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A B S T R A C T

The Ising one-dimensional (1D) chain with spin =S 1/2 and magnetoelastic interaction is studied with the lattice
contribution included in the form of elastic interaction and thermal vibrations simultaneously taken into ac-
count. The magnetic energy term and the elastic (static) energy term based on the Morse potential are calculated
exactly. The vibrational energy is calculated in the Debye approximation, in which the anharmonicity is in-
troduced by the Grüneisen parameter. The total Gibbs potential, including both the magnetic field, as well as the
external force term, is constructed and from its minimum the equation of state is derived.

From the Gibbs energy all the thermodynamic properties are calculated in a self-consistent manner. The
comprehensive numerical calculations are performed in a full temperature range, i.e., from zero temperature up
to the vicinity of melting. In particular, a role of magneto-elastic coupling is emphasized and examined. The
numerical results are illustrated in figures and discussed.

1. Introduction

The one-dimensional (1D) Ising model [1] plays an important role
in the theory of magnetism, being one of the models which have been
solved exactly [2–4]. The generalized versions of this model have been
applied to higher dimensions, different lattices or modified magnetic
interactions. As far as one dimension is concerned, the model has been
extended to the general spin value >S 1/2 [5,6], magnetic long-range
[7–10] and multi-spin interactions [11,12]. The various quantum gen-
eralizations of 1D model have also been studied [13–15].

Apart from the interest in the Ising model due to its significance in
statistical physics, some of its importance is connected with its appli-
cation for the description of quasi-1D magnetic systems [16]. In such
context, systems such as CoCl ·2 2NC5H5, CoCl ·2 2H2O, (CH3)3NHCoCl ·3
2H2O [17,18], CoCl ·2 2D2O [19], or BaCo2V2O8 [20] can be mentioned.
In another class of quasi-1D materials, i.e., in spin-crossover systems
like Fe-based chain compounds [21], or copper-based chain polymer
heterospin complexes [22], as a result of the deformation of the spin-
changing molecules, the elastic long-range couplings have been taken
into account in addition to the magnetic interaction [23,24]. An ap-
plication to 1D ferroelectric chains, like Ca3CoMnO6 [25–28], is also
known, with the extension to studies of the magnetocaloric effect [29].
It is worth mentioning that the model of Ising chain has also been ap-
plied to the statistical genetics [30,31], including DNA high-force

stretching [32] and to the chiral homopolymers description [33].
It has been known that by including elastic interactions the ther-

modynamic properties of the 1D Ising model can be markedly influ-
enced [34–36]. Such extension gained considerable attention and has
been carried out both from the point of view of purely model research
[37–44], and the implementation for particular experimental systems as
well [22,24,27]. In most of these papers the atoms forming 1D chain are
treated as coupled harmonic oscillators [27,35,41]. Rarely, the oscil-
lators with quartic anharmonicities have been considered [43]. The
magneto-elastic couplings are taken into account via simplified, linear
dependency of the exchange integral on the interatomic distance
[22,35,36,39]. According to our knowledge, in one case [27] the ex-
change integral has been assumed in the form of Lennard-Jones po-
tential. However, in spite of such intensive studies, there is still lack of
complete thermodynamic theory which would be able to describe 1D
system in a self-consistent way, simultaneously taking into account the
magnetic, elastic (static) and vibrational (thermal) properties.

In our proposition of the thermodynamic description we start from
the Gibbs energy construction, which consists of the magnetic (Ising)
part, the elastic (static) energy, the vibrational (thermal) energy and the
external force term. Such a method has already been implemented for
the description of the bulk models with magneto-elastic interactions
[45–47]. Recently, the method has also been adopted for the Hubbard
pair-cluster with elastic inter-atomic potential in the external fields
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[48].
In the case of 1D Ising chain the magnetic energy can be calculated

exactly in the presence of the external magnetic field. The elastic
(static) energy is taken in a form resulting from the Morse potential,
which is anharmonic and in the case of linear chain can also be cal-
culated exactly. The coupling between the magnetic and elastic terms is
introduced by the nonlinear, power-law dependence of the exchange
integral vs. inter-atomic distance. On the other hand, the vibrational
(thermal) energy is approximated by the extended Debye model, in
which the anharmonicity of the Morse potential is taken into account
via the Grüneisen parameter. This parameter has been known exactly
and it assures the consistency of the description of static and vibrational
energies, both based on the Morse potential. The total Gibbs potential,
including also the external force term, is then minimized with respect to
the inter-atomic distance deformation, which leads to the equation of
state (EOS) and describes thermodynamic equilibrium.

