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Abstract

Recent experiments showed that the last, single channel conductance step in monatomic gold contacts exhibits

significant fluctuations as a function of stretching. From simulations of a stretched gold nanowire linked to deformable

tips, we determine the distribution of the bond lengths between atoms forming the nanocontact and analyze its influence

on the electronic conductance within a simplified single channel approach. We show that the inhomogeneous distri-

bution of bond lengths can explain the occurrence and the 5% magnitude of conductance fluctuations below the

quantum conductance unit g0 ¼ 2e2=h.
� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Ballistic electronic conductance in short metal-

lic nanowires and nanocontacts between tips has

been widely analyzed both experimentally and

theoretically in the last decade. The transport

properties of the nanocontacts are known to be
influenced by the geometrical structure of the

contacts and by the electronic confinement [1].

Several experimental [2,3] and theoretical [4–9]
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papers discussed the interplay between geometry

and conductance.

Mechanical properties of atomic contacts were

accessed experimentally by scanning tunneling and

atomic force microscopy, (STM/AFM) [2] and

theoretically mostly by molecular dynamics simu-

lations [3,5,9,10]. It was shown [11,12] that it is
possible to pull stable monatomic gold wires, up to

seven atoms in length between two gold electrodes,

with a conductance close to g0 ¼ 2e2=h. More
recently, STM supplemented with a force sensor

was used [13] to study the mechanical response

under stretching of a low temperature (T ¼ 4 K)
chain of single Au atoms. Ab initio calculations

of the breaking strength and of other mechanical
ed.
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properties of the nanowires demonstrated [13] a

very considerable strength of bonds at these low

coordinations relative to the high coordinations of

the bulk metal.

Transport of electrons in metal nanowires was

also analyzed [2] and abrupt conductance jumps
were associated with atomic rearrangements in the

wire. STM tips were used [12] to generate gold

nanowires in situ in a high resolution transmission

electronic microscope while recording the con-

ductance. These results revealed the existence of

suspended gold atom chains with a conductance

equal to g0, while another study [14] addressed the
correlation between gold nanowire structure and
the quantum conductance behavior within the

same technique.

Theoretical approaches devoted to the under-

standing of the relation between electronic trans-

port and the geometrical structure of metallic

nanocontacts has been extensively developed.

Tight binding models were proposed to analyze

the conductance of gold wires in terms of electron
standing waves due to the interference of elec-

tronic waves reflected at the extremities of the

atomic constrictions [16] or to determine the

transmitting channels in the atomic chain in terms

of s,p,d orbitals [17]. The conductance of linear

chains of four Au atoms suspended between two

jellium electrodes was calculated vs. the distance

between the electrodes within the ab initio local
spin density functional (LSDF) approach. The

conductance was determined using the recursion

transfer matrix [18] and shown to decrease from

1 g0 as the chain was stretched, similar to a Peierls
transition.

More recently, the electronic transport in free

standing gold atomic chains of up to seven atoms in

length was studied at 4 K [15]. All along during the
pulling of the monatomic nanowire, the behavior

of conductance was characterized by two features.

The first was a 5%-level fluctuation as a function of

stretching, or between one pull and another. The

second was a 1%-level conductance drop when the

voltage across the nanocontacts exceeded about 15

meV. The latter was interpreted as a dissipative

effect, quite similar to losses observed in point
contact spectroscopy, this time due to inelastic

scattering of electrons inside the nanowire, where
longitudinal vibrations can be excited via electron–

phonon interaction. The identification of the loss

peak with a phonon inside the nanowire could be

made thanks to the large phonon softening and

strengthening of the loss intensity which is ob-

served upon stretching.
That interpretation was directly supported by a

recent DFT calculation accompanied by a mole-

cular dynamics simulation [19]. There it was also

shown that only about half the total stretch mag-

nitude is absorbed by the nanowire itself, the other

half being absorbed by the tip–wire junctions. The

enhancement of inelastic scattering due to longi-

tudinal phonon in the stretched nanowire was also
theoretically addressed and found to be directly

related to the stretching-induced phonon softening

through perturbation theory [20].

