = (f (8. ). (})). (10)

Here, {h} stands for the ordered array of the local fields

(h1, hy, ..., hy ) for the N-spin cluster. Thus, the order parameter can
be given by writing Eq. (10) in Eq. (9) as
m=(F(8,], {l})) (11)
where

N

1
E(p.1, {ha})—ﬁk;ﬁ(ﬁ,]- {h}) (12)

and
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2, 40 o)

K60 ) = —
xf exo( 1) (13)
which is nothing but just the function given in Eq. (8).

There are some methods in the literature related to the eva-
luation of the thermal average in Eq. (11). Most basic evaluation of
the thermal average is, taking the local fields as

h=6Jm+H (14)

which will give the results of the MFT. It replaces the outer spin
operators with their thermal (or ensemble) averages. Note that,
translational invariance property of the lattice has been used. This
means that all sites of the lattice are equivalent. By writing Eq. (14)
into Eq. (11) we can get the MFT-N equation as

m=F(,J, {6Jm + H}). (15)

Using MFT means neglecting the self-spin correlations, as well as
multi-spin correlations. We note that, the dependence of the
function on the parameters £ and J will not be shown in the re-
minder of the text.

On the other hand, formulations that give better results than
the MFT have been presented. One of the class that includes the
self-spin correlations in the formulation is EFT. The evolution of
Eq. (11) is possible in different ways, such as differential operator
technique [11], integral operator technique [16] and probability
distribution technique [17].

In order to obtain the explicit form of the order parameter
expression, we still have to use some approximations, due to the
intractability of this expression. All approximations produce re-
sults within different accuracies. For instance, evaluating Eq. (11)
by using differential operator technique and DA [12] will give re-
sults of Zernike approximation [13]. This approximation is most
widely used for that kind of systems within the EFT formulations.
Thus, we want to try using this approximation in larger clusters.
Our strategy will be to start with 1- and 2-spin clusters and then to
generalize the formulation to the N-spin cluster. We mention that
most of the studies in related literature concern with 1- or 2-spin
cluster, although limited works using 4-spin cluster have also been
presented, such as Ref. [19].

2.1. 1-Spin cluster

The basis set of the 1-spin cluster is {|1), |-1)}. Calculation of
Eq. (11) using this basis set will give
m = ( tanh(ghy)). (16)

By using differential operator technique [11], Eq. (16) can be
written as

m = ( exp(h1V1) )F (x1)k=o, (17)

where V; = 9/ox; is the differential operator and the function is
given by
F(x1) = tanh(px1). (18)

The effect of the exponential differential operator on an arbitrary
function f(x;) is defined by

exp(@Va)f (x1) = f(x1 + a1), (19)

where a; is an arbitrary constant.
By writing Eq. (3) into Eq. (17) for 1-spin cluster, we can write
Eq. (17), with the defined operator

0 k) = exp(]Vj S,.“‘)) = [COSh(]Vj) + S0 Sinh(]Vj )] (20)

as

51
m= <H 91(1'k)>F(X1)|x1—0-
k=1

Expansion of Eq. (21) contains multi-spin correlations between the
spin 1 and its nearest neighbors. With the help of the DA, we can
obtain tractable form of this expansion, via neglecting these multi-
spin correlations [12]

(1P 5) = () ()..{5) 2

forn =3, 4, ..., 51. On the other hand, the translational invariance
of the lattice dictates the equivalence of any two sites in the lattice
ie.

m={s1) = (517) = {sf) = - = (s1). 23)

Using these properties given in Eqgs. (22) and (23) in Eq. (21), we
arrive the expression for the order parameter as

(21)

m = [¢ ' F(x1)k=o (24)
where
¢ = [cosh(J%) + m sinh(J%) ] (25)

