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We present the interatomic force constants and phonon dispersions of graphite and graphene from the
LCBOPII empirical bond order potential. We find a good agreement with experimental results, particularly in
comparison to other bond order potentials. From the flexural mode we determine the bending rigidity of
graphene to be 0.69 eV at zero temperature. We discuss the large increase of this constant with temperature
and argue that derivation of force constants from experimental values should take this feature into account.
We examine also other graphitic systems, including multilayer graphene for which we show that the splitting
of the flexural mode can provide a tool for characterization.
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1. Introduction

The phonon spectrum of a crystalline solid provides information
on several important physical properties like sound velocities,
thermal conductivity, heat capacity and thermal expansion. The
phonon spectrum of graphite has been intensively studied experi-
mentally [1-6] and theoretically [7-10] in the past and some models
have also been shown to be accurate for the description of fullerenes
[8] and of graphite slabs [10]. In the more recent past, Raman
spectroscopy has proven to be of crucial importance also for the
characterization of graphene and nanotubes as well as for graphitic
nanostructures of lower symmetry, like bent tubes and graphene
edges [11-13]. However, the many unusual structural aspects of
graphene, like the observed ripples [14], negative thermal expansion
[15,16], edge reconstruction [17] and localized [18] and extended
defects [19,20] make it desirable to describe the energetics of carbon
in different structural and bonding configurations beyond the
harmonic approximation by means of a unique potential. Bond
order potentials are a class of empirical interatomic potentials
(EIPs) designed for this purpose [21-23]. They aim at describing not
only the structure around equilibrium but also anharmonic effects
[24] and the possible breaking and formation of bonds in structural
phase transitions like the graphite to diamond transition where the
character of the bonding changes from sp? to sp> [25,26]. In view of
this larger and exacting scope it may be expected that the phonon
spectra derived from these potentials are not as accurate as those
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derived from models meant to describe a single specific situation.
However they allow to study, without further adjustment of
parameters, all carbon structures, including the effect of defects,
edges and other structural changes, also as a function of temperature.
The purpose of this paper is to evaluate the force constants and
phonon spectrum of graphitic structures derived from the Long-range
Carbon Bond Order Potential (LCBOPII) [21,27] and compare these
results to experimental values, force constant models and to the
Tersoff [28] and Brenner [22] bond order potentials for carbon.

The phonon dispersions of graphene and graphite have been
measured experimentally [1-6,29], determined from ab initio calcula-
tions [2,30-32] and calculated from bond order EIPs [33,34]. The ab
initio results generally agree very well with experimental measure-
ments whereas widely used EIPs such as the Tersoff [28] and Brenner
[22] potentials give less accurate results [33], particularly in the
optical region. One reason for this is that the range of interatomic
interactions in EIPs is limited for computational efficiency whereas
force constant models show that interatomic force constants (IFCs) up
to fourth or even fifth nearest neighbors (NNs) must be included for
accurate phonon dispersions [1,31]. The second generation LCBOPII
[27] EIP includes long-range interactions up to 6 A which is well
beyond fifth NNs in graphene and it is interesting to study their effect
on the phonons in comparison to other approaches.

In Section 2 we describe the computational method with emphasis
on the anomalous dispersion of the flexural mode. In Section 3 we
present the LCBOPII phonon dispersion of graphene and graphite,
compare our force constants to other models and examine the role of
specific force constants on the phonon dispersions. We devote
Section 4 to the analysis of the bending rigidity and its temperature
dependence. In Section 5 we show the phonons of (10,10) nanotubes
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and show the relevance of low-energy phonons of multilayer
graphene for their characterization.

2. Methods

The phonon dispersions are calculated by means of standard lattice
dynamics [35]. The interatomic force constants are calculated by
evaluating, by central differences, the second derivatives (the IFCs) of
the LCBOPII EIP with respect to atomic displacements around their
equilibrium positions. The phonon frequencies at wavevector q, w(q),
are determined by diagonalizing the dynamical matrix
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where ¢F ’f;(R) is the force constant matrix, ¢, 3 being Cartesian
indices, for two atoms k and k’ in unit cells separated by a lattice
vector R. In layered materials the lowest, out-of-plane, acoustic
phonon branch (ZA) has a peculiar quadratic dispersion near the zone
center with a coefficient determined by the bending rigidity ~ of the
crystal. For graphite, it has been shown by Lifshitz [36] that the
dispersion has the following form:

K
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where psp = 8mc/ (v3d’c) is the mass density, Cyq is the shear
elastic constant, c is the lattice parameter equal to twice the interlayer
distance in ABAB stacked graphite, a is the in-plane lattice parameter
and mc is the atomic mass of carbon. For graphene, the dispersion
reduces to a purely quadratic form:

K
w(q) = ,/@mz,

where p,p = 4m¢/ <\/§a2) is now a two-dimensional mass density.