In this paper, we provide a more specific ratio-

nalization to the zero-voltage ballistic conductance

fluctuations around g0. We do that by calculating
explicitly, albeit approximately, the conductance

in a nanocontact. To that end we first built a
mechanical model to represent the gold nanowire

suspended between two tips. Based on that, and on

a one dimensional bond model between atoms of

the wire connected to two infinite reservoirs, we

calculated the wire conductance during the course

of its stretching, as described by the mechanical

model. Focusing on the distribution of interatomic

distances in the gold stretched wire, we analysed
the conductance by means of a Green�s function
operator formalism, that takes into account the

changes in the hopping integrals with the distance

between atoms.
2. Theoretical model

2.1. Model for stretched monatomic nanowire

In order to model the structural properties of a

gold wire stretched between two tips, we use a

semi-empirical effective potential, which is in turn

based on tight binding theory in the second mo-

ment approximation (SMA). The potential expe-

rienced by the nth gold atom and due to the other
gold atoms m separated by a distance rnm is written
as [21]:
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Vn ¼ k
X
m

e�pððrnm=r0Þ�1Þ � �
X
m

e�2qððrnm=r0Þ�1Þ

 !a

ð1Þ

All the parameters entering in the above expres-

sion are calculated by fitting the experimental bulk

and surface properties of gold. Their values are

k ¼ 0:4086 eV, p ¼ 8:5624, � ¼ 1:6332 eV, q ¼
3:6586, a ¼ 0:6666, r0 ¼ 2:88 �AA and we consider a
cutoff function for distances rnm > rc where rc is the
second nearest neighbor distance [19,21]. This

potential was used to determine the mechanical

properties (equilibrium spacing and cohesive en-

ergy) of a gold wire wedged between two gold tips.

It was found to give results in close agreement with

those calculated using a more accurate DFT ap-
proach [6,19].

The system is formed by some atoms which are

allowed to move and other atoms that are fixed,

the latter mimicking the connecting tips. The

moving atoms are those forming the nanowire (we

chose seven atoms at the beginning of the simu-

lation) and the junction forming a part of the two

tips. Each tip contains 13 moving atoms arranged
in a rectangular (1 1 0) lattice. This moving system

is blocked on each side by a rectangular plane of

fixed gold atoms, forming the back sides of the

tips, and the distance between the inner fixed

planes is noted L.
As L is increased and the planes move apart,

they stretch the nanowire and the tip–wire junc-

tions in between. We simply optimize the total
energy of the system submitted to a gradually

increasing stress, without the need of thermal

dynamics (the temperature of the experiments is

very low (4 K)). All the moving atoms are free to

find their equilibrium positions, at each stretching

step.

Conductance calculations are then carried out

at each step of the stretching simulation. We verify
first that the geometry of the tips and of the wire–

tip junctions is free to evolve, and thus to influence

the behavior of the wire during stretching. We ran

several calculations with a variety of initial con-

ditions, including a wire attached to a top site of

the rectangular tip, or to a bridge site, or to a

hollow site. The results showed that the evolution
from different starting configurations was signifi-

cant, especially regarding the value of the total

elongation of the wire. Accordingly we decided to

concentrate on a single reasonable, but particular

path. Starting from a perfect geometry of wire and

tips (L ¼ 25:6 �AA, which corresponds to the equi-
librium bond length for each gold atom in the

system), we compress the wire by progressively

moving one tip closer to the other (i.e. by

decreasing the length L) and minimizing the total
energy of the system. The compression stops when

the energy reaches a minimum (distance between

fixed tips equal to 9.8 �AA).
At this point, we begin stretching the system to

form a nanowire. These two preparatory steps in

the simulation allow us to generate a complete a

priori geometry for all the moving atoms, a

geometry which was normally different from the

initial arrangement. In this way, we may obtain

results that are less dependent on the initial con-

figuration chosen for the system.

The remaining problem concerns the choice on
the number of moving atoms which participate in

the stretching process. We are mainly concerned

by the electronic transport in the nanowire and the

tip geometry might appear a secondary problem.

However, it is important to check how the geom-

etry of the whole tip–wire junction influences the

conductance. That aspect will be discussed in

Section 3.
The elongation of the nanowire is simulated by

slowly increasing the distance between the two

tips, avoiding abrupt variations that could break

the wire. For each stretching step, corresponding

to an elongation of 0.02 �AA, the equilibrium con-

figuration is determined for all the moving atoms

by minimizing the total energy. That minimum

corresponds to a constrained equilibrium config-
uration for the tip-suspended nanowire subject

to a given stretching length. The two tips are

then progressively moved apart until the wire

breaks.