The paper is organized as follows: In the next section the theoretical
method is presented in detail. In the subsequent section the numerical
results are illustrated in figures and their discussion is given. The last
section includes summary and final conclusions.

2. Theoretical model

The present section contains a detailed description of the Ising
model extended by taking into consideration the elastic and vibrational
terms. The equation of state is derived for the model in question and the
fundamental thermodynamic quantities are calculated.

2.1. Magnetic energy

Magnetic subsystem of 1D chain is described by the Ising
Hamiltonian:

= J S S h S ,
i j

N

i j
i

N

iI
,

H
(1)

where the z-component of the spin on i-site takes the values = ±S 1/2i .
J 0 is the ferromagnetic exchange integral, limited to nearest neigh-
bours (NN), and h stands for the external magnetic field. It is known
that such a model has been solved exactly, for instance, by the transfer
matrix method and the magnetic Gibbs energy per spin has been found
in the form of [3]:

= + +G
N

J k T h h e1
4

ln cosh
2

cosh
2

1 ,JI
B

2

(2)

where = k T1/ B . Now, in order to take into account the magneto-
elastic effects, we introduce the power-law dependence of the exchange
integral vs. NN distance d, namely:

= = +J J d
d

J (1 ) .
n

n
0

0
0

(3)

It should be mentioned that the power-law dependence for the ex-
change integral on the interatomic distance has been confirmed by
many experimental studies showing good fit with the experimental data
[49–51]. In Eq. (3) we used the relation:

= +d d (1 ),0 (4)

defining d0 as the equilibrium distance between NN in the ground state,
and stands for the small relative change of the interatomic distance
( 1). We assume that = 0 for =T 0, when the magnetic field is
absent ( =h 0) and no external force is applied ( =f 0s ). The exponent

>n 0 in Eq. (3) is a parameter which should assure the quick damping
of J vs. the distance, in agreement with the fact that only NN interac-
tions are relevant, whereas the deformation is small.

2.2. Elastic crystalline energy

The elastic (static) energy in 1D system can be conveniently found
on the basis of the Morse pair potential [52]:

=U r D e( ) [1 ] .k
r r r( )/ 2k 0 0 (5)

It is worth noticing that the Morse potential has been used to de-
scribe interatomic interactions in many crystalline metals [53,54]. In
Eq. (5) D is the potential depth, r0 corresponds to the equilibrium dis-
tance between two atoms forming an isolated pair when only the elastic
energy is taken into account, and describes the potential width and its
asymmetry. The inter-atomic distance rk between atoms being k-th
neighbours can be expressed as:

= = + = …r kd kd k(1 ), ( 1, 2, ).k 0 (6)

The elastic energy per atom can be obtained by performing sum-
mation over all the distances (all the pairs):

=
=
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(1 ) 1
2

1
20

0
0
0

(7)

In Eq. (7) the elastic energy is normalized by the requirement that
=U 0 for = 0. i.e., it vanishes in a non-deformed state. One can notice

that summation in Eq. (7) can be performed exactly in 1D system using
the formula for the sum of geometric series. Namely, by introducing the
abbreviate notation:

= +E e
d
r (1 )0

0 (8)

and

=E e ,
d
r0

0
0 (9)

we obtain the result in the form of:
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2.3. Vibrational energy

The vibrational energy of the system in question is calculated within
Debye approximation, in which the thermal excitations can propagate
along the chain, whereas each atom is treated as three-dimensional
oscillator. For such model, the Helmholtz free-energy is calculated from
a general formula [55]:

