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Doping of semiconductor is necessary for various device applications. Exploiting chemistry at its reactive
edges was shown to be an effective way to dope an atomically thin graphene nanoribbon (GNR) for realizing
new devices in recent experiments. The carrier mobility limited by edge doping is studied as a function of the
GNR width, doping density, and carrier density by using ab initio density functional and parameterized tight
binding simulations combined with the non-equilibrium Green's function formalism for quantum transport.
The results indicate that for GNRs wider than about 4 nm, the mobility scales approximately linearly with the

GNR width, inversely proportional to the edge doping concentration and decreases for an increasing carrier
density. For narrower GNRs, dependence of the mobility on the GNR width and carrier density can be

qualitatively different.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The high mobility of graphene, which is a monolayer of carbon
atoms packed into a two-dimensional (2D) honeycomb lattice, has
stimulated strong interest in high-performance graphene device
applications [1-3]. Graphene nanoribbons (GNR) have been obtained
by patterning graphene into narrow strips. The 2D graphene does not
have a bandgap. A bandgap, however, can be opened by quantum
confinement in the width direction of a GNR [4-7]. The chemically
active edges can be engineered for various functionalities despite that
experiment control over edge chemistry remains challenging at
current stage. A recent work has shown that chemical reactions can
turn a p-type GNR into an n-type GNR as it is annealed in ammonia [8].
The impact of edge dopants on the carrier mobility, however, is not
yet clear. In this study the edge-dopant-limited mobility is investi-
gated, which has not been covered by previous studies on the GNR
mobility [9,10].

In this work, chemistry of different dopants in a GNR is captured by
using ab initio density functional theory (DFT) simulations. For n-type
doping, substitution of edge carbon atoms by nitrogen atoms is
considered, and passivation of edge carbon atoms by oxygen atoms is
considered for p-type doping [8]. The quantum transport equation is
solved in the non-equilibrium Green's function (NEGF) formalism
with Hamiltonians in tight binding (TB) bases parameterized from ab
initio Hamiltonian and overlap matrices [11]. The dependence of the
edge-dopant-limited mobility on the dopant species, doping concen-
tration, GNR channel width, and carrier density are investigated. The
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study shows that the quasi-one-dimensional channel and resonant
scattering play an important role in determining the edge-dopant-
limited GNR mobility.

2. Approach
2.1. Ab initio DFT simulation

The electronic transmission as a function of energy is simulated
for a GNR with a single N or O edge dopant as respectively shown in
Fig. 1(a) or (b) by SMEAGOL program [12], which combines DFT
method and NEGF method. The simulated doped channel has 5 GNR
unit cells with one dopant at the edge of the middle unit cell and the
contacts are semi-infinite GNR leads. Structure relaxation is first
performed for both the channel and the contacts by the ab initio
density functional package SIESTA with a criterion of 0.04 eV/A [13].
Due to the short range of the dopant perturbation, the Hamiltonians of
the two unit cells at the two ends of the channel supercell are found to
approximately recover to that of a perfect GNR unit cell. A double zeta
polarized (DZP) basis set is used. The energy cut-off is 200 Ryd.
Exchange and correlation are treated in local density approximation.
Based on the relaxed channel and contact structures, electronic
transmission is calculated by SMEAGOL. The Hamiltonian and overlap
matrices of the channel and leads in the DZP basis are obtained, which
are used for TB parameterization as described next.

2.2. TB parameterization
Extraction of mobility requires simulations of hundreds of

randomly generated doped GNR structures at each channel length
as described below. Hence ab initio simulations are computationally
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Fig. 1. Atomic structures of n =15 AGNR super-cells with a single dopant for ab initio
simulations and a channel segment with multiple dopants for TB transport simulations.
(a) N-type edge doping by substituting a nitrogen atom for an edge carbon atom.
(b) P-type edge doping by passivating an edge carbon atom with an oxygen atom.
(c) A channel segment with multiple N dopants.

too expensive. A TB parameterization is therefore attractive for
significantly improving computational efficiency. An orthogonal p;
orbital TB description has been extensively used in simulating
undoped CNT and GNR electronic structures at low energy [14,15].
For GNRs, a correction to Hamiltonian elements due to the edge bond
relaxation is necessary to obtain a good agreement with the band
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structures calculated by ab initio simulations [15]. After including a
dopant, the band structure is neither a useful nor a meaningful
criterion to test whether a TB parameterization is good or not due to
the breaking of translational symmetry. Instead the transmission
through a doped channel connected to two semi-infinite GNR leads
can be used to judge the validity of the parameterization [16]. It has
been shown that only adding changes to the diagonal elements of the
Hamiltonian in the orthogonal pz TB basis is sufficient to reproduce
the transmission calculated by ab initio transport simulations in a
previous study of CNTs with a B or N substitutional dopant [16]. As
shown in Fig. 2(a) and (b), we found that this method works well for
the nitrogen edge doping whose structure is shown in Fig. 1(a).