3)

3. Phonon dispersion

Minimization of the LCBOPII cohesive energy with respect to the
lattice parameters gives a = v/3acc = 2.4592A for graphene and
a = 3acc = 24585 A, c=6.7344 A for graphite. The phonon
dispersions for graphene and ABAB graphite, calculated at these
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lattice parameters, are shown in Fig. 1. The branches are classified as
follows: L stands for longitudinal in-plane, T for transverse in-plane
and Z for transverse out-of-plane polarization at the I' point. An A
refers to acoustic modes and an O to optical modes. The O’ modes in
graphite indicate out-of-phase oscillation of two equivalent atoms in
neighboring layers. The phonon dispersions of graphite and graphene
are very similar due to the weakness of the interlayer interactions
compared to the strong covalent bonds binding the atoms in the
layers. Consequently, most of the 12 branches in graphite are almost
doubly degenerate with the exception of the out-of-plane branches
below 400 cm™ .

Contrary to the two linear, in-plane acoustic LA and TA, modes the
out-of-plane ZA mode has a quadratic dispersion near I' which is
typical of layered crystals [37]. The ZA mode is a bending mode, the
two atoms in the unit cell move in phase in the z-direction, which, at
long wavelengths, bends the surface resulting in rippling of the
graphene sheet. The softness of this mode also means that it plays a
dominant role at low temperatures. Also the optical out-of-plane, ZO
mode has a considerably lower energy than the other optical branches
due to the fact that atoms are much more free to move perpendicular
to the plane than in the plane itself. At the K-point, the TO/LO and the
ZA/Z0 modes are degenerate by symmetry.

In Fig. 1 and Table 1 we compare the LCBOPII phonon spectrum to
experimental results by high resolution electron energy-loss spec-
troscopy (HREELS) [3,5,29], inelastic X-ray scattering [1,2] and
inelastic neutron scattering [4]. The overall agreement with the
experimental values is rather good, considering that the potential was
not specifically fitted to reproduce the force constants of graphite.

LCBOPII performs very well compared to the popular Tersoff [28]
and Brenner [22] EIPs, for which the phonon dispersions were
recently published [33]. The Tersoff EIP overestimates the LO and TO
branches by nearly 40% and both potentials show large discrepancies
with experiments in the in-plane acoustic branches which are very
well reproduced by LCBOPIL The latter modes are of particular
importance for the thermal conductivity in graphene [38]. The only
deviation occurs at the M point for the TA branch, where LCBOPII
overestimates the experimental value from Ref. [1] by 13%. The
measurements from Ref. [5] show even higher frequencies for this
mode but these may have been obtained from a sample of poor quality
as HREELS selection rules state that the TA mode should not be
observable along the I'—M line [1,29]. Ab initio calculations also
confirm the experimental results from Ref. [1]. From the slopes of the
TA and LA modes we determine their respective sound velocities as
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Fig. 1. Phonon frequency in cm ™ . Left: graphene phonon dispersion from LCBOPII; Right: Graphite phonon dispersion from LCBOPII with experimental data, the inset is an enlargement of
the low-frequency dispersion along the A — I line. The locations of the high symmetry points are M = 1/ \/§a(\/§, 1, OP ,K=4n/3a(1,0,0) and A=m/c(0, 0, 1) in the coordinate system

defined in the inset of the left figure. The experimental data for graphite are from Ref. [2] (squares), Ref. [1] (circles), Ref.

Ref. [29] (pentagons).

3] (triangles), Ref. [5] (diamonds), Ref. [4] (inverse triangles) and
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Table 1

Graphene phonon frequencies from LCBOPII at high symmetry points in cm™'.
Experimental values for graphite are also listed: *Ref. [4], PRef. [5], ‘Ref. [2], “Ref. [29]
(graphene), Ref. [3], Ref. [6] and &Ref. [1].

Mode T M K
LCBOPII Experiment LCBOPIl Experiment LCBOPII Experiment
ZA 0 265 4717 465°, 405 48295179,
4519, 4852 530¢, 5408
TA 0 713 6309 6318 1033 10108
LA 0 1282 1290¢ 1153 1194,
12240
Z0 797 861" 8688 540  670° 6318 405 5889 627°,
5408
LO 1563 1590° 1575f, 1290  1323¢ 1153 11945,
1582¢ 1224¢
TO 1563 1590, 1575', 1441 1390¢, 1389° 1513 13109,
15824 1291¢

13.0 and 20.7 km/s which compare well to the experimental values of
14.7 and 22.2 km/s [39].

The quadratic dispersion of the ZA mode is reproduced well by
LCBOPII, but the frequency is underestimated. We argue that this
mode is strongly temperature dependent as we discuss in Section 4.
Also the ZO mode is found to be lower than all experiments, the
difference being about 8% at I.

The low-energy dispersion of graphite for wavevectors parallel to
the c-axis is shown in the inset of Fig. 1. In these modes, layers
oscillate rigidly and frequencies are thus determined by the long-
range interactions of LCBOPIL The two longitudinal, LA and LO’,
‘breathing’ modes are in excellent agreement with experiments. This
comes as no surprise since the compressibility of graphite was one of
the parameters used in fitting the long-range interactions [27]. The
lower, doubly degenerate, transverse branches, corresponding to the
shearing motion of the layers are instead too soft compared to
experiments as we discuss later in Section 4.

The description of the highest optical branches requires long-
range IFCs up to fourth or fifth NNs [1,31] and are therefore the most
difficult to reproduce with EIPs [33]. LCBOPII includes interactions in
this range through its long-range potential, but these are merely pair
interactions of Morse form which are too smooth to produce
significant force constants. In particular, the flat dispersion of the TO
mode along the M—K line differs from experiments and ab initio
calculations. The difference reaches 15% at the K-point. Another
missing feature is the overbending of the LO mode, namely the shift of
the highest frequencies away from I. This overbending is believed to
originate from strong electron-phonon interactions which lower the
frequencies of the highest phonon modes at I' and K [2,40]. For these
branches the Brenner EIP gives a behavior similar to LCBOPII.

To gain more insight in the origin of the discrepancies with
experiments we compare in Table 2 the force constants of LCBOPII to
IFC sets proposed in Refs. [1,31,34]. The coordinate system is chosen
such that x is the coordinate along the line connecting two atoms, y is
the in-plane coordinate perpendicular to this direction and z is the
coordinate perpendicular to the plane. The IFCs between i-th NNs in
these directions are respectively the bond stretching, ¢{P, the

Table 2

transverse, ¢, and the out-of-plane, <, force constants. The general
form of the force constant matrix for the i-th NNs in graphene is

ol ol 0
o o 0 | @)
0 0 ¢

where the off-diagonal, ¢{), elements for i=1, 3, 5 are equal to
zero due to the hexagonal symmetry, ¢¢3 =1.48eV/A% and
#% = 0(107) eV/A? for LCBOPIL The IFCs from Ref. [1] are obtained
by fitting a fourth NN force constants model to experimental values,
those from Ref. [34] are derived from an extended Brenner EIP, also
fitted to experimental values, and the IFCs from Ref. [31] are from a
fourth NN force constant model including a nonzero ¢2 of —0.57 eV/A?
fitted to the dispersion obtained ab initio within the DFT-GGA
approximation.

From the comparison of Table 2 we see that the first NN IFCs are
very similar to the fitted force constants of the reference models.
However the decay of the LCBOPII force constants beyond first NNs is
too rapid compared to the sets of IFCs which reproduce the
experimental values accurately.