2.2. Electronic transmission through a metallic

nanowire

To study the quantum transport of electrons

through the nanowire, we adopt a very simple
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one-electron model. The whole tip–nanowire–tip

system is treated as a one-dimensional (1D) sys-

tem, made up of perfect semi-infinite left and right

leads, connecting through an extended defect,

formed by the monatomic nanowire, the junctions

and the first piece of the tips. Inside the perfect
semi-infinite 1D leads, or reservoirs, electron

propagation is described by a single-band tight

binding Hamiltonian characterized by an on-site

energy E0 and the electron hopping integral J be-
tween nearest neighbor sites.

The defect, which corresponds to the nanowire,

is assumed to consists simply of a monatomic

chain of N atoms connected to the reservoirs. If
and when the distance between neighboring atoms

fluctuates under stretching, the electron propaga-

tion will be modified. To further simplify the

treatment, we assume these positional fluctuations

to affect the hopping integrals J , but not the on-
site energies, retaining their fixed value E0. As a
result, the electron propagation inside the nano-

wire will be characterized by a set of N � 1 hop-
ping integrals Jn, n ¼ 1; . . . ;N � 1 (see Fig. 1).
They can be related to the distances and to the

bulk integral J according to the empirical form
[22]

Jn ¼ J expðbð1� rn=reqÞÞ ð2Þ

where rn stands for the distance between the

(n� 1)th and nth atoms belonging to the nanowire
and req denotes the equilibrium distance (i.e. the

lattice parameter of the perfect atomic chain

req ¼ a0 ¼ 2:49 �AA). Note that when all the dis-
tances rn are set to req, the different hopping inte-
grals Jn reduce to the bulk integral J yielding an
ideal system without any defects. While the model

is clearly oversimplified in many aspects, it does
Fig. 1. One dimensional model for the calculation of the con-

ductance of the stretched nanowire connected to semi-infinite

reservoirs.
serve our purpose of pinpointing the effect of dis-

tance fluctuations on the conductance.

The Green�s function formalism can be used to
calculate the transmission coefficient in this model.

We consider an incident electron propagating
freely from the left tip with a wavevector q and an
energy E ¼ E0 þ 2J cosðqÞ. The electron is scat-
tered by the nanowire leading to transmitted and

reflected waves. The transmission coefficient is

given by

tðEÞ ¼ 1þ i

2J sinðqÞ
X
n;m

T ðn;mÞeiqðxn�xmÞ ð3Þ

where xn denotes the position of the nth atom of
the 1D nanowire and the T matrix is a N � N
matrix operator

T ¼ V ð1� G0ðEÞV Þ�1 ð4Þ

In Eq. (4), G0ðEÞ denotes the Green�s function
operator of the ideal perfect infinite chain. The

perturbation operator V accounts for the modifi-

cation of the hopping integrals in the nanowire due

to the fluctuations of the interatomic distances

inside the wire compared to their ideal values in

the reservoirs [23]. This operator, whose dimension

is again N , acts inside the N -atom subspace and is
defined as

V ðn; n0Þ ¼ ðJn � JÞdn0;nþ1 þ ðJn�1 � JÞdn0;n�1 ð5Þ

where n and n0 define two atoms in the wire. The
conductance g through the region where scattering
takes place is related to the transmission coefficient

of the electron via the Landauer formula [24,25],

expressed at low temperature and low voltage, and

for a single channel, as

g ¼ 2e
2

h
jtðEFÞj2 ð6Þ

where EF is the Fermi level of the electrons.

Applying Eq. (6) to our situation requires that the

left- and right-hand sides of the region where

scattering takes place is connected to two reser-

voirs of electrons held at infinitesimally different
electrochemical potentials. By assuming that the

two semi-infinite chains play the role of reservoirs,

our single-band model leads at half filling to a

Fermi level EF equal to E0.
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3. Results and discussion

Fig. 2 displays typical snapshots during the

formation and the stretching of the wire. At the

beginning of the simulation (Fig. 2a), all atoms in
the wire and tips are at their equilibrium distance

a0 ¼ 2:49 �AA and a ¼ 2:88 �AA, respectively. The ideal
nanowire contains seven atoms. Compression

proceeds until the two tips are stuck together and

the total energy is a local minimum with nearest

neighbor distance between Au atoms approxi-

mately equal to a ¼ 2:80 �AA (Fig. 2b). At this point,
the initial configuration is lost and the moving part
of the system is disordered: the stretching process