=F k T
k T

D d3 ln 2sinh
2

( ) ,D B 0 B

D

(11)

where D ( ) presents the density of states, and D is a Debye cut-off
frequency. We note that for =D N( ) ( )E the integral is trivial,
and the formula (11) reduces to the free-energy of Einstein model with
a single frequency E. However, for 1D system in the Debye approx-
imation the density of states takes a form: =D N( ) / D, in agreement
with Ref. [55] (see eq. 12.2.22 for L = 1 in Ref. [55]). As a result, the
Helmholtz free-energy per atom in the Debye approximation can be
expressed as:

= +F
N

k T k T e k T
x

x
e

dx3
4

3 ln(1 ) 3 1
1

,x x
x

D
B D B B

D 0
D D

(12)

where =x T T/D D , and TD is the Debye temperature defined by the re-
lation =k TB D D. Now, we take into account the fact that the Debye
temperature depends on the system length L, thus on its relative de-
formation . Namely, according to the idea of Grüneisen [56], and
following the approach presented in Ref. [45] for the frequencies of
anharmonic oscillators, we assume that L1/D , where

= = +L Nd Nd (1 )0 is the length of the chain, and is the Grüneisen
parameter [56]. Thus, making use of the proportionality TD D we

T. Balcerzak, et al. Journal of Magnetism and Magnetic Materials 507 (2020) 166825

2



can write:

=
+

T T
(1 )

,D
D
0

(13)

where TD
0 is the Debye temperature in the ground state (for

= =T h0, 0, and =f 0s ). On the basis of Eq. (13) one can easily check
that:

= + =
T
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T

T
L

(1 ) ,
D

D

D

D

(14)

i.e., for 1D system the -parameter satisfies the equation involving the
system length L, which is analogous to that postulated by Grüneisen
[56] for the system volume V.

The Debye integral in Eq. (12) can be calculated exactly with the
help of polylogarithmic functions [46]. Namely,

= +x
e

dx x e e
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x x
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2
D 2

D D D
(15)

where the second order polylogarithm, eLi ( )x
2 D , is given by:

=
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In this way, the vibrational (thermal) energy (Eq. 12) of 1D chain
can be presented in the following final form:
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N
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4
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6

.xD
B D

D
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2
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2.4. Equation of state

The total free energy for 1D chain is constructed as a sum of all the
following contributions:

= + + + +G G U F f Nd (1 ),sI D 0 (18)

where the magnetic, elastic and vibrational energies are given by the
Eqs. (2), (10) and (17), respectively. The last term in Eq. (18) corre-
sponds to the mechanical (enthalpic) part introduced by the external
force fs. We assume the convention in which >f 0s corresponds to the
compressive force, whereas <f 0s stands for the stretching one. We
note that the linear deformation occurs in every term of right-hand-
side of Eq. (18), hence it can be treated as a variational parameter. In
equilibrium, this parameter must minimize the total free energy at ar-
bitrary temperature T, external magnetic field h and force fs. Thus, we
demand that:

=
N

G1 0.
T h f, , s (19)

Eq. (19) is equivalent to the balance of all forces in the system,
namely we get from it:

+ + =f f f f ,sI D (20)

where f f,I and fD are the magnetic (Ising), elastic (static) and thermal
vibrational forces, respectively. These forces can be expressed in di-
mensionless units and are given by the formulas:
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In derivation of the last equation (Eq. (23)) we made use of the
identity:

= =e x e x eLi ( ) Li ( ) ln(1 ).x x x
2

D
1

DD D D
(24)

Eq. (20) presents the Equation of State (EOS) from which the linear
deformation can be found for given T h, and fs. However, prior to its
usage, the constant parameter d r/0 0, describing the non-deformed NN
distance, should be determined. This parameter should be calculated
from Eq. (20), in which we put the conditions corresponding to the non-
deformed ground state, i.e., = = =T h0, 0, 0 and =f 0s .