Now, writing hyper-trigonometric functions in Eq. (25) in terms
of the exponentials, then inserting Eq. (25) into Eq. (24) and per-
forming the Binomial expansions, we obtain the expression of the
order parameter as

a1
m= Z Dy, m™

nm=0 (26)
where

o1—-n1 ni
D= D, D EQY™FI[(51- 2n - 2s1)]]

n=0 s1=0 (27)
and

1 (61)f01—m)(Mm

(o1,m) _ 1 _1)s1
el ) 0 a5

This is the well known and widely used method, namely EFT
with differential operator technique and DA. This method creates
polynomial form of the expression Eq. (16) as Eq. (26), as order
parameter. As we can see from Eq. (27), in this process we have to
evaluate the function defined in Eq. (18) many times at the same
point through running the summations in Eq. (27), hence the ar-
gument of the function (6; — 2r; — 2s1)] gets the same value many
times. This point seems not to be problematic, since we are facing
with simple function as defined in Eq. (18) and evaluation of the
function at the same argument cannot create significant extra time
cost. But when we go to larger clusters we cannot calculate the
analytical form of the function, then we have to make some matrix
operations in order to get the evaluation of the function at a cer-
tain point. This may take some time. For this reason let us use
another form of the order parameter expression. For this aim let us
write Eq. (25) as

¢ =[(1 + m)exp(%) + (1 - m)exp(-J¥%)]. (29)

Using this form of the operator in Eq. (24) with Binomial ex-
pansion will yield an alternative form of the order parameter as
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‘51
m= G F(t))
n:z_a] 1 (30)

where ' denotes the increment of the dummy indices by 2 and
where

o1
= A(61+t1)[2B(51-11)[2
@ ((51 - m/z] o)
and
A=2(1+m), B=5(1-m) (32)

We note that Eq. (30) is identical to Eq. (26). The difference is in
their forms which means evaluating the function at a certain point
only once when the summation in Eq. (30) is running.

2.2. 2-Spin cluster
The basis set for the 2-spin cluster is

{111y, 11 = 1), |-11), |-1 — 1)}. If we evaluate Eq. (11) in this basis
set, we obtain the expression of the order parameter as

_ < sinh[B(h + hy)] >

cosh[B(h1 + hy)] + exp(—2p])cosh[p(h1 — hy)] (33)

which is nothing but just the expression obtained in Ref. [18].
If we write Eq. (33) as in Eq. (21) we get

51 82
m= <H H 91(1"092(2'1) >F(X1- X2 )ki=0,x2=0,

k=1 1=1 (34)
where the function is defined by

sinh[g(x1 + x2)]
cosh[p(x1 + x2)] + exp(=24])cosh[f(x1 - x2)]  (35)

F(x1,x2) =

By applying the same procedure between Eqs. (21) and (24) to
Eq. (34) we get an expression
m = [¢1]7 [, 172 F (x1, X2 )ki=0,02=0, (36)

then the expression corresponding to Eq. (26) in 2-spin cluster will

51 62
m= Z Diyny mM+n2,
n1=0 n2=0 (37)
where

61-n1 n1 62-n2 n2

Duny = 2, 2, >, O, EQEESZF[(51 - 21 — 2s1)

n=0 s1=0 n=0 s2=0

I (52 —-2n - 232)_]]. (38)

The coefficients E{%™ and E{%™) have already been defined in Eq.
(28). On the other hand, 2-spin cluster counterpart of Eq. (30) can
be found within the same procedure as that of the 1-spin cluster

and it is given by

61

‘62
m= Y ) GIGZF[M. le].

t1=-61 t2=-52

(39)

in which " symbol denotes the increment of the dummy indices by
2. The coefficients in Eq. (39) have been defined in Eq. (31).

2.3. N-spin cluster

For the N-spin cluster, the magnetization expressions are given
in Eq. (11) in a closed form. N-spin cluster is constructed in such a

way that the total number of inner and border spins are to be N.
The spin at a site i, i.e. S;, has the number of §; outer spins as its
nearest neighbors.

As in 1-spin cluster (Eq. (21)) or 2-spin cluster (Eq. (34)), here
we can write the magnetization as

a1 52 ON
m= <H IT- II 91(1'k1)92(2"{2)---‘9151’v'k’v)>F({Xi})|{xi_0},

k1=1 k2=1 kN =1

(40)

where {x } stands for the ordered array xi, X2, ..., xy for the N-spin
cluster. The function F({x; }) is nothing but just the replacement of
all h; terms by x;, in Eq. (12). We note that, expression given by Eq.
(40) is valid for the lattices that any inner and border spin has no
common outer neighbors. This means that this form of the
formulation cannot give correct results for some certain lattices
such as Kagome lattice.

After expanding Eq. (40) and applying the DA, we get an ex-
pression for the order parameter as

N
= & |F : Nl =0,
m ’g[(d&) } (% Dlps3=0 (1)

then the expression corresponding to Eq. (37) for N-spin cluster
will be

SN
m= Z D(r,,-}m””'”z*"“*n"’.
nN =0 (42)

where {n; } stands for the ordered array ny, ny, ..., ny for the N-spin
cluster. The coefficient is just the generalization of the coefficient
given in Eq. (38) for 2-spin cluster to the N-spin cluster and it is
given by

fa-n} {n} [ N
Dmy= Y X [HEﬁ,?‘s,;’*)]F[{(&—ZE—ZS)J}}

(=0} {5=0) | k=1 (43)

Here, number of 2N summations present, which are running from
r;=0to & —n and s;=0 to n;, wherei =1, 2, ..., N. Also the term
(& — 25 — 2s)J represents the ith argument of the function, where
i=1,2, .., N.The coefficients E{™) in Eq. (43) are given as in Eq.
(28).

By using a similar procedure for obtaining Eq. (39) from Eq.
(36), we can get from Eq. (41)

5152 "N N
m= 3 X - X [H G ]F[{ru}].
ti=-61 2=—52  tN=-oN [k=1 (44)
where again ' denotes the increment of the dummy indices by 2.
The coefficients in Eq. (44) have already been defined in Eq. (31).
Thus, we can calculate the order parameter of the system in
EFT-N approximation from Eq. (42) or the equivalent form of it
given in Eq. (44), while within the MFT-N approximation the
magnetization should be calculated from Eq. (15). Besides, many of
the thermodynamic functions can be obtained by solving Eq. (42)
or (44). For instance, the static hysteresis loops can be obtained by
finding the magnetization for different magnetic field values (H)
and the characteristics of them such as hysteresis loop area,
coercive field or remanent magnetization can be determined. In
addition, magnetic susceptibility of the system can be obtained by
numerical differentiation of the magnetization with respect to the
magnetic field.

Calculation with MFT-N is rather clear but we need more ela-
boration on the calculation of Eq. (44). Eq. (44) contains number of
N summations which run on the array of the dummy indices
{t} - (t, t2, ..., tn ). The dummy index of t, takes the values of



64 U. Akinai / Journal of Magnetism and Magnetic Materials 386 (2015) 60-68

%, — & + 2, ..., % — 2, &, i.e. number of ., different values.
Thus, Eq. (44) contains number of HLV:] (Ek + 1) terms to be sum-

med. We note that J; is the number of outer nearest neighbor
spins of the spin labeled by Si. Any term in summation in Eq. (44)
has two parts which are being producted. First part is the product
of the coefficients G, which can be calculated from Eq. (31). The
other part is the function evaluated at an ordered array {t } and
this part can be calculated from Eq. (12). But in order to make
calculations for any cluster, the crucial point is to construct the
configurations of the evaluation points of the function, i.e. con-
structing the set of (ty, t, ..., ty ) from all possible values of any t;.
The configuration set will have the number of ]}, (:ik + 1) dif-
ferent configurations of ordered array { }.

Similar strategy is also valid for the calculation of Eq. (42). But it
can be seen from Eqgs. (42) and (43) that the number of config-
urations in which the function to be evaluated is higher than the
procedure of calculation with Eq. (44). As explained in Section 2.1,
it will be better to use Eq. (44) instead of Eq. (42) for time saving
during the numerical processes.

In order to obtain the critical temperature of the system within
EFT-N or MFT-N formulations given by Eqs. (42) or (44) and (15),
respectively, linearized (in m) forms of that expressions have to be
obtained. Since in the vicinity of the (second order) critical point,
magnetization is very small, the solutions of the linearized equa-
tions for the temperature with nonzero magnetization will give
the critical temperature. As usual, let us take into account the
expression of the magnetization in a form

N
m= Aymn
ZB (45)

then the linearized form of Eq. (45) is given by
(1-A))m=0. (46)

Note that due to the time reversal symmetry of the system (i.e.
H=0in Eq. (1)), Ao = 0 has to be satisfied. The temperature found
from the solution of Eq. (46) (i.e. the solution of Ay = 1) is critical
temperature of the system. Then it is important to obtain the
coefficient A; for the N-spin cluster from Eqgs. (42) or (44), in order
to get the critical temperature of the system within the EFT-N
formulation. It is also important to get this coefficient for the
calculation within the EFRG, since the critical temperature can be
obtained by equating the coefficients A; with two different sized
clusters [22].

From the linearized form of Eq. (44), the coefficient A; can be
obtained as

S 1\ ‘51 /52 "N N 5
LR E IR |1 { |

TF[{tk]}] (47)

where

N
A=Ya, =
=1

M=

4.

=1 (48)

On the other hand, linearization of Eq. (15) gives A; for the
MFT-N approximation as

aom

AMFT-N _ ML '
-0 (49)

3. Results and discussion

In this section, we want to present the effect of enlarging the
cluster on the critical temperatures and some thermodynamic
properties of different lattices. For this aim, we work on two kinds
of two dimensional lattices, namely honeycomb and square lat-
tices, and as an example of the three dimensional lattice, we
consider a simple cubic lattice. All these lattices have S-1/2 spins
on their sites. Let us define scaled temperature as t = ks T/] and
scaled critical temperature as t. = kg T:/J, where T is the critical
temperature. Critical temperature within the EFT-N formulation
can be obtained from the numerical solution of AFF™-N =1 and
within the MFT-N formulation from AMT-N = 1, where AFfT-N and
AMFT-N are defined by Eqs. (47) and (49), respectively. On the other
hand, within the MFRG [20] and EFRG methods [22], critical

temperatures can be obtained from equations AMFT-N = AMFT-N'

and AFFT-N = AFFT-N' for different cluster sizes (number of spins
which are inside and on the border in the constructed cluster) N

and N’, respectively.
3.1. Critical temperatures

In Fig. 1 we can see (a) the geometry of the honeycomb lat-
tice and (b) the variation of the critical temperature of the two
dimensional honeycomb lattice with the cluster size. Here N-
spin cluster has been constructed with the spins numbered from
1 to N in Fig. 1(a). Firstly, we can see from Fig. 1(b) that enlarging
the cluster gives lower critical temperatures. At the same time,
lower values of the critical temperatures mean that more closer
critical temperatures to the exact results. For this lattice, the
cluster size of N=12 in the EFT-N formulation gives the results
of the BPA. Although the enlarging cluster lowers the critical
temperatures, this decreasing behavior of the critical tempera-
ture when the size of the cluster rises is not monotonic. The
same situation can be seen in Figs. 2(b) and 3(b) for the square
and the simple cubic lattices, respectively. The cluster sizes of
the square and simple cubic lattices which can give the results
of BPA within the EFT-N formulation are N=6 and N=13, re-
spectively. Of course, when the coordination number of the
lattice rises, numerical calculations of EFT-N for larger clusters
become tedious. This comes from the increasing number of
evaluation points of the function given in Eq. (47). These num-
bers can be seen in Table 1.

In order to investigate the variation of the critical temperature
with the cluster size (N), we have fitted the critical temperatures
to the sizes of the cluster. It seems that the function - (N) = aN-t is
a suitable form to mimic this behavior seen in Figs. 1-3(b). Here,
a =t (1) means that the one spin cluster results for the critical
temperature with the method related to the curve, i.e. for the MFT,
we have a = 3.0, 4.0, 6.0 while for the EFT a = 2.104, 3.090, 5.073
[12] for the honeycomb, square and simple cubic lattices, respec-
tively. After the fitting procedure, we can find answers to the
questions such as, what should be the minimum required size of
the clusters required for obtaining the results of the BPA; which
cluster size gives the result that infinitely close to the exact result?
Of course both of the methods cannot give the exact results even if
the cluster is really large, but finite. But, obtaining the answer of
the second question will give hints about the accuracy of the re-
sults when the cluster size rises.
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b

