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To explore the crossover transition in the two-impurity Kondo problem, we calculate the differential con-
ductance (dI /dV) corresponding to scanning tunneling spectroscopy (STS) measurements of a magnetic
dimer adsorbed on a metal surface covered by a decoupling layer. With the aid of the numerical
renormalization group (NRG) technique, we find that the peak structure of the dI /dV spectra near the Fermi
level changes gradually as a function of the adatom separation and the coupling between the adatom localized
spins and the metal surface conduction band. When the coupling becomes small, the peak disappears and,
instead, a dip structure appears near the Fermi level. This dip structure is the manifestation of the strong
antiferromagnetic correlation between the localized spins. We conclude that the gradual change of the dI /dV
structure from a peak structure to a dip structure is an evidence of the crossover transition in the two-
impurity Kondo problem.
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1. Introduction

The Kondo effect is originally found as the existence of resistance
minimum in dilute magnetic alloy [1]. In such system, the interaction
between the metal conduction electron and localized spin in the
magnetic atom results in formation of so-called “Yosida–Kondo
singlet”, the singlet state between the localized spin and the con-
duction electrons [2]. In recent years, with the advent of scanning
tunneling spectroscopy (STS), it becomes possible to detect the
formation of the local Yosida–Kondo singlet on solid surfaces with
high spacial resolution. The Yosida–Kondo singlet appears as a sharp
peak structure near the Fermi level (Yosida–Kondo peak) in STS
spectra. This STS observation of the Kondo effect has been extensively
investigated for a single magnetic atom on a metal surface [3–12].

When two magnetic atoms are placed on a metal surface, not only
the Kondo effect, but also the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction [13] plays an important role. The interference
between the Kondo effect and the spin-ordering effect of the RKKY
interaction gives rise to the “two-impurity Kondo problem”. This two-
impurity Kondo problem has long been investigated [14–19].
Generally, the low temperature physics depends on the ratio between
the RKKY coupling constant JRKKY and the one-impurity Kondo
temperature TK [14]. In the limit of strong ferromagnetic RKKY
coupling (− JRKKY≫TK), a two stage Kondo effect occurs: When
temperature T gets smaller than |JRKKY|, the two localized spins are
locked ferromagnetically into a spin-triplet state described by an
effective spin S=1. With further reduction of T, screening of the
effective spin S=1 arises. In the two-impurity case, the localized spins
interact with two conduction channels characterized by even and odd
parity. The coupling between the localized spins and each conduction
channel is parity dependent and the screening process has two stages.
First, the effective S=1 is partially compensated to effective S=1/2,
and then completely suppressed as T goes to zero [14]. In the limit of
strong antiferromagnetic RKKY coupling (JRKKY≫TK), the localized
spins are locked into a spin singlet state (the antiferromagnetic
region), and the Kondo effect plays a minor role. In the TK≫ |JRKKY|
region (the Kondo region), the RKKY interaction plays a minor role.

The scenarios in the corresponding limits are very reasonable, but
the physics in the region at intermediate values of JRKKY is nontrivial.
The numerical renormalization group (NRG) studies on the electron-
hole (e-h) symmetric Hamiltonian found that a critical point
separates the Kondo region and the antiferromagnetic region
[15,16]. However, it is now apparent that the critical point results
from the e-h symmetry of the model Hamiltonian [17,18]. In general,
e-h symmetry is broken (e.g., energy dependence in tunneling matrix
elements) and the quantum phase transition is replaced by a
crossover transition [19]. However, the existence of the crossover
transition had never been observed experimentally, and the manner
of the transition in realistic materials is still an open question.

The scanning tunneling spectroscopy (STS) observation of a
magnetic dimer on a nonmagnetic metal surface would provide a
great opportunity to unravel the physics of the crossover transition in
the two-impurity Kondo problem. Recently, Wahl et al. showed that
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Fig. 2. STS observation of a magnetic dimer on a nonmagnetic metal surface. Distances
between the adatoms (a), the tip apex and the metal surface (zp) are given in
Ångströms (Å). STM tip is placed directly above atom 1.
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the Yosida–Kondo peak for Co dimer on Cu(100) surface varies with
the adatom separation [20]. In our earlier studies, wemodeled the STS
observation and derived the formula of the STS spectra with the aid
of the Keldysh Green function method. The STS spectra are calculated
by the numerical renormalization group (NRG) technique and we
confirmed that the ferromagnetic (antiferromagnetic) RKKY interac-
tion tends to sharpen (broaden) the peak structure of STS spectra in
such system [21,22]. Our results are in good agreement with the other
theoretical study using the NRG technique [23].

The main purpose of this work is to explore the evidence of the
crossover transition within the STS spectra. To explore the crossover
transition from the Kondo region to the antiferromagnetic region, we
need to realize JRKKY≫TK situation. Both JRKKY and TK strongly depend
on the ratio between the Coulomb interaction U and the coupling
between the adatom spins and the metal surface conduction band Γ.
As schematically shown in Fig. 1, TK decays much faster than JRKKY as Γ
decreases. With small Γ, we would expect that the antiferromagnetic
RKKY interaction becomes dominant at a particular adatom separa-
tion. For this reason, we calculate the dI /dV spectra for several values
of Γ and the adatom separation.

2. Model and method

2.1. Model Hamiltonian

As experiments show [8,24,25], Γ can be suppressed by covering
the metal surface with a decoupling layer, which leads to decrease in
TK andmakes the RKKY interaction dominant. In the present study, we
consider the model system shown in Fig. 2.

Magnetic atom 2 is located at a distance of a Å with respect to
magnetic atom 1. We assume that the center of atom 1 is located at
R1 = a = 2; 0;Rmð Þ Å and that of atom 2 is located atR2 = −a= 2;0;Rmð Þ
Å. Rm is the radius of adatom.We set Rm=0.4 Å [11]. The STM tip apex is
at a distance of zp from themetal surface, directly above atom1. Ro is the
thickness of the decoupling layer andwe set Ro=5Å. The corresponding
model Hamiltonian is given by

H = HA2 + Htip + Hmix

= ∑
iσ

Edd
†
iσdiσ + ∑

k;σ
Ekc

†
kσ ckσ + ∑

ikσ
Vkdic

†
kσdiσ + h:c:

� �

+ ∑
i
Uni↑ni↓ + ∑

p;σ
Epc

†
pσcpσ

+ ∑
piσ

Tpdic
†
pσdiσ + h:c:

� �
+ ∑

pkσ
Wpkc

†
pσ ckσ + h:c:

� �
:

ð1Þ
Fