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Abstract

We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2×1) surface in
an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the
electric field corresponding to a realistic scanning tunneling microscopy tip–surface geometry. We find that local one-
phonon excitations have short lifetimes (10 ps at room temperature) due to incoherent lateral diffusion, while diffusion
of local multi-phonon excitations are suppressed due to anharmonic frequency shifts and have much longer lifetimes
(10 ns at room temperature). We calculate the implications for current induced desorption of H using a recently
developed first principles model of electron inelastic scattering. The calculations show that inelastic scattering events
with energy transfer nBv, where n>1, play an important role in the desorption process. © 1999 Elsevier Science B.V.
All rights reserved.

Keywords: Ab initio quantum chemical methods and calculations; Adatoms; Field effect; Hydrogen; Low index single crystal
surfaces; Semiconducting surfaces; Silicon; Tunneling; Vibrations of adsorbed molecules

1. Introduction dependencies on the electron current [4,11] consis-
tent with a multi-electron process [4,14,15], and
the measured desorption rates are in quantitativeScanning tunneling microscopy (STM) induced
agreement with first-principle calculations [11,12].desorption of hydrogen (H ) from the monohydride

The desorption by multi-electron scattering isSi(100) surface offers the possibility of lithography
only possible because the H stretch frequency haswith atomic resolution [1–3]. Investigations of the
a long lifetime. The long lifetime is a result of adesorption mechanism [4–13] have established the
vibrational quantum too low for coupling withdependence of the desorption rate on the bias
electron-hole excitations, while well above the Sivoltage, tunnel current and H isotope. At high
phonon spectrum, and can thus only transferpositive biases, Vb>4 V, the experimental results
energy to the substrate via a multi-phonon process.are consistent with electron induced desorption
At room temperature experimental estimates ofdue to direct excitation of the Si–H bond by a
the lifetime due to this process are t=10 ns [10,16 ].single electron [4–6 ]. At negative and low positive
However, a local excitation is not an eigenmodebiases the desorption rates show power-law
and will decay into a H surface phonon by a
coherent process. This decay is several orders of

* E-mail address: Stokbro@mic.dtu.dk (K. Stokbro) magnitude faster than multi-phonon energy relax-
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ation, and must therefore be included in the theo- the lifetimes are used to model STM induced
desorption. Section 6 summarises the results.retical models. It has been proposed by Persson

and Avouris [17,18] that the vibrational Stark
shifts due to the electric field from the tip can
localize vibrational modes below the tip. The local-

2. Structure and vibrational properties of theized modes may still transfer energy laterally by
Si(100)-H(2×1) surfaceincoherent diffusion (the Förster mechanism) but

it was found that this decay channel is also reduced
In this section we calculate the vibrational fre-

by the Stark shifts. However, the work assumed
quencies and the dipole–dipole coupling matrix

that the electric field from the STM tip is localized elements of the H vibrations on the Si(100)-
on a single H atom below the tip, and this is not H(2×1) surface. In subsection 2.1 we present
the case for realistic tip geometries. calculations for the unperturbed Si(100)-H(2×1)

In this work we present results for the vibra- surface, and the vibrational and structural shifts
tional properties of the Si(100)-H(2×1) surface due to an external planar field are calculated in
in the presence of the electric field from a more Subsection 2.2.
realistic model for the STM tip. The tip is described The first principles calculations are based on
by sphere of radius, Rt=500 Å, with a protrusion density functional theory [19,20] within the gener-
of atomic dimensions, and we determine the alized gradient approximation (GGA) [21] for the
electric field by solving Poisson’s equation numeri- exchange-correlation energy. Since we only con-
cally. To obtain the effect on the H vibrations we sider filled shell systems, the calculations are all
set up a phonon Hamiltonian with parameters non-spin-polarized. Ultra-soft pseudo potentials
obtained from a first principles calculation of the [22] constructed from a scalar-relativistic all-
vibrational properties of the Si(100)-H(2×1) sur- electron calculation are used to describe H and
face in an external electric field. We find that the silicon (Si) 1. The wave functions are expanded in
electric field does give rise to a localized vibrational a plane-wave basis set with a kinetic-energy cutoff
state below the tip, but its lifetime is very short of 20 Ry, and with this choice absolute energies
(10 ps) due to incoherent exciton motion. are converged better than 0.5 mRy atom−1.
However, we find that the anharmonicity of the With this approach we find a Si lattice constant
Si–H bond potential reduces the lateral energy of 5.47(5.43 [23])Å and bulk modulus of 0.89
transfer of higher excited excitations (n>1) of the (0.97[23]) Mbar (parentheses show experimental
Si–H bond. We present first principle calculations values). For the H2 molecule we obtain a bond
of the desorption rate taking this effect into length of 0.754(0.741[23])Å, a binding energy