To see how the in-plane phonon branches evolve if larger IFCs
beyond first NNs are included we manually increase these force
constants. We consecutively changed the in-plane IFCs from second to
fifth NNs to match those from Ref. [1]. Since ¢} is already 23% lower
than the fitted values we changed the out-of-plane IFCs from first NNs.
They were matched to those obtained in Ref. [34] since their model
includes interactions up to fourth NNs only which better resembles
LCBOPIL

The resulting phonon dispersions are shown in Fig. 2. The
modification of the in-plane IFCs beyond first NNs clearly improves
the phonon dispersion. Changes up to third NNs lower the frequencies
of the transverse branches, particularly the TO branch along M —K
and the TA branch at the M-point but perturbs the good agreement of
the sound velocities of the linear modes. With in-plane IFCs changed
up to fifth NNs the dispersion is in excellent agreement with
experiments. This means that an improvement of only the long-
range interactions of LCBOPII can considerably improve the accuracy
of the potential for graphitic systems. However, this is not an easy
task, since in the construction of LCBOPII short and long range
interactions are fitted simultaneously. For the out-of-plane branches
the optical ZO branch is greatly improved by the increase of the first
NN IFC but the important quadratic behavior of the ZA mode is lost.
Interestingly the quadratic dispersion is recovered only once fourth
NNs interaction is included.

4. Quadratic ZA dispersion and bending rigidity

The bending rigidity k is the key quantity which characterizes the
mechanical properties of membranes [41]. For a crystalline membrane
like graphene it is intimately related to the quadratic ZA branch
through Eq. (3). Reported values of k vary from 0.79 to 2.13 eV
[24,34,42-45]. Besides the different techniques used to calculate kK and
the different models of carbon interactions there might be other

Force constants for graphene from LCBOPII compared to force constant models from Refs. [1,31,34] which were fitted to reproduce experimental results.

i (Distance) Stretching, ¢{ (eV/A?) In-plane, ¢f) (eV/A?) Out-of-plane, ¢$V (eV/A?)

LCBOPII 1] 131] [34] LCBOPII 1] [31] [34] LCBOPII 1] 31] [34]
1 (142 A) 26.60 25.88 25.58 25.57 8.99 8.42 9.05 9.05 473 6.18 6.17 6.17
2 (246 A) 3.37 4.04 4.63 —2.55 —0.61 —3.04 —2.55 4.63 —0.75 0.49 —0.51 —0.51
3 (2.84 A) 0.51 —3.02 —2.07 —2.07 —0.05 3.95 3.13 3.13 —0.05 0.52 0.36 0.36
4 (3.76 A) 0.02 0.56 0.41 0.66 0.00 0.13 0.34 0.31 0.00 —0.52 —0.32 —0.33
5 (426 A) 0.00 1.03 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.17 0.00 0.00
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Fig. 2. Left panels: modification of the in-plane force constants from the second to the
indicated level of NNs to match those from Ref. [1]; Right panels: modification of the
out-of-plane force constants from the first to the indicated level of NNs to match those
from Ref. [34]. Notice the different scales. Red (solid) lines are the branches that are
modified as a consequence of the change in force constants. The gray (dashed) lines are
the original LCBOPII dispersions.

reasons for the confusing variety of reported values. First, when
comparing the values of k for graphite and graphene, one should
consider the bending rigidity per layer and not per unit cell since the
latter results in a factor two difference. In fact, since graphite has two
graphene layers in the unit cell, the coefficients of the |g|*> term in
Egs. (3) and (2) differ by a factor two while (see Fig. 1) the quadratic
coefficients should be approximately equal. The second, more
important reason, is that the bending rigidity of graphene has been
found to be strongly temperature dependent in detailed Monte Carlo
simulations [24,42]. Contrary to liquid membranes [41], x increases
with increasing temperature. This increase reaches roughly 40%
already at room temperature [24,42]. The temperature dependence of
the bending rigidity implies that also the ZA phonon mode should
depend on temperature which makes comparison of zero tempera-
ture dispersion as presented here to the room temperature experi-
mental values not straightforward.

From the fit of Eq. (3) to the ZA dispersion along the I' — M line we
obtain for the bending rigidity = (0.694-0.02) eV for graphene. The
same procedure for graphite with Eq. (2) yields k= (0.69+0.01)eV
per layer and C4q=(5.84+0.02)x 108 Pa. This value of Cy4 is much
lower than the experimental value of 5.03 x 10° Pa [39] due to the too
small corrugation energy of LCBOPII which gives a difference of about
1.5 meV/atom against about 10 meV/atom [46,47 |between AA and AB
graphite stacking. As a consequence, the transverse modes of graphite
for wavevectors parallel to the c-axis shown in the inset of Fig. 1, have
too low frequencies. The bending rigidities of graphite and graphene
per layer are the same, which is in agreement with the results from
Ref. [42] who find almost equal bending rigidities per layer for
graphene and bilayer graphene.