can start. Upon initial stretching, gold atoms tend

to arrange themselves in twisted chains until one

atom is extracted from a tip (Fig. 2c). Subse-

quently, a monatomic chain is formed by succes-

sive incorporation of atoms from the tips into the

wire (Fig. 2d). At a total length corresponding to

eight atoms long (one more than the starting wire),
Fig. 2. Mechanical model. The distance L defined in the text
represents the separation between the two black ball planes: (a)

starting configuration of the simulation; (b) the two tips are

approached to the closest position and (c) stretching has begun,

and a single atom has been pulled out of the neck, initiating the

monatomic nanowire. This is also the starting point of con-

ductance calculations; (d) strained monatomic nanowire now

reaching five atoms in length and (e) maximum elongation to an

8-atom long nanowire. At this point, the wire breaks and

conductance drops to zero. The total energy of the system is

calculated with Gamba�s semi-empirical potential [21] and is
minimized throughout the stretching process.
the nanowire breaks (Fig. 2e). These results ob-

tained with the SMA potential are fully consistent

with those found using an effective medium po-

tential [13]. Note that, as already mentioned in a

previous paper [19], incorporation of each new

atom in the chain is obtained after an elongation
DL of L nearly equal to 1.5 �AA. This incorporation
induces a reorganization of the wire, particularly

by decreasing the bond lengths between the gold

atoms. This model reproduces quite well the limit

distance from which a nanowire can be elastically

stretched without dramatic change (1 �AA in the

experiments [15]). Between two successive incor-

porations, the values of the distances between the
atoms in the wire and between the wire extremities

and the apex of the tips generally display a non-

uniform distribution. The stretching tends to in-

crease the bond lengths in the wire, the disturbance

being stronger on those atomic bonds close to the

wire ends than on the bonds in the wire center. In

fact, we generally observe that the bonds linking

the wire to the tips are weaker than the bonds
between atoms of the wire. That also explains why

a wire can be pulled out of tips and stretched out

to such remarkable lengths without breaking in the

middle.

The changes of interatomic distances rn in the
nanowire are extracted from the simulation and

turned into one dimensional effective distances xn
for conductance calculations. The xn are the same
as rn except at the wire–tip junctions. There we
assume conduction to proceed always via the

smallest bond length. For the energy of the elec-

trons generating the conduction in the nanocon-

tact, we consider an energy E equal to and close to
the Fermi level energy EF of the bulk gold.
Fig. 3 shows the calculated behavior of the

conductance of the total model nanocontact of
Fig. 2 during stretching, and represents our main

result. The conductance is close to g0 as it should
be for a single channel, the broad electronic band

suffering only minor scattering from the weak

perturbation represented by the distance fluctua-

tions. The main characteristics we wish to focus

upon here is precisely the conductance fluctuations

that occur during stretching of the wire. These
variations represent less than 5% of g0 and are
directly comparable with the value obtained in
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Fig. 3. Behavior of the reduced conductance vs the wire

stretching (dotted curves) for two incident electron energies.

The solid line represents a spline fit of the conductance fluctu-

ations during stretching of the wire for an incident electron

energy corresponding exactly to EF. The dashed line represents
a spline fit of the conductance fluctuations during stretching of

the wire for an incident energy corresponding to EF þ J . Ar-
rows correspond to maxima and minima for the nanowire

containing seven atoms (see Fig. 4).
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experiment [15]. Besides the 5% magnitude, an-

other point of similarity of the conductance curves

in Figs. 3 and 5 with the experimental curves under

stretching is the sharp slope at the jumps. Incor-

poration of an additional atom in the wire or

configurational change of the wire at its extremi-
ties (wire–tip junction) can interpret the constant

distance (1.5 �AA) between the conductance maxima.
The fluctuations occur in the form of rather

sharp conductance jumps with minima and max-

ima that depend strongly on the wire stretching.

These jumps are directly related to the fluctuations

of the atomic bond distances in the nanocontact

perturbing the electronic transmission inside the
nanowire. If the nanowire length were infinite, the

fluctuations, no matter how weak, would of course

block conductance completely, and lead to an

Anderson insulator [26]. The inverse Anderson

localization length depends on disorder, roughly

proportional to the square of the hopping fluctu-

ations. In a nanowire of finite and short fixed

length like we have here, the conductance simply
shows small fluctuating drops from g0. In general,
conductance should drop exponentially with the
inverse localization length. The exponential

amplification expected on the conductance due to

hopping disorder may explain the abruptness of

the fluctuations evidenced in Fig. 3.