For oxygen edge doping in Fig. 1(b), the orthogonal pz TB basis set
with only on-site changes, however, is found not able to produce
transmissions that agree with those calculated by SMEAGOL. We
instead found that by truncating the ab initio Hamiltonian and overlap
matrices of the DZP basis into the first zeta pz orbital of the DZP basis
set only, the transmissions calculated in the reduced basis set agree
with the SMEAGOL results as shown in Fig. 2(c) and (d). The
Hamiltonian and overlap matrices in the first zeta pz orbital basis are
essentially a subset of the original ab initio basis set. Thus this pz basis
is non-orthogonal and has coupling between atoms beyond first
nearest neighbors. We keep the non-orthogonality and limit the
interaction up to third nearest neighbors. Perturbations to both on-
site elements and hopping elements are included. Despite the
complexity in the TB parameterization for oxygen doping, the size
of the non-orthogonal basis, which includes one orbital per atom
(hydrogen atoms are not in the Hamiltonian anymore), is the same as
the orthogonal pz TB basis for nitrogen edge doping.

With computational efficiency improved significantly by TB param-
eterization, the resistance of a randomly generated GNR structure with
multiple dopants as shown in Fig. 1(c) can be calculated in the TB basis
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Fig. 2. Transmission as a function of energy computed with DZP basis used in SMEAGOL simulations (solid lines) and with the parameterized TB bases (dashed lines) in the presence
of a single N dopant in (a) n =28, 14 AGNRs and (b) n=09, 15 AGNRs or a single O dopant in (c) n=38, 14,20 AGNRs and (d) n=9, 15 AGNRs. The middle of the bandgap is defined as
E=0.
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set. Cautions, however, must be taken when the configurations of
multiple dopants are randomly generated. The TB bases are derived
from ab initio simulations of a single dopant. When there are multiple
dopants, it is assumed that each dopant causes a perturbation of
Hamiltonian and overlap matrices in a way similar to that by a single
dopant. Therefore the dopants should not be too close to each other and
a superposition of perturbations can hold. The interaction between two
closely spaced dopants increases the total energy of a GNR, which is not
favored by chemical reactions [17]. In this study any two of the dopants
are not allowed to sit at the same edge if they are in one unit cell or in
two neighboring unit cells.

2.3. Mobility extraction

After constructing the channel Hamiltonian, the retarded Green's
function of the channel at energy E is calculated as,

G(E) = [(E +i0)I-H-3, -3, (1)

where H is the Hamiltonian matrix in the orthogonal (non-orthogonal)
pz TB basis for nitrogen (oxygen) doped channels, and 3; (2;) is the
self-energy due to the semi-infinite dopant-free source (drain) lead.
For oxygen doped channels, the identity matrix I is replaced by the
overlap matrix. The electronic transmission per spin through the
channel is calculated as

Tr(E) = Tr [Ty (E)GE), (E)G™ (E)| )

where T 5(E)=i(31,,—23{ ) is the broadening function of the
source/drain lead and G" is the advanced Green's function. NEGF
formalism can rigorously treat the transport in the presence of
multiple dopant potentials. Other non-idealities for transport such as
phonon scattering and structural defects are neglected since this study
focuses on the dopant-limited mobility. With the transmission, the
resistance can be computed as,

R=1/G,

2¢° Of (E.Eg,T (3)
G= %deTr(E)(—if( s )>,

where G is the conductance and f is the Fermi distribution which is a
function of energy E, Fermi energy Erand temperature T. The factor of 2
counts the spin degeneracy. An Er can be related to a specified 2D
carrier density, which is the carrier per GNR length divided by the GNR
width. For a given channel length, width, edge doping concentration,
and 2D carrier density, 300 trial simulations with randomly generated
dopant configurations are performed to obtain an averaged resistance,
<R>, which can be partitioned into a contact resistance Ry and a
channel resistance R,

<R> = RO + Rch:RO + (1 / O)Ldn (4)

where the conductivity o'is computed from the slope of a linear fitting
to the <R> vs. L, curve. The electron mobility is calculated as

o

= — 5
qnypyW )

Uy

where nyp is the 2D electron density and W is the channel width. The
hole mobility is obtained by changing n,p to psp, the 2D hole density.
The extraction of channel resistivity should be performed in the linear
regime of the <R> vs. Lo, curve to avoid the onset of localization.