Fig.1. (a) A schematic representation of the honeycomb lattice, (b) the variation of the critical temperature with the size of the cluster for the honeycomb lattice. Exact result
(1.519) [25] and the result of the BPA (1.821) [26] are also shown as horizontal lines. The results are shown by points and also the fitted curves of the form aN~? are depicted

for both of the methods MFT-N and EFT-N.

Fitting results for both of the approximations (MFT-N and EFT-N)
can be seen in Tables 2 and 3, respectively. According to this fitting
procedure, size of the cluster that gives the results of the BPA (Ngpa)
and results that are infinitely close to the exact result (Nexqc) are also
given in tables. It is not surprising to see that EFT-N reaches more
quickly to the results of BPA than the MFI-N, while enlarging the
cluster. For instance for the square lattice, MFT-37 gives the BPA result
while in case of EFT, EFT-6 gives that result. But the interesting point is
in the values of Ny The values of the Neyu Of the MFT are lower
than that of the EFT, for all lattices. It can be seen in fitting results in b
values in Tables 2 and 3 that the critical temperature values of the
MFT-N decrease more quickly than the results of the EFT-N. But since
the MFT-N curves start with higher values than the EFT-N curves (i.e.
the values of the a parameter of the MFI-N is higher than the

corresponding EFT-N value), EFT-N curves reach more quickly to the
level of BPA. But the higher value of the parameter b obtained for the
MFT-N curves, results in a quick convergence to exact results in
comparison with EFT-N.

As explained above, enlarging the cluster yields more accurate
results for the critical temperatures. But on some problems one
has to use larger clusters, even though there is no need for more
accurate results. Both of the approximations in 1-spin cluster
cannot distinguish between some different lattice types. Most
trivial example is that the EFT-1 formulation cannot distinguish
between a simple cubic lattice and a triangular lattice, since both
of the lattices have coordination number (number of nearest
neighbors) 6 and EFT-1 uses only the coordination numbers. This
deficiency may yield some dramatic results. In order to explain

b
5 T
a
HO
16 15 14 13
5 6 7 12
4 3 3 11
251
1 2 9 [ e
Exact
2 1
0 2

Fig. 2. (a) Schematic representation of a square lattice, (b) the variation of the critical temperature with the size of the cluster, for square lattice. The exact result (2.269) [27]
and the result of the BPA (2.885) [26] are also shown as horizontal lines. The results are shown by points and also the fitted curves of the form aN~—" are depicted for both of

the methods MFT-N and EFT-N.
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Fig. 3. (a) Schematic representation of simple cubic lattice, (b) the variation of the critical temperature with the size of the cluster for simple cubic lattice. The exact result
(4.511) [25] and the result of the BPA (4.933) [26] are also shown as horizontal lines. The results are shown by points and also the fitted curves of the form aN~" are depicted

for both of the methods MFT-N and EFT-N.

Table 1
Number of elements in configuration set {t } in Eq. (47), for honeycomb (z=3),
square (z=4) and simple cubic (z=6) lattices.

N z=3 z=4 z=6
1 4 5 7
2 9 16 36
3 18 48 180
4 36 81 625
5 72 216 3000
6 64 324 10 000
7 96 864 32000
8 192 972 65 536

Table 2

t = aN~? least squares fitting results for the MFT-N formulation.