(including zero point motion) of 4.22(4.52[23])eVaccount, and find that two phonon excitations
and a vibrational frequency of 4404(4399play an important role in the desorption process.
[23])cm−1. Generally the comparison with experi-The organization of the paper is the following.
ment is excellent, and similar theoretical valuesIn Section 2 we describe the first principles method
have been found in other studies using the GGAwhich in Section 2.1 is used to calculate the zero
[21,24].field atomic structure and Si–H stretch frequencies

of the Si(100)-H(2×1) surface. The electric field
dependence of the frequencies is calculated in
Section 2.2. In Section 3 we introduce a simple 1 For Si we use six projectors to describe the 3s-, 3p- and
dipole-dipole interaction model for the Si–H 3d-valence states with core radii of 1.7, 1.7 and 1.9 a.u., respec-

tively. For H we use two projectors to describe the 1s orbitalstretch phonon band, and uses it to find localized
and the core radius is 0.9 a.u. Both pseudopotentials includevibrational states in the presence of electric fields
the nonlinear core correction [45], with the densities augmentedfrom different STM tip geometries. In Section 4 within 1.6 a.u. for Si and 0.9 a.u. for H. Atomic transferability

we calculate the lifetimes of the localized states tests show that the errors in the eigenstates of the exited atoms
are <4 meV.due to incoherent lateral diffusion. In Section 5
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2.1. Zero field properties

To model the monohydride Si(100) surface at
zero field we use a (2×1) slab with 12 Si atoms
and six H atoms. The atoms at the bottom surface
are bulk like, and their dangling bonds are satu-
rated with H atoms. The two surfaces are separated
by a 7.5 Å vacuum region, and we use the dipole
correction [25] in order to describe the different
workfunction of the two surfaces. The surface is
insulating and we use two k-points in the irreduc-
ible part of the Brillouin-zone (BZ) for the BZ
integrations. Test calculations with more dense
meshes show that BZ integration errors are negligi-
ble small.

Fig. 1 shows the atomic structure after relax-
ation of the H atoms and the four upper Si layers.

Fig. 1. Calculated atomic structure of the Si(100)-H(2×1)Positions of the H atoms and the two upper Si
surface.layers compare well with other studies [26–28].

For the third and fourth layer Si atoms we find a
small asymmetric relaxation, and to our knowledge z, used in the calculation of the dynamical matrix.
such relaxations have not been included in previ- The data are accurately described by a Morse
ous studies. potential:

To obtain the dynamical matrix of the Si–H
EH(z)=Ed(e−2a(z−z

0
)−2e−a(z−z

0
)), (1)stretch frequency we make H displacements of

±0.07, 0.14,…,0.35 Å in the Si–H bond direction and from a least-squares fit we obtain the fre-
and fit a sixth order polynomial to the data points. quency v0=0.26 eV (a=1.57 Å−1), equilibrium
Since the Si–H stretch frequencies are four times bond length z0=1.50 Å, and desorption barrier
higher than Si bulk frequencies, the Si substrate Ed=3.4 eV. The extrapolated desorption energy
acts like a solid wall, and we therefore use the H coincides with the surface energy without a H
mass MH when calculating frequencies from the atom plus the energy of a spin-polarized H atom.
dynamical matrix. With this approach we have The triangles in Fig. 2 show the total energy for
calculated the frequency of the symmetric stretch large values of z−z0. When the interaction between
vs and the asymmetric stretch va at three high the H atom and the surface becomes weak the
symmetry points in the surface BZ.2 In Table 1 the electrons start to spin-polarize and the data points
results are listed together with C point frequencies
(parentheses) obtained by infrared spectroscopy

Table 1
[29] and the comparison between the theoretical Surface phonon frequencies in cm−1 for the H symmetric
and experimental values is excellent, especially we stretch vs and asymmetric stretch va at the C, J and J∞ point

in the surface BZ, experimental C point frequencies are shownnote that the theory correctly predicts the splitting,
in parentheses and bracketed J and J∞ point frequencies arevs−va=11 cm−1.
obtained from a dipole–dipole interaction model, with parame-We next investigate the bonding potential of
ters fitted to the two C point frequencies (see Section 3)

the H atoms. In Fig. 2 the solid circles show the
hydrogen energy, EH, for the Si–H bond lengths, ( 2p/a100) C=(0, 0) J=(0, 1/4) J∞=(1/2, 0)

vs (cm−1) 2082 (2099a) 2075 [2075] 2074 [2071]
va (cm−1) 2071 (2088a) 2074 [2073] 2074 [2069]

2 For the frozen phonon calculation at the J point we use a
(1×4) cell, and at the J∞ point we use a (2×2) cell. a Ref. [29].
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Ref. [26 ]. The Si atoms at the back side of the
slab are not passivated by H atoms, and dangling
bonds on these atoms can donate free electrons
and holes. In this way we take into account the
effect of mobile carriers [31]. Other computational
details are identical to those for the zero field
calculation.

Curves in Fig. 3 show the field dependence of
the equilibrium Si–H bond length z, the C point
symmetric Si–H stretch frequency vs and the C
point symmetric–asymmetric splitting Dv=vs−
va. We first notice that all three quantities have
an extremum at ~1.5 V Å−1. This behaviour can
be described by a simple Si–H tight-binding model
with a field dependent H on-site element [17]. The
extrema occurs at the field where the H and SiFig. 2. Filled circles and open triangles show the change in the

total energy DEH as a function of the Si–H bond length z, and on-site levels are in resonance, since at resonance
the solid line shows a Morse potential fit to the filled circles the Si–H bond is strongest, and therefore the bond
data points. The horizontal dashed line shows the desorption length minimal and the vibrational frequency max-
energy, Ed, as obtained from a spin-polarized H atom and the

imal. Furthermore, at resonance the H dynamicsurface without a H atom. To obtain the dynamical matrix we
dipole vanishes, and therefore also the part of Dvfit a sixth order polynomial to the filled circles data points. The

inset shows the change in the dipole-moment Dp as function caused by H–H dipole interactions.
of z. The three solid lines in Fig. 3 show second order

polynomials obtained by least squares fit to the
data. The interpolated zero field values of z0 and
vs agrees exactly with those obtained inin Fig. 2 show that spin polarization effects become
Section 2.1, while the interpolated Dv zero fieldimportant for z>2.5 Å.
value is slightly off. Taking into account the quiteThe inset shows the change in the surface dipole,
different slabs used for the two calculations weDp as a function of z (the positive direction is
find the agreement fully satisfactory, and note thatfrom Si to H ). The surface dipole increases almost
the difference can be taken as a measure of thelinearly with z and the dynamic dipole moment is
accuracy of the approach.c=dp/dz =0.6 D Å−1 (=0.13e). Modelling the

Recently, the electric field dependent propertiessurface dipole by an effective charge e1 on the H
of the H/Si(111)(1×1) surface were calculated byatom and its image charge – e1,3 we find
Akpati et al. [30], and they found Stark shiftse1=−0.07e. The sign of this charge transfer from
~30% larger than in the present calculation, andSi to H is in accordance with a higher electronega-
the extremum in bond length and frequencytivity of H relative to Si [30].
appears for a field of 1 V Å−1. The agreement with
the present calculation seems reasonable, bearing2.2. Electric field dependent properties
in mind that the Stark shifts are for different

To model the surface in a planar external field crystallographic surface directions. However, part
we use a (2×1) slab with 24 Si atoms, two H of the difference might be due to the use of a
atoms, and a vacuum region of 10 Å and the cluster geometry and the local spin density approx-
external field is modelled using the method of imation in Ref. [33]. The present study is based

on a slab geometry and the GGA. We expect that
the thick slab geometry better describes the electric3 Silicon has a large dielectric constant (~12e0) and the sur-

face behaves almost as a metallic surface. field induced polarization of the surface.
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Fig. 4. The (2×1) surface lattice of H atoms, in units of the
surface lattice constant a100=3.87 Å.

We first consider the zero field case of identical
oscillators with parameters c0, v0. We find the
dispersion from a numerical Fourier transform,

Fig. 3. The field dependence of (a) the equilibrium Si–H bond and at the C point we obtain the Hamiltonian:
length z0, (b) the C point symmetric Si–H stretch frequency
vs, (c) the C point symmetric–asymmetric splitting
Dv=vs−va. The solid lines show second order polynomials H(C )=Av

0
+4.05V

0
5.12V

0
5.12V

0
v
0
+4.05V

0
B, (3)

obtained by least-squares fit to the data.

where V
0
=(c2

0
)/(MHv

0
a3
100

) and a100=3.87 Å is
3. STM induced Stark localization the surface lattice constant. The two eigenmodes

are vs(C )=v0+9.17V0, and va(C )=v0−1.07V0.In this section we will model the collective Using the calculated values of c0 and v0 from
modes of the Si–H stretch vibrations by a set of Section 2.1, we obtain V0=0.07 meV and thereby
local oscillators interacting through dipole forces Dv=5 cm−1. Dipole–dipole interactions can
[32]4, and use this model to calculate the Stark therefore only account for half of the dispersion
localization in the external electric field from a obtained in the the frozen phonon calculation. We
STM tip. In Fig. 4 is shown the lattice sites of the suggest that the remainder of the splitting is due
oscillators, corresponding to the positions of the to a short-range electronic interaction. This
H atoms in the (2×1) cell. Each oscillator is electronic interaction gives rise to an additional
described by a local frequency v

i
and a dynamic splitting, and explains why Dv>0 at E=1.5 V Å

dipole moment c
i
. The Hamiltonian of the system (see Fig. 3c) even though the dipole–dipole inter-

is given by: action vanishes at this field.
To simplify the calculations we will in the

following use the dipole–dipole interaction modelH
ij
=Bv

i
d
ij
+

x
i
x
j

|r
i
−r

j
|3

(1−d
ij

), (2)
[Eq. (2)] to describe all the interactions, and
determine field dependent parameters vE and cEwhere r

i
is the position of oscillator i, and

by relating the C-point eigenmodes of the model
x
i
=EB/2MHv

i
c
i
.

to the calculated frozen phonon values. In this
way we approximate the effect of the short-range4 The neglect of substrate mediated forces is justified by the
electronic interactions by long-range dipole forces.high frequency of the stretch mode relative to bulk Si

frequencies. To test the accuracy of this approximation we
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have used the model to calculate vs and va at the
J and J∞ point in the surface BZ. The result is
shown in Table 1 and the comparison with the first
principles calculation is reasonable.