3. Simulation results
3.1. Electronic transmissions

First we examine the ab initio transport simulation results of GNRs
with a single dopant as shown in Fig. 1(a) and (b). The TB transport
simulations are also performed for the same structures to check the
validity of the parameterization. The simulated transmissions as a
function of energy for nitrogen edge doping are displayed in Fig. 2(a)
and (b), for small bandgap armchair GNRs (AGNR) in the n=3q+2
group and semiconducting AGNRs in the n=3q group, respectively.
The results of the n=3qg+ 1 group are not shown because they are
qualitatively similar to those of the n=3q+ 2 group. It is noticed that
there is a qualitative difference between the transmissions of the
valence subbands and conduction subbands. In both Fig. 2(a) and (b),
oscillations (peaks and dips) appear in the transmissions of the
conduction subbands whereas the transmissions of the valence
subbands monotonically increase as |E| increases. As the channel
width becomes smaller, the transmission peaks and dips occur at
larger energies due to the larger energy spacing between subbands.

Fig. 2(c) and (d) shows the results of oxygen edge doping.
Oscillations of transmissions similar to nitrogen edge doping are
observed as well except that the conduction and valence subbands are
switched. The energies at which the oscillation dips are observed can
be explained by resonant backscattering, and they align with the peak
values of the local density-of-states (not shown here), manifesting the
quasi-local states due to the quantum confinement by the dopant
potential. For n-type doping by nitrogen, the ionized dopant
(positively charged) induces a potential well for electrons and
resonant back scattering takes place in the conduction subbands. In
contrast, for p-type doping by oxygen, the ionized dopant (negatively
charged) induces a potential well for holes, and resonant backscat-
tering takes place in the valence subbands.

Agreement between the ab initio results and the TB results in Fig. 2
indicates the validity of the TB parameterization. The TB approach is
attractive for enabling efficient simulations of longer GNRs with
multiple dopants as shown in Fig. 1(c) to extract dopant-limited
mobility values. The parameterized change of the diagonal entry
of the Hamiltonian at the nitrogen substitution site is about —4 eV for
n-type doping, and that at the carbon atom site which is passivated
by an oxygen atom is about 1eV for p-type doping. The smaller
magnitude of the perturbation in p-type doping is because an oxygen
atom passivates a carbon atom while a nitrogen atom substitutes for a
carbon atom. As a result, in subsequent simulations, the hole mobility
of an oxygen doped AGNR is consistently larger than the electron
mobility of a nitrogen doped AGNR with the same channel width,
doping concentration and carrier density.

3.2. Channel width dependence

Fig. 3 indicates the simulated GNR resistance as a function of the
channel length, in which each data point (a circle) is obtained by
averaging over 300 randomly generated doped channel configura-
tions. The resistance varies linearly with the channel length, which
indicates diffusive nature of the transport in the simulated channel
length regime and localization does not occur. The dopant-limited
mobility is extracted from the slope of the linear fitting to the
simulated data points, whose extrapolation at L., =0 is confirmed to
agree with the expected ballistic resistance for the simulated carrier
density which determines Ef.

The dependence of the dopant-limited mobility on the AGNR
width is examined next. In Fig. 4(a) and (b), the mobility vs. channel
width curves are plotted for nitrogen doping and oxygen doping,
respectively. For each type of dopants, two curves are plotted, one for
the n=3q group and the other for the n=3q + 2 group. Regardless of
the GNR width, the 2D carrier density is 1x10'> m~2 and the edge
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Fig. 3. Resistance as a function of the channel length for n =66 N doped AGNRs with an
edge doping concentration of 0.02 (the ratio of the number of dopants to the number of
edge carbon atoms). The dashed curve is the linear fitting of the simulated results
marked by the circles. The square shows the value of the ballistic resistance of 3
subbands (h/6e?), which agrees well with the extrapolated resistance at L., =0 from
the dashed line. The Fermi energy Er=0.33 eV, which results in an equivalent 2D
electron density of 1x10' cm~2