Lattice (z) b Sum of squares of residuals Ngp Nexact
3 0.1262 0.0110 52 217
4 0.0901 0.0095 37 537
6 0.0384 0.0055 164 1691
Table 3
t = aN-b least squares fitting results for the EFT-N formulation.
Lattice (z) b Sum of squares of residuals Ngp Nexact
3 0.0584 0.0034 12 259
4 0.0389 0.0036 6 2868
6 0.0108 0.0009 13 51 478

this point, suppose that we have a magnetic system with a geo-
metry given in Fig. 4. System is infinitely long about the z-axis and
finite in xy plane. With this geometry we can model the single
walled nanotube. In this form there are a number of 6 spins in
each plane. Beside the present interaction between the nearest
neighbor spins in one plane, also there are interactions with
nearest neighbor spins in the lower and upper planes. Let us call
L=6 as the size of the nanotube, which is the number of spins in

Fig. 4. Schematic representation of the single-walled nanotube with size L=6.

each xy plane. While the size of the nanotube in Fig. 4 is 6, there
can exist bigger or smaller sizes. For instance, L=3 is a three-leg
spin tube [28]. Regardless of the size of the nanotube, if we solve

4 PP .
MFA-1
3.8} .
3.6} .
e © © o o o o
34+t ® MFA-L .
3.2} )
3} EFT-1 e 6 © 0 o o .
2.8} ® FEFT-L .
2.6} .
0 2 4 6 8 10 12

Fig. 5. Variation of the critical temperature of the single-walled nanotube with the
size of the nanotube, for both formulations MFT-L and EFT- L. The results of the
MFT-1 and EFT- 1 are also shown with horizontal lines.
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Fig. 6. Critical temperatures of the S-1/2 Ising model on square lattice obtained
from EFRG and MFRG methods. Cluster sizes which were used in both methods are
shown in parenthesis. The horizontal lines named as BP and Exact are the results of
BPA and exact calculations.

this system with EFT-1, we obtain the results of the square lattice.
Because Eq. (26) (or Eq. (30)) contains only the coordination
number as a representation of the geometry of the system. Then
we have to enlarge the cluster. One of the reasonable choices is to
construct a finite cluster from the L spins, which are placed in the
same plane. We can see the results for the critical temperatures for
this system in Fig. 5. Constructed cluster sizes and the size of the
nanotube are the same, i.e. results have been obtained from the L-
spin cluster, where the cluster consists of the spins that belong to
the one plane of the system. MFT-1 and EFT-1 results have been
shown by horizontal lines in Fig. 5 with the values t.=4.000 and
t.=3.090, respectively. As seen in Fig. 5, critical temperature in-
creases as the size of the nanotube gets bigger, as physically ex-
pected. But as seen in Fig. 5, 1-spin cluster formulations cannot
produce this situation.

Lastly, EFRG calculations on S-1/2 Ising systems can be easily
performed by using Eq. (47). As an example of this, we have de-
picted the variation of the critical temperature of the square lattice
(obtained within the EFRG formulation) with some selected cluster
sizes in Fig. 6. As seen in Fig. 6 that critical temperatures obtained
from both methods (namely, EFRG and MFRG) approach to the
exact result, as the size of the clusters increases. Results for MFRG-
(2, 1) (t.=2.885) and EFRG-(2, 1) (t.=2.794) are the same as given
in Refs. [29,22], respectively. On the other hand, the results of
EFRG-(9, 8) (t,=2.450) and EFRG-(12, 11) (t.=2.408) are lower

a

than the obtained value of EFRG~(9, 6) (t.=2.572) in Ref. [23]. To
the best of our knowledge, these latter two results have not been
obtained within the EFRG yet.

3.2. Thermodynamic properties

In this section we want to investigate the effect of enlarging the
cluster on the thermodynamic properties of the system. Since
different lattices have similar behaviors then we restrict ourselves
only on a square lattice.

Magnetization can be calculated from Eq. (44) as explained in
Section 2. The differentiation of Eq. (44) with respect to magnetic
field will give the magnetic susceptibility (y) of the system. Be-
sides, internal energy of the system (denoted as u, which is scaled
by J) can be calculated by the same way of magnetization calcu-
lation procedure. The only difference is the starting point of the
calculation, i.e. in Eq. (8), instead of Sj there will be some terms
like S, § which are the nearest neighbors of the chosen cluster.
Again, differentiation of this expression with respect to the tem-
perature will give the specific heat (denoted by c, which is again
scaled by J).