We next model the electric field below the STM
tip. Usually it is found that the tip has a curvature
in the range 100–1000 Å [33,34] and it is generally
accepted that the atomic resolution arises from a
small protrusion or a single atom sticking out of
the tip. We use the geometry in Fig. 5 to model
such a tip. Two parameters, the tip curvature, Rt,
and the protrusion size s, determine the tip geome-
try and we present results for parameters in the
range, Rt=100–500 Å and s=0–9 Å. For the tip-
sample distance we use, h=3–7 Å, which is the
typical distance range in STM lithography experi-
ments. To find the electric field below the tip the
Poisson’s equation is solved numerically using
ANSYS finite element analysis [35]. Curves in
Fig. 6 show the radial electric field at the surface
for a potential difference of 5 V between the tip Fig. 6. Electric field at the surface for the geometry in Fig. 5

with a potential difference of 5 V between the tip and the sur-and the surface. Curves in Fig. 6a show the result
face. We assume that both the tip and the surface are metallic.when there is no protrusion on the tip (s=0 Å),
The tip parameters are: (a) s=0 Å (no tip protrusion), h=5 Å,and for this geometry the electric field attains its
and Rt=100, 200, 500 Å. (b) Rt=500 Å , h=5 Å, and s=0, 3,

half value at r=ERh. In Fig. 6b results are for a 6, 9 Å. (c) Rt=500 Å, s=6 Å, and h=3, 5, 7 Å.
tip with a protrusion of size s, and the protrusion
gives rise to a reduced electric field below the tip

show that the field becomes more localized when
and it decays rapidly around the tip apex. The

the tip approaches the surface.
small protrusion changes the electric field of the

To determine the vibrational states below the
tip very little, and localization of the electric field

tip in the presence of the electric field, we set up
is most pronounced for the large protrusion.

the Hamiltonian in Eq. (2) for a finite cluster
Curves in Fig. 6c show the electric field from the

including sites up to a cutoff radius rcut and
geometry with Rt=500 Å and s=6 Å at three tip–

diagonalizes it numerically to find the eigenmodes
surface separations h=3, 6 and 9 Å. The curves

y
a

and frequencies v
a
. There may be several

localized modes, but we are only interested in the
localized state with the largest projection p at the
site directly below the STM tip (r=0). This state
is determined using:

p=max
a

[|
y
a
|0�|2], (4)

where the maximum is over the eigenmodes with
frequency outside the phonon band,
v
a
−v01[−2.8V0, 9.2V0]. For the spatial electric

fields considered in this paper the value of p is
Fig. 5. The geometry used to model the electric field from the

converged for cluster sizes rcut=50–100 Å.STM tip, Rt is the tip curvature, s the size of the protrusion on
Curves in Fig. 7 show p and the correspondingthe tip, h the tip–surface distance, and r the radial distance from

the tip apex. vibrational frequency vp when the surface is sub-
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Fig. 7. (a) The largest projection p at site r=0 of the localized
vibrational states when the surface is subject to the electric fields
of Fig. 6a spherical tip with radius Rt, and when the field is

Fig. 8. Similar to Fig. 7a but for the electric fields of (a) Fig. 6b,
localized at r=0 (—). E is the electric field at r=0. (b) The

and (b) Fig. 6c.
vibrational frequency, vp, of the localized state relative to the
local frequency vE at site r=0.

4. Decay of the localized vibration

Consider an STM experiment where a tunnelingject to the fields of Fig. 6a. The ‘‘local E’’ curve
corresponds to the geometry of Persson and electron scatters inelastically with the H atom

below the tip and the H atom is excited into theAvouris [17] where the electric field is localized at
r=0. In this case a localized state is split of the n=1 vibrational state of the stretch mode. We now

consider the decay of such an excitation. Therephonon band at all negative fields, while at positive
bias a threshold field of 0.12 V Å−1 is needed to are three important time scales, the coherent

transfer time, tc, the phase relaxation time tph andobtain localization. For typical fields in H desorp-
tion experiments, 0.5–1 V Å−1, the state is com- the energy relaxation time ten. The coherent

transfer time is the time it takes for the localpletely localized at the site below the tip ( p=1)
and vp is similar to the frequency, vE, of the local excitation to be transferred into the localized eigen-

mode below the tip, tc/Dv=0.5 ps. Next the eigen-oscillator at r=0. In the case of a tip with radius,
Rt, a localized state exists for nearly all fields, that mode looses its phase due to coupling with a