The value of 0.69 eV is low compared to other studies and also
lower than the 0.82 eV reported earlier for LCBOPII at zero
temperature [24]. This value was obtained by evaluating the elastic
energy per unit area € of carbon nanotubes. This energy is equal to

£=1/2kH? where H is the curvature of the nanotube. The apparent
discrepancy with the result from the phonons is due to the fact that in
forming a nanotube from graphene both elastic and torsional energy
occur and it is only in the limit of very large nanotubes that the torsion
energy can be neglected. We calculated the elastic energy, and the
corresponding bending rigidity, for several nanotubes with radii from
11 to 70 A with and without the inclusion of the torsion term. The
results in Fig. 3 clearly demonstrate that ¢ is a linear function of H?,
without torsion, indicating a constant K = 0.69 eV. With the inclusion
of the torsion term the resulting ~ increases with the radius of the
nanotube. For large nanotubes, with small torsion angles, the value of
0.69 eV found from the phonons is recovered. The value of 0.82 eV
from Ref. [24] was indeed determined from a nanotube with a radius
of approximately 11 A.

5. Nanotubes and multilayer graphene

For completeness, we show in Fig. 4 also the phonons of a (10,10)
nanotube that can be compared to Refs. [7,32]. For nanotubes the
differences between models are enhanced due the complex folding of
the bands.

Lastly, we examine the phonons of n-layer, AB stacked, graphene,
going from a single graphene layer towards graphite. In this process,
the low-frequency ZA mode splits into n optical sub-branches as
shown in Fig. 5 while for all other branches the splitting is much
smaller (~2 cm™!). As shown in the left panel of Fig. 5, the frequency
of these ‘breathing’ modes at I' for n-layer graphene are related to the
longitudinal phonons of graphite along the I' — A line at wavevectors

qn = ——, with(m=0,...,n—1), (5)

as if the modes were confined to an effective thickness of nc/2. This
length is an interplanar distance larger than the actual thickness of the
n-layer graphene. Interestingly, by extrapolating to a single layer,
n=1, we get an effective thickness equal to an interplanar distance, as
suggested in Ref. [48]. Since the number and frequency of these low
lying ZA modes is univocally determined by the number of graphene
layers, their observation can be used for the characterization of
multilayer graphene as a complement to the analysis relying on the
2D band done in Refs. [12,13].

20 40 60 80
Radius (A) a

Energy per area (107 eV/A?)
&
T

0.5 k=0.69 eV —— |
LCBOPII —&—
. . LCBQPII no ItorsionI **@";
0

0 0.5 1 15 2 2.5 3 3.5
HZ%/2 (102 A2
Fig. 3. Elastic energy per unit area, &, versus the curvature squared, H?, for nanotubes of

varying radius. The slope of this curve determines the bending rigidity . The inset
shows the bending rigidity determined for individual nanotubes.
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Fig. 4. (a) Phonon dispersion from LCBOPII for a (10,10) carbon nanotube; (b) The low
frequency part of the phonon dispersion. |T| = 2.46 A is the lattice parameter along the
nanotube axis.

6. Conclusions

Empirical potentials are desirable for their simplicity and trans-
ferability to calculate the phonon frequencies of complex systems. The
phonon dispersions of graphite and graphene are an important test
for the accuracy of these EIPs. We have shown that LCBOPII gives good
results for graphitic crystals particularly in comparison to other EIPs.
We have analyzed the reasons for the remaining discrepancies,
suggesting that the potential could be improved considerably by
modification of the long-range interactions. The quadratic ZA bending
mode plays a key role in the graphene structure at finite temperatures
and we have discussed how this fact might influence the fitting of
force constants models to experimental values measured at room
temperature. Lastly, we point out that multilayer graphene is
characterized by several low frequency breathing modes at I, that

graphite n-layer graphene
150F / / R
100§ b
2-layer

150 F 17/ e
//

100 b
50

3-layer

150 F R
100¢. 3
50 B

Frequency (cm'1)

150 F R
1001
50

A r 2M/3
Fig. 5. Right panels: low frequency phonon dispersion along the I'— M line for n-layer
graphene. Left panels: low frequency phonon dispersion along the '—A line for
graphite. The horizontal lines across the panels show that the modes of n-layer
graphene at I coincide with those of graphene at the wavevectors given by Eq. (5).

are univocally related to the number of layers and could be used for
their characterization.
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