In order to see the effect of enlarging the cluster within the
EFT-N formulation, we depict the variation of the magnetization
and the magnetic susceptibility of the system at zero magnetic
field, with the temperature for different cluster sizes in Fig. 7. As
seen in Fig. 7(a) the magnetization behaviors with the tempera-
ture are the same for all of the clusters. The only difference comes
from the critical temperature, at which the magnetization reaches
to value of zero. As the size of the cluster increases, the critical
temperature decreases, as also shown in Fig. 2(b). This decreasing
behavior of the critical temperature shows itself also in the be-
havior of the magnetic susceptibility. As seen in Fig. 7(b), as the
size of the cluster increases then the peaks of the susceptibility
curves grow, as well as they shift to the right-hand side of the (y-t)
plane, i.e. to the lower temperature regions. As we can see from
Fig. 7(b) that enlarging the cluster gives more realistic results for
the magnetic susceptibility, since the divergence behavior of the
magnetic susceptibility at a critical temperature appears more
pronounced as the size of the cluster increases.

We can make similar conclusions regarding the behavior of the
internal energy and the specific heat of the system, as the size of
the cluster increases within the EFT-N formulation. We can see
from Fig. 8(a) that the change in the behavior of the internal en-
ergy with temperature occurs at lower values of the temperature
as the cluster size increases, since enlarging the cluster causes a
decline in the critical temperature. The same effect shows itself

b

EFT-N

34

Fig. 7. Variation of (a) zero-field magnetization and (b) zero-field magnetic susceptibility of the S-1/2 Ising model on a square lattice, with the formulation EFT-N and for

selected values of cluster sizes, N = 2, 4, 9, 12.
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Fig. 8. Variation of (a) the internal energy and (b) the specific heat of the S-1/2 Ising model on a square lattice, with the formulation EFT-N and for selected values of cluster

sizes, N = 2,4, 9, 12.

also in Fig. 8(b) which is the variation of the specific heat with the
temperature for some selected values of the cluster sizes. The
peaks occurring at the critical temperature get pronounced by
increasing the cluster size.

All of these discussions suggest that within the EFT-N for-
mulation, enlarging the cluster also will give more realistic results
in the thermodynamic properties of the system. However, as in the
case of the variation of critical temperature with cluster size,
characteristic behavior of successive thermodynamic curves be-
comes more or less insensitive to varying cluster sizes.

4. Conclusion

In conclusion, a general formulation for the EFT with differ-
ential operator technique and DA (as well as MFT) with larger fi-
nite clusters has been derived. Enlarging the finite cluster yields
different formulations which are called EFT-N (or MFT-N) for the
N-spin cluster. The formulation is limited to the S-1/2 Ising model
and for translationally invariant lattices.

It has been shown that application of the EFT-N and MFT-N
formulations on several lattices yields more accurate results in
critical temperatures as well as the thermodynamic properties of
the system, when the size of the cluster rises. Comparisons of the
results for the critical temperatures have been made with the re-
sults of the BPA and exact ones. It has been shown that EFT-6 and
MFT-37 results and EFT-13 and MFT-164 results in the critical
temperature reproduce the results of the BPA for square and
simple cubic lattices, respectively. We note here that constructing
process of the finite cluster with N spins can be made in several
ways. Different geometrical clusters which have the same number
of spins will give different results.

Besides, the limitations of the derived formulation have been
discussed, since enlarging the cluster requires more numerical
computation effort, and consequently takes much time. Anyway,
we can say that the formulation derived in this work can be ap-
plied to any cluster size, in principle.

In addition, derived formulation can be used in EFRG (and
MFRG) formulations. The effect of enlarging the cluster on the
critical temperatures of a square lattice within EFRG formulation

has also been discussed. The simplest possible MFRG formulation
gives the results of the BPA in the critical temperature, while the
EFRG results lie always below the MFRG results, as expected.

In addition to all of these observations, necessity of using N-
spin cluster formulations in some systems (such as nanomagnetic
systems) has been discussed. Constructing EFT-N formulation for
the magnetic nanomaterials will be the topic of the future work.

We hope that the results obtained in this work may be bene-
ficial from both theoretical and experimental point of view.
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