200 cm−1 Si phonon[16,36 ] and the phase relax-is, at positive bias the threshold field is
0.03 V Å−1. The lower positive threshold field ation time has been measured to be tph=8 ps [36 ]

at room temperature, and tph=75 ps [16 ] at 100 K.compared to the ‘‘local E’’ case is obtained because
the mode is a superposition of several sites with Finally the energy of the mode will decay into the

Si substrate via a coupling with three Si–H bendingv
i
=vE. For typical fields in desorption experi-

ments the mode has a substantial weight, p=0.3, modes (600 cm−1) and one 300 cm−1 Si phonon.
The time scale for this process is ten=10 ns atat the site below the tip.

In Fig. 8 we show the effect of a small protrusion room temperature [10,16 ].
In the previous section we found a localizedon the STM tip. In this case the spatial localization

is improved, and for fields 0.5–1 V Å−1 we have eigenmode with p=0.8. The excitation at r=0 will
be a superposition of this mode and more extendedp=0.8. Thus we confirm the results of Persson

and Avouris [17], that there exists a localized mode states. After tc the extended states have diffused
away, thus 80% of the initial excitation is in thein the region below the tip, however, it is not

completely localized at a single site. localized eigenmode, and the total probability of
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finding the initial excitation at r=0 is p2=0.6. For
t>tph the excitation can diffuse away to the neigh-
bouring H atoms due to dipole–dipole couplings.
This is the so-called Försters mechanism for inco-
herent diffusion, and in the following we will
calculate the incoherent diffusion rate, w, using
Försters formula [17,37]:

Fig. 9. Diagrams used for calculating the self energies (a) S(1)
i

and (b) S(2)
i

. —, Propagators of the stretch mode, - - -, propaga-
tors of the Si phonon. Wavy lines symbolize the interaction dv.w=

2

p
∑
i≠0 P−2

2
|H

0i
|2A0

0
(v)A0

i
(v)dv. (5)

In this equation A0
i

is the spectral function at The S(1) term gives rise to a small frequency shift,
site i for noninteracting H modes (H0

ij
3d

ij
), but while the S(2) term leads to a damping of the

including the coupling with substrate phonons mode. Considering only the latter term, we find:
which gives rise to the phase relaxation. The
spectral functions are obtained from the noninter-

A0
i
(v)=

C
i
(v)/B

(v−v
i
)2+C

i
(v)2/4

, (13)acting retarded Greens functions:

G0
i
(t)=−iH(t)
[ĉ

i
(t), ĉ†

i
(0)]�, (6)

C
i
(v)=

2dv2

g

nB(V)[nB(V)+1]

(v−v
i
)2/g2+1

, (14)
A0
i
(v)=2ImG0

i
(v), (7)

where ĉ†
i

and ĉ
i

are local creation and annihilation where C
i
(v

i
) is the phase relaxation rate and we

operators of the stretch mode. The phase relax- have used C
i
(v

i
)&g. Thus the spectral function

ation can be described approximately by the resembles a Lorentzian with full width at half
Hamiltonian [38]: maximum (FWHM) C

i
(v

i
) for v=v0 and it

decays as (v−v0)4 in the tails. From the experi-H0
ii
=B(v

i
+dvn̂

i
)ĉ†
i
ĉ
i
, (8)

mental dephasing lifetimes [16,36 ] we obtain
where n

i
=b̂†

i
b̂
i

is the projected occupation opera- C
i
(v

i
)=1/tph=0.7 cm−1 at room temperature. We

tor of the V=200 cm−1 Si phonon, and dv is the estimate the coupling strength using dv
i
=

change in the local frequency when the Si phonon −Vv
i
/4Ed=−4 cm−1 [40], and the friction

is excited from level n to n+1. The correlation parameter can then be determined from
functions of n

i
have been calculated by Persson g=2dv2nB(V)[1+nB(V)]/2C

i
(v

i
)=50 cm−1. The

et al. [38]: values of dv and g obtained in this way are similar
to the measured room temperature values for
n(t)�=nB(V), (9)
Si(111)[41].