With the help of EOS the magnetization per spin, m, can be found
from the formula:

=m
N

G
h

1 ,
T f, s (25)

where G is given by Eq. (18). As we mentioned before, all terms in Eq.
(18) depend on , thus the derivative h( / )T f, s must be taken into
account in all these expressions. However, with the use of EOS (Eq.
(20)) all contributions containing such derivatives will cancel, and the
final result can be presented in the simple form:

=
+

( )
( )

m
e

1
2

sinh

sinh
,

h

h J

2

2
2 (26)

where J ( ) is given by Eq. (3) and is obtained from EOS. It is worth
noticing that for = 0 we obtain =J J0 and the relation (26) reproduces
exact result for 1D Ising model.

By the same token, the EOS is helpful in calculation of the entropy S
per spin:

=S
N

G
T

1 .
h f, s (27)

During calculations, the contributions containing derivatives
T( / )h f, s will cancel on the basis of EOS, and the final result is:

= + +
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where J is the function of obtained from the EOS.
The numerical calculations based on the above formalism will be

presented in the next Section.

3. Numerical results and discussion

In this chapter we present the numerical results obtained for some
exemplary model parameters. The choice of these parameters is such
that every energy component in the total free energy is non-negligible.
This enables performing a complete analysis of the model, showing the
importance of every component found in EOS with a single set of model
parameters.

In particular, for the exponent n in the exchange integral (Eq. (3))
we chose the value =n 6, which assures a quick change of J vs. the
distance, and is in agreement with our previous papers [46]. Regarding
the Morse potential, we chose the values =D J/ 80 for the potential
depth and = 5 for its width and asymmetry. We note that J0 is the
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strength of exchange interaction in the absence of deformation, and this
parameter is useful for establishing the convenient energy scale for the
studied system. With such energy normalization, the Debye tempera-
ture in the ground state is assumed as =k T J/ 1/3B D

0
0 , whereas the

Grüneisen parameter for 1D system (with the Morse potential) is taken
from the exact calculations [57] and amounts to = 3 /2. For the
above set of model parameters, the equilibrium NN distance is found
with the value =d r/ 0.998210 0 , which results from EOS for = =T h0, 0
and =f 0s whereas = 0. Hereafter, using the above set of constants,
we present the various thermodynamic properties calculated for arbi-
trary temperature T, magnetic field h and external force fs. For pre-
sentation of the results we have chosen such constant external para-
meters (either fs or h) for which the dependencies of the presented
quantities are most characteristic.

In Fig. 1 the linear deformation is presented as a function of di-
mensionless temperature k T J/B 0. Different curves correspond to various
values of the external force fs. The magnetic field is absent ( =h 0). It is
seen that is a non-linearly increasing function of T. For given tem-
perature an increase in the compressive force ( >f 0s ) results in the
decreasing deformation . On the other hand, when the stretching force
( <f 0s ) is increased, the deformation is enhanced. The end-points on
the curves denote the limit for the range of stable solutions of EOS.
Namely, for the temperature exceeding these points there is no finite
solution for the length deformation and . In our opinion this
instability is connected with the melting phenomenon. It can also be
seen that instability temperature strongly depends on the external force
fs. On the other hand, the -values at the stability end-points weakly
depend on fs. It can also be checked that in the absence of external
forces, in the ground state (when = =f h0, 0s and =T 0), the de-
formation vanishes ( 0), as it can be expected.

The average magnetization per spin, m, is presented in Fig. 2 as a
function of temperature k T J/B 0. In this case the different curves corre-
spond to various external magnetic fields, whereas the external force is
set to zero. According to the formula Eq. (26) the magnetization of 1D
system vanishes for =h 0. However, for >h 0 the magnetization can
take nonzero values and reaches the saturation value of =m 1/2 for
T 0. As one can see from Fig. 2, the magnetization decreases with
increasing temperature until the stability end-point for is reached. The
temperatures corresponding to the end-points only very weakly depend
on h. At the same time, the magnetizations at the end-points can have
remarkable values, depending on h. By the dashed curves the exact
magnetization of the pure 1D Ising model is also presented for com-
parison. These curves are obtained when all nonmagnetic (elastic) in-
teractions are neglected and the exchange integral remains constant.

In Fig. 3 the entropy per spin in kB units, S k/ B, is plotted vs.

dimensionless temperature k T J/B 0 for the same parameters of h and fs as
in Fig. 1. The entropy is defined by Eq. (27) and given in the final form
by Eq. (28). We see that the entropy reaches zero value at =T 0, and in
the low-temperature limit its dependence on the external force van-
ishes. This behaviour is in agreement with the 3rd law of thermo-
dynamics. In the region of high temperatures, for given T, the entropy is
a decreasing function when the external force increases. This kind of
behaviour is expected for stable systems. It can also be noticed that the
entropy values at the stability end-points only weakly depend on the
external force fs. The inset presents the difference between the entropy
values at given fs and =f 0s , emphasizing the range of low tempera-
tures and showing a slight asymmetry in the influence of compressive
and stretching force. The entropy of the pure 1D Ising model is also
plotted for comparison. This entropy is limited by the value ln 2 when
T .

In Fig. 4 the inverse magnetic susceptibility J1/( )0 is drawn as a
dimensionless quantity vs. temperature k T J/B 0. The susceptibility is
defined as: = =( ) ( )N

G
h T f

m
h T f

1

, ,s s

2
2 . We note that in the numerical

Fig. 1. The length deformation vs. dimensionless temperature k T J/B 0, for
=f r J/ 2, 1, 0, 1, 2s 0 0 and =h J/ 00 .

Fig. 2. The magnetization per spin m vs. dimensionless temperature k T J/B 0, for
=f r J/ 0s 0 0 and =h J/ 0.1, 0.2, 0.5, 0.8, 1.00 . The dashed curves present exact

magnetization of the pure 1D Ising model for =h J/ 0.10 and =h J/ 1.00 , re-
spectively.

Fig. 3. The entropy per spin in dimensionless units, S k/ B, vs. dimensionless
temperature k T J/B 0, for =f r J/ 2, 1, 0, 1, 2s 0 0 and =h J/ 00 . The dashed
curve presents entropy of the pure 1D Ising model (exact result). The inset
shows the difference between entropy at given fs and at =f 0s as a function of
the dimensionless temperature.
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calculations the derivative ( )h T f, s
must be taken into account with the

values resulting from the solution of EOS. In this figure the magnetic
field is zero, and the external force parameters, corresponding to dif-
ferent curves, have the same values as in Figs. 1 and 3. We see that the
susceptibility is of paramagnetic type and its inverse only weakly de-
pends on the external force fs. However, in the high temperature region,
some diminishing of J1/( )0 can be noted when the external force in-
creases. This means an increase in the susceptibility itself, and can be
explained by the fact that increasing external force makes the de-
formation smaller and, as a result, the exchange integral J ( ) is en-
hanced. It is also worth noticing that at the stability end-points the
values of J1/( )0 are not constant but they evidently depend on the force
parameter fs. These changes are mainly due to the fact that, for different
fs, the stability end-points occur at different temperatures. For com-
parison, the inverse paramagnetic susceptibility of the pure 1D Ising
model (exact result) is also plotted.

The magnetostriction coefficient, defined as = ( )T f L
L
h T f

,
1

,s
s

= + ( )h T f
1

1 , s
, is plotted in dimensionless units vs. temperature in Fig. 5.

In this figure we assume that the external force is absent and different
curves correspond to various external field values. We see that this
coefficient is negative (which indicates that the magnetic force occur-
ring in EOS is compressive) and it vanishes when T 0. For small
magnetic fields a deep minimum is found in the low temperature re-
gion. This minimum results from competition of different forces in the
equation of state (20). We note that EOS is a strongly non-linear
equation for , and the dynamics of -changes vs. h and T is different for
various components of this equation. This results in a non-linear be-
haviour of T f, s. For higher magnetic fields the system becomes more
compressed, and is more ”stiff” in the low temperature region, showing
a decrease in the magnetostriction magnitude. On the other hand, the
system becomes very ”soft” when approaching the instability tem-
perature, where the magnetostriction diverges to at the tempera-
ture weakly dependent on the magnetic field.