doping concentration is 0.02. The Fermi energy Er determines the 2D
charge density, which is the carrier per unit length divided by the GNR
width, and the edge doping concentration is defined as the ratio of the
number of dopants to the number of edge carbon atoms. For the
simulated GNRs wider than about 4 nm, the dopant-limited mobility
increases approximately linearly as the GNR width increases for a
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Fig. 4. Edge-dopant-limited mobility as a function of the channel width for (a) nitrogen
edge doping and (b) oxygen edge doping at a 2D carrier density of 1x 10> cm~ 2 and an
edge doping concentration of 0.02. The inset of (a) schematically shows the position of
the Fermi level with regard to the transmission spectra at three channel widths wa, wg
and wc to explain the non-monotonic behavior of the mobility as a function of the
channel width for n=3q + 2 group.

fixed edge doping concentration. It indicates a smaller edge effect on
the transport properties of a wider GNR. As the channel width
increases, the probability for a carrier being close to the edges lowers
and the matrix element of the dopant potential between the initial
and final wave states decreases, carrier transport is less perturbed and
the mobility increases.

For a GNR narrower than about 4 nm, non-monotonic behaviors
are observed in Fig. 4, which can be explained by the position of the
Fermi energy with regard to the transmission dips and peaks caused
by resonant scattering. Take the curve for the n=3q+ 2 group of
nitrogen doping in Fig. 4(a) as an example. For a fixed 2D carrier
density of 1x10'> cm™2, we found that the Fermi energy is about
0.3 eV above (below) the charge neutral point for electron (hole)
conduction regardless of the channel width. The Fermi energy
Er~0.3 eV is near the first transmission peak of the small channel
width (e.g. n =28 as shown in Fig. 2(a) and the top diagram of the inset
in Fig. 4(a)). As the channel width increases, the position of first
transmission dip is shifted toward the Fermi energy. The transmission
at Er decreases and reaches the minimum value when Ef is right
aligned to the dip as shown in the middle diagram of the inset in
Fig. 4(a), which results in a decrease of the conductance as indicated
by Eq. (4), and thereby the mobility. As the channel width further
increases, the first dip moves away from the Fermi energy and the
mobility increases indicated by the bottom diagram of the inset in
Fig. 4(a) (Fig. 2 shows the transmission curve of a single dopant, but
that of multiple dopants is qualitatively similar to that of a single
dopant in terms of the energies of resonant transmission dips due to
backscattering [18]). Resonant backscattering dips also exist in the
transmission of higher subbands, but the dips in higher subbands are
much shallower and narrower than that in the lowest subband which
reduces transmission close to zero. In the presence of room tem-
perature thermal broadening, the transmission dips in higher sub-
bands are not strong enough to cause non-monotonic dependence of
the mobility on the GNR width.

3.3. Doping concentration dependence

Next we investigate the dependence of the dopant-limited mobility
on the edge doping concentration at a fixed 2D carrier density of
1x10" cm™2. As the doping concentration increases, the density of
dopants increases and the carriers get more frequently backscattered
so the mobility decreases as shown by the solid lines in Fig. 5(a)
and (b) for both nitrogen and oxygen doping respectively. The dashed
lines are fitting lines proportional to ~1/Np4 where Np (N4) is the
nitrogen (oxygen) edge dopant concentration. The inversely propor-
tional dependence of the mobility on the doping concentration is
qualitatively the same as in silicon [19]. In Fig. 5(b) modeled for
oxygen doping, the curve of n =15 AGNR is very close to that of n =30
AGNR in log scales, due to the non-monotonic dependence on the
width for narrow GNRs as shown for the n = 3q group in Fig. 4(b).

3.4. Carrier density dependence

The Fermi energy and carrier density can be modulated by gating
in a GNR device. We next study the dependence of mobility on the
carrier density. Fig. 6 plots the dopant-limited hole mobility as a
function of the 2D carrier density with an oxygen edge doping
concentration of 0.02 for three different GNR widths. The simulated
n=15, 30, and 66 AGNRs have widths of 1.9 nm, 3.7 nm, and 8.1 nm
respectively, and the simulated 2D carrier density varies from 1x 102
to 2x10' cm™2. Qualitatively different trends are observed for
AGNRs with different widths.