n(t)n(0)�=
n�(1+
n�)e−gt+
n�2 . (10) To obtain the diffusion rate we perform the
integration in Eq. (5) thus obtaining:The friction parameter g describes the damping of

the Si phonon, and nB(v)=(ebv−1)−1 is the Bose
w=

4

B2
∑
i≠0

x2
0
x2
i

r6
i

C
0
(v

0
)+C

0
(v

i
)

[v
i
−v

0
]2+[C

0
(v

0
)+C

0
(v

i
)]2/4

.occupation number and b the inverse temperature.
We now use the Matsubara formalism [39] to

(15)obtain G0
i

from an perturbation expansion in dv.
We only consider the two lowest order diagrams In the case where C0(vi

)=C0(v0) this result is
shown in Fig. 9, and the corresponding self ener- similar to that of Ref. [17].
gies are: Curves in Fig. 10 show the values of w as

obtained from Eq. (15) when the surface is subjectS(1)
i
=Bdv
n�, (11)

to the same electric fields as in Fig. 7. The solid
line corresponds to the electric field model ofS(2)

i
=Bdv2
n�(1+
n�)

1

v−v
i
+ig

. (12)
Persson and Avouris and similar to Refs. [17,18]
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the electric field at r=0 is not very different from
the nearest neighbour sites and there is a large
diffusion rate into these sites.

For the decay of the n>1 excitation we have to
take into account the anharmonicity of the Si–H
bond potential. In Section 2.1 it was shown that
the bond potential of the H atom is well described
by a Morse potential. The eigenstates of a Morse
potential is given by:

Bv(n)=EdC1−
aB

E2MHEd
An+

1

2BD2 , (16)
Fig. 10. Incoherent lateral diffusion rates, w, for the local n=1
vibrational excitation at r=0, when the surface is subject to the

where n takes positive integral values from zero toelectric field of a spherical tip with radius Rt at h=5 Å above
the surface (broken curves), or the field is localized at r= the greatest value for which n+1/2<E2MHEd/aB.
0 (—). E is the electric field at r=0 (see also Fig. 7). For the H potential n=0,1,…24 and v(n)=0.129,

0.378, 0.618, 0.847,… eV. The anharmonicity is
substantial and v(2)−v(1)=v(1)−v(0)+U,we find w=5×109 s−1 for typical STM fields. The
where U=−0.010 eV. The frequency of the n=2other curves in Fig. 10 and the curves in Fig. 11
state is outside the phonon band, and this givesshow that for more realistic models of the tip
rise to a localization of the state [42,43]. Theelectric field the value of w is more than one order
diffusion rate of this state can be estimated fromof magnitude larger, and a typical value in an
Eq. (15) using v0+U for the frequency at site 0,STM experiment is w=1011 s−1. Thus, the n=1
and the result of such a calculation is shown byvibrational excitation at r=0 will diffuse away
the three lower curves in Fig. 11. The value of wvery fast to the nearest neighbour sites in contrast
is of the same order of magnitude as the roomto the result of Persson and Avouris [18]. The
temperature energy relaxation rate (108 s−1). Forreason for this is that for a realistic STM geometry
n>2 the diffusion rate is %108 s−1. Thus, it is
mainly the lifetime of the n=1 excitation which is
affected by incoherent diffusion. In the next section
we will investigate the effect of the reduced lifetime
of the n=1 excitation on STM induced desorption.