In Fig. 6 the thermal expansion coefficient, h f, s, is plotted vs. tem-
perature k T J/B 0 in dimensionless units. This coefficient is defined as

= = +( ) ( )h f L
L
T h f T h f

,
1

,
1

1 ,s
s s

. In this figure we present the results in the

absence of the magnetic field ( =h 0), but for different values of the
external forces fs. We see that the thermal expansion coefficient di-
verges to + at the end of stability region. The vertical dashed lines
indicate the positions of ending temperatures, which are in agreement

with the previous figures (e.g. Figs. 1, 3 and 4). It is worth noticing that
the compressive forces are decreasing the thermal expansion effect. For
T 0 all curves tend to zero, which expresses a correct thermodynamic
behaviour. The inset presents the difference between the thermal ex-
pansion coefficient values at given fs and =f 0s , which is a slightly non-
monotonic function of the temperature and the influence of stretching
and compressive force is slightly asymmetric.

The specific heat per atom for constant h and f C,s h f, s, is plotted vs.
temperature in Fig. 7. The parameters are the same as in Fig. 6. The
specific heat is defined by the formula: = = ( )( )C Th f

S
T h f N

G
T h f

,
,

1

,s
s s

2
2 ,

where G is given by Eq. (18). By comparison with Fig. 6 it can be no-
ticed that the specific heat curves present qualitatively similar beha-
viour to the thermal expansion dependencies. In particular, for T 0
the specific heat also tends to zero, in agreement with the third law of
thermodynamics. When approaching the instability point, the specific
heat diverges, similarly to h f, s. This divergence can be expected from
the analysis of the entropy vs. temperature curves near the instability
point, as seen in Fig. 2. The inset presents the difference between the
specific heat values at given fs and =f 0s , emphasizing the range of low
temperatures and showing a slight asymmetry in the action of the

Fig. 4. The inverse magnetic susceptibility in dimensionless units, J1/( )0 , vs.
dimensionless temperature k T J/B 0, for =f r J/ 2, 1, 0, 1, 2s 0 0 and =h J/ 00 .
The dashed curve presents inverse paramagnetic susceptibility of the pure 1D
Ising model (exact result).

Fig. 5. The magnetostriction coefficient in dimensionless units, JT fs, 0,
vs. dimensionless temperature k T J/B 0, for =f r J/ 0s 0 0 and

=h J/ 0.01, 0.05, 0.25, 0.5, 1.00 .

Fig. 6. The thermal expansion coefficient in dimensionless units, J k/h fs, 0 B, vs.
dimensionless temperature k T J/B 0, for =f r J/ 2, 1, 0, 1, 2s 0 0 and =h J/ 00 .
The inset shows the difference between the thermal expansion coefficient at
given fs and at =f 0s as a function of the dimensionless temperature.
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compressive ad stretching force. It is also worth mentioning that the
paramagnetic maximum of the specific heat, which exists for the pure
1D Ising model, can be found at k T J/ 0.21B 0 with the value of
C k/ 0.440,0 B (with all nonmagnetic contributions neglected). How-
ever, this smooth maximum, as seen on the dashed curve, is too weak to
be noticed in the full model, when the elastic interactions and the
phononic specific heat are taken into account.

The isothermal compressibility is defined by the formula
= = +( ) ( )T h L

L
f T h f T h

,
1

,

1
1 ,s s

, and is presented in dimensionless

units vs. temperature in Fig. 8. Different curves correspond to various
values of both parameters h J/ 0 and f r J/s 0 0, as indicated in the figure
legend. In particular, curves plotted for =h J/ 00 illustrate the influence
of the stretching force ( <f 0s ), whereas curves plotted for =h J/ 20 il-
lustrate the effect of the compressive force ( >f 0s ). Moreover, com-
parison of the curves plotted for =f r J/ 0s 0 0 shows the influence of the
external magnetic field. It is worth noticing that the isothermal com-
pressibility takes a non-zero value when T 0 and only very weakly
depends on the external field (and force) in the ground state.

In the last figure (Fig. 9) we present the piezomagnetic coefficient in
dimensionless units vs. temperature. The piezomagnetic coefficient is
defined by = ( )T h

m
f T h

,
,s
. The curves presented in Fig. 9 are calculated

in the absence of the external force, but for different magnetic fields
h J/ 0. We see that for T 0 the external magnetic field ( >h 0) has no
influence on the magnetization, which remains there in saturated state
(see also Fig. 2). On the other hand, at the instability point the mag-
netization changes discontinuously for >h 0, and its derivative with
respect to compressive force tends to infinity. For small magnetic fields
h, smooth maxima of T h, are visible in the intermediate temperature
region. These maxima look like the minima of magnetostriction T f, s in
Fig. 5. In fact, the similarity of T h, and T f, s curves can be explained
on the basis of thermodynamic Maxwell relations. If we write the dif-
ferential of the total Gibbs energy as = +dG S dT L df Nm dhs , then

one of the Maxwell relations reads: = ( )( ) NL
h T f

m
f T h, ,s s

. From this

formula we obtain the exact relationship between the magnetostriction
and piezomagnetic coefficients in 1D system: = +d (1 )T h T f, 0 , s.
Since in our case d r0 0 and is small, the above equation explains why
the plots shown in Figs. 5 and 9 are similar up to the sign of the plotted
quantities.

4. Summary and conclusions

In the paper the Ising 1D chain with spin =S 1/2 is studied within a
new approach which simultaneously takes into account the elastic in-
teractions and thermal vibrations of the atoms. Within the method the
total Gibbs energy is constructed, which enables a full, self-consistent,
thermodynamic description of the system. For the constant set of ex-
emplary parameters, by means of numerical calculations we demon-
strate the mutual interdependence of magnetic and mechanical prop-
erties of the system, in a wide temperature range. It can be stressed that
all calculated quantities are either derivatives of the Gibbs energy or are
based directly on the EOS, and they present the correct thermodynamic
behaviour as a function of the temperature. In particular, the influence
of the external compressive and stretching forces, as well as the external
magnetic field on the thermodynamic response functions has been de-
monstrated.

In our approach, two kinds of elastic energies are distinguished:
vibrational and static, both arising from the Morse potential. These
energies have different magnitudes. The vibrational energy is con-
nected with the thermal excitations. It almost vanishes at =T 0, leaving
only the quantum zero-temperature vibrations. The vibrational energy

Fig. 7. The specific heat per lattice site in dimensionless units, C k/h fs, B, vs. di-
mensionless temperature k T J/B 0, for =f r J/ 2, 1, 0, 1, 2s 0 0 and =h J/ 00 . The
dashed curve presents the specific heat for the pure 1D Ising model (exact re-
sult) exhibiting a paramagnetic maximum (value of the specific heat multiplied
by 5). The inset shows the difference between the specific heat at given fs and at

=f 0s as a function of the dimensionless temperature.

Fig. 8. The isothermal compressibility in dimensionless units, J r/T h, 0 0, vs. di-
mensionless temperature k T J/B 0, at =h J/ 00 and =f r J/ 2, 1, 0s 0 0 and at

=h J/ 20 and =f r J/ 0, 1, 2s 0 0 .

Fig. 9. The piezomagnetic coefficient in dimensionless units, J r/T h, 0 0, vs. di-
mensionless temperature k T J/B 0, for =f r J/ 0s 0 0 and

=h J/ 0.01, 0.1, 0.2, 0.5, 1.0, 2.00 .
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is responsible for the specific heat and in this aspect cannot be replaced
by the static energy. In the extended Debye model, the vibrational
energy has been taken into account in anharmonic approximation,
which is especially important at high temperatures. On the other hand,
the static energy is connected with deformation of the crystal with re-
spect to some reference lattice. For instance, this energy exists when the
crystal is deformed by the static external force, and is present at =T 0
as well. The static energy can be by several orders larger than the vi-
brational energy. In particular, it is responsible for the isothermal
compressibility, even for =T 0, where the vibrational energy is almost
negligible. Thus, in the general thermodynamic description, for si-
multaneous calculations of the specific heat and isothermal compres-
sibility, both kinds of energy are irreplaceable.

It is worth noticing that in the present approach the Debye integral
is calculated exactly for arbitrary temperature. Therefore, the model
can be used in a full temperature range of the solid phase existence.