At finite voltage W ¼ lL � lR (lL and lR
representing, respectively, the left and right elec-
trochemical potentials), Landauer�s ballistic con-
ductance is the same as in Eq. (5), only with

jtðEFÞj2 replaced by an average of transmission
jtðEÞj2 between lL and lR. We study in Fig. 3 the
influence on transmission of the incident electron

energy by drawing g for two distinct values of this
energy (respectively, equal to EF and EF þ J ). Al-
though the conductance presents globally a similar
jagged profile, a detailed examination of the curves

shows some differences. A first difference concerns

the average amplitude of these variations. For

E ¼ EF the mean curve tends in fact to remain
localized around 0.99 g0 while for energy EF þ J
the fluctuations take place around 0.975 g0.
This is relevant, for it implies a slight drop of

ballistic conductance for finite and increasing
voltage. The calculated decrease in fact corre-

sponds to an increased tendency to Anderson

localization as one moves away either sides from

the center of the 1D band, the band being centered

precisely at EF, where the localization length is
maximum. Because of that, the resulting predicted

conductance decrease is monotonic and relatively

uniform for increasing voltage, that is for increasing
deviation of the electrochemical potential from EF.
Interestingly, the experimentally observed con-

ductance indeed does show a slight decrease with

increasing voltage W [15]. However the part of the

conductance decrease that is uniform with voltage

(i.e., that has a roughly constant voltage deriva-

tive) is not major. The most interesting part is in-

stead strongly peaked around a specific voltage,
ranging from 18 to 12 meV depending on the

strain. This peak voltage in fact corresponds to a

longitudinal phonon frequency in the nanowire

[15,19], and is evidence for the onset of non-bal-

listic, dissipative resistance in the nanowire.

Then, returning to Fig. 3 we note that in all

cases the conduction minimum is around 0.95 g0 in
nice agreement with the experimental data. The
maxima of all curves correspond to the situation

where a new atom is freshly incorporated in the
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wire thus permitting a general compression of the

chain. The minima mark the limit stretch just be-

fore the atom pullout with incorporation and

reorganization of the wire.

To correlate more quantitatively the conduc-

tance behavior with the atomic bond length fluc-
tuations, we have drawn in Fig. 4 the distribution

of the bond lengths in two wires formed by seven

atoms at the corresponding maxima (just after

atom incorporation) and minima (just before atom

incorporation). We see that this distribution, fitted

by Gaussian profiles, broadens by 40% during the

stretching between two successive incorporations,

and the maximum of the profile shifts from 2.48
to 2.51 �AA. This feature is quite general for long
wires, and for instance we obtained for a six atoms

long wire the same type of bond length distribu-

tion.

We also observe an energy dependence of con-

ductance connected to the wire length. When the

nanowire is shorter than 8 �AA (i.e., four atoms) the
amplitudes of the fluctuations are much larger for
E ¼ EF þ J , so the shapes of the two distribution
curves appear less similar than for longer nano-

wires (seven or eight atoms). Clearly, the stretch-

ing perturbs much more substantially the atomic

bonds in the junctions than those amid the wire.

The fluctuations are largely if not exclusively a
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Fig. 4. Bond length distribution between nearest neighbor

atoms in the 7-atom monatomic nanowire at the maxima (solid

curve) and minima (dashed curve) of conductance (as shown by

arrows in Fig. 3).
junction effect. As such, they are more important

for a shorter nanowire.

Fig. 5 displays further evidence of the influence
of the junctions between the nanowire and the two

tips. In these calculations, we changed the bond

length of the tip–wire junction, always assuming

the current-carrying path to remain strictly one

dimensional. The results show that while such a

change does not modify the shape of the conduc-

tance vs the wire length, it does affect the absolute

values and amplitudes. Stretching that effective
bond further and further away from its ideal value

leads to a considerable conductance decrease.
4. Conclusion

Motivated by recent experimental observations

showing that a stretched monatomic gold wire
between two tips presents systematic conductance

fluctuations below g0, we carried out simulations
of the behavior of electronic conductance during

the nanowire stretching up to the rupture of the

contact. We find that the observed 5% conduc-

tance fluctuations around g0 can be explained as
the result of continuously distributed atomic bond

lengths inside the stretched nanowire. The maxima
of conductance are correlated to an atom incor-

poration in the wire which induces a compression
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of the chain while the minima correspond to the

maximum wire stretching, just before incorpora-

tion and/or reorganization.
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