5. Calculation of the desorption rate

In this section we will calculate the desorption
rate, R, of the H atom below the STM tip, due to
electron inelastic scattering through dipole cou-
pling or by resonance coupling with the Si–H 5s
and 6s1 resonances. The fraction of electrons
which scatters inelastically through dipole coupling
is given by f dipin =(x

0
/ea

0
)2=0.001 [44]. The theo-

retical model we use for calculating the inelastic
current, I

n �n+N, due to resonance coupling has
been described in Refs. [11,12]. In those works weFig. 11. Incoherent lateral diffusion rates, w, for the n=1 and
only considered resonance coupling and decayn=2 mode at r=0 as a function of the electric field of (a)

geometries in Fig. 6b, and (b) geometries in Fig. 6c. through energy relaxation with wen=1/ten=
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108 s−1, and dotted lines in Fig. 12 correspond to proceeds via a direct excitation from n=0 to
n=2. At negative biases <−5 V the rate ofthose results. The dashed lines show the result of

including dipole coupling and the little difference double excitations relative to single excitations is
I
n �n+2/In �n+1=0.07–0.15×(n+2), while at posi-between the dotted and dashed lines justify the

neglect of dipole coupling in our previous studies. tive biases >2 V it is 0.015–0.04×(n+2). Thus,
the larger m at negative bias relative to positiveThe solid lines in Fig. 12 show the result of includ-

ing both dipole coupling and lateral diffusion of bias is due to a higher probability of a multiple
excitation.the n=1 excitation with w=1011 s−1. Defining

m(w)=R(w)/R(w=0) as the suppression of the
desorption due to lateral diffusion of the excitation,
we find m=0.1–0.3 at negative bias and m=0.02– 6. Summary
0.08 at positive bias. Using w=1010 s−1 or
w=1012 s−1 changes m by <10%. This is quite We have studied the effect of electric field on

incoherent lateral diffusion of vibrational excit-different from the model of Persson and Avouris
[18] where m~wen/w. The reason is that in our ations and its implications for STM induced

desorption of H from Si(100)-H(2×1). We calcu-model we include multiple phonon excitations,
that is, we use N=1,2,3 in the calculation of the lated the electric field at the surface for realistic

STM tip geometries and determined the fieldinelastic current [11,12]. When the lateral diffusion
rate of the n=1 level is large, the desorption dependent vibrational properties of the H over-

layer based on first principles calculations of vibra-
tional Stark shifts and dipole-dipole interaction
matrix elements. We found that the electric field
will localize the vibrational states below the STM
tip, however, the lifetime of the n=1 excitations is
short (~10 ps) due to incoherent diffusion. The
diffusion of higher level excitations n>1 is sup-
pressed due to anharmonic frequency shifts. The
damping of the STM induced desorption of H due
to the lateral escape of the n=1 excitation depends
on the fraction of multiple phonon excitation
events relative to one phonon events in the inelastic
scattering process. At low positive biases we find
a damping of the desorption rate by m=0.02–0.08,
while at negative bias m=0.1–0.3, reflecting the
higher probability of inelastic scattering events
with a multiple phonon excitation at negative
biases. There are no adjustable parameters in our
model and the calculated desorption rates are in
quantitative agreement with measured desorption
rates.

Fig. 12. Experimental desorption rate Rt as a function of tunnel
current I for (a) sample bias Vb=−7 V (6) and −5 V (+), (b)
sample bias Vb=2 V (+), 2.5 V (#, $) and 3 V (%, &). Open
data points are from Refs. [11,12] and solid data points from Acknowledgements
Ref. [4]. (- - -) The theoretical results of Refs. [11,12] in which
inelastic dipole scattering and lateral escape of the n=1 vibra- The author acknowledges Jan Tue Rasmussen
tional state are not included. (,) Results when inelastic dipole

for making the ANSYS finite-element calculations,scattering is included. (—) The full model where both dipole
and thanks Ben Yu-Kuang Hu, U. Quaade and F.scattering and a lateral escape rate of w=1011 s−1 for the n=

1 vibrational state is included. Grey for valuable discussions and careful reading
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