The coupling between magnetic and elastic properties is taken into
account by the power-law dependence of the exchange integral on the
distance, which is valid in the wider range of relative deformations than
the linear expansion (see, for example, Ref. [58]) and appears to cap-
ture better the physical situation.

The application of the Morse potential has a non-questionable ad-
vantage over the usual harmonic one. First of all, since the harmonic
potential is symmetric around equilibrium positions of atoms, it is not
able to describe the effect of thermal expansion. This deficiency would
lead to cancellation of the results presented in Fig.1 and Fig.6, which
would then be the pointless studies. Assuming the harmonic potential
would also influence the rest of numerical results. In particular, the
instability temperatures presented in several figures, which can be at-
tributed to the melting phenomenon thus improving the harmonic po-
tential-based approach, would never be reached. Moreover, the har-
monic elastic potential is applicable only to the nearest-neighbour
interaction, whereas the Morse potential which describes the long-
range interactions, is much more physical. It should be stressed that the
Morse potential has been summed up exactly for the infinite range of
interaction, giving finite value of the sum per atom, therefore, no cut-
off procedure is needed in 1D case. Nevertheless, it should be admitted
that in the case when temperature goes to absolute zero, T 0, the
harmonic potential could be used as a first approximation instead of the
anharmonic one.

Therefore, the key effect of application of the Morse potential, in-
stead of the harmonic one, is the prediction of the instability tem-
perature, which can be attributed to the melting phenomenon, thus
improving the harmonic potential-based approach.

It is worth mentioning that the instability temperature for solid
phase, obtained here when , should be treated as an upper limit
for the melting transition. The melting temperature of real crystal is
somewhat lower and should occur for finite , according to the
Lindemann criterion [59]. This criterion assumes that melting already
occurs when the root-mean-square amplitude of thermal vibration
reaches a critical fraction of the nearest-neighbour distance. However,
in order to study the melting point more precisely, as a 1st-order
transition between the solid and liquid phase, the Gibbs energy of liquid
phase should simultaneously be at our disposal. This is not the goal of
our study, aimed at describing a solid, periodically ordered magnetic
system.

Regarding possibility of comparison with the experiments, let us
remark that the ideal 1D system cannot be realized without its inter-
action with a substrate, or with a matrix medium, because the me-
chanical stabilization of the system is necessary. These interactions may
markedly influence the properties of the linear chain, for instance, via
external forces fs resulting from a difference between the thermal ex-
pansion coefficients of the chain and its substrate. Unlike in our model,
such forces would be temperature dependent, and their values should
be self-consistently determined by describing simultaneously the Ising
chain and its coupling to the neighbourhood. However, from the

theoretical point of view, it would be a much more complex model,
which would prevent us, at this stage, from comparison of the ideal free
chain considered in the paper with experimental situation. We think
that such a problem should be addressed in the forthcoming works,
especially when the experimental studies aimed at uncovering a role of
elastic interactions for 1D Ising systems, for instance, studies of mag-
netostriction, compressibility or piezomagnetic effect, are carried out.
An example of such study might be the works devoted to CoV2O6 [60]
and CoNb2O6 [61] Ising chains for which magnetostriction and expan-
sion coefficient were measured. However, it should be emphasized once
more that the mentioned systems are only quasi-1D ones.

It should be added that a characteristic feature of experimental
quasi-1D Ising systems is the phase transition to the ordered state,
which occurs at very low temperatures, and is caused by the weak in-
terchain interactions. In our ideal model the phase transition is not
possible at any finite temperature.

We would like to point out that the method can be extended for 1D
chain with higher spins (S 1), the long-range magnetic interactions,
as well as for the quantum model, taking into account the perpendicular
magnetic field. The structural disorder can also be taken into account,
both for the exchange interactions, and for the elastic constants as well.
As indicated in the paper [62], the disorder of elastic parameters may
lead to the Anderson localization in 1D system. The application of the
method for 2D systems could also be of potential interest.

In our opinion, the presented method paves the way for compre-
hensive studies of low-dimensional magnetic solids by generalization of
the thermodynamic description.
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