Fig. 6 shows that for a narrow GNR with n=15, the mobility
slightly increases as the carrier density increases. In the simulated
carrier density range, the conductance increases monotonically as the
carrier density increases as shown in Fig. 7(a). The transmission dip in
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Fig. 5. Edge-dopant-limited mobility as a function of the edge doping concentration
for (a) nitrogen edge doping and (b) oxygen edge doping with a 2D carrier density of
1x10"% cm~2

the lowest subband occurs below Er=—0.44 eV that results in a
carrier density of 2x 10" cm™ 2 and therefore does not have an effect
in the simulated range of the carrier density. Furthermore, only the
lowest subband is relevant in the simulated hole density range. The
band-structure-limited carrier velocity increases and the density-of-
states decreases at the Fermi energy as the hole density increases. The
increase of the conductivity slightly outpaces the increase of the hole
density in the simulated hole density range, which results in a slight
increase of the mobility as determined by Eq. (5).
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Fig. 6. Edge-doping-limited mobility as a function of the 2D carrier density with oxygen
edge doping at three channel widths. The edge doping concentration is 0.02. The
triangular and square symbols are marked at the carrier densities of 1x10'2,1x10'3,
and 2x 10" cm ™2 which correspond to the Fermi energies labeled respectively as Eg;,
Ep, and Egs in Fig. 7.
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Fig. 7. Transmission as a function of energy of (a) an n=15 AGNR and (b) an n=66
AGNR for oxygen edge doping. The red dashed curves are the step-wise perfect
transmissions. The vertical lines labeled as E;, Er,, and Ep3 indicate the Fermi energies for
the carrier density 1x10'2,1x10'3, and 2 x 10" cm™ 2 respectively.

In contrast, Fig. 6 indicates that the mobility decreases as the hole
density increases for a wider n =66 AGNR with a width of 8.1 nm. To
understand this phenomenon, the transmission as a function of
energy is plotted in Fig. 7(b) with the Fermi energies at three
simulated densities denoted. Several differences from the n=15
AGNR case are noted. First, as the hole density increases, the Fermi
energy moves into a range with several resonant backscattering dips
that lower the transmission and conductance. Second, four subbands
are involved in the simulated hole density range. The band-structure-
limited carrier velocity is zero and the van Hove singularity of density-
of-states exists at the bottom of each subband, which results in a rapid
increase of the hole density as Er moves near the bottom of any
subband. As a result, the increase of the carrier density is more
dominant than the increase or even decrease of the conductivity as Er
moves away from E = 0. Therefore the mobility decreases as the hole
density increases. The non-monotonic dependence for the n=30
AGNR with a width of 3.7 nm as shown in Fig. 6 can be explained by a
combined effect. For low hole density, only the first subband is
involved in transport and the transmission dip is out of the relevant
energy range, the mobility increases as the hole density increases.
Further increase of the hole density results in a decrease of the
mobility, due to the higher subband transport and transmission dips
caused by resonant backscattering.

4. Conclusions and discussions

Edge chemistry provides a unique way to dope graphene nanos-
tructures. While other scattering mechanisms could also degrade
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intrinsically high mobility of graphene, scattering by edges has been
considered as the dominant mechanism for limiting carrier mobility in a
narrow graphene nanoribbon. The edge-dopant-limited mobility of
both n-type and p-type GNRs with edge doping is examined in this
work. The nitrogen edge doping results in oscillations in the conduction
subband transmissions whereas the oxygen edge doping results in
oscillations in the valence subband transmissions due to resonant
scattering. Resonant scattering plays an important role in the depen-
dence of the dopant-limited mobility on the channel width, edge doping
concentration, and 2D carrier density. The mobility approximately
scales linearly with the GNR width when the width W>4 nm and varies
non-monotonically with the width for narrower GNRs. The inversely
proportional dependence of the mobility on the doping concentration is
qualitatively similar to that in silicon. In the carrier density range of
interest, the mobility slightly increases as the 2D carrier density
increases for an AGNR with W~2 nm whereas the mobility decreases
as the carrier density increases for an AGNR with W~8 nm. The effect of
edge doping on GNR mobility can be incorporated with those due to
other scattering mechanisms (edge roughness, adsorbate impurity, and
phonon) to first order through the Matthiessen's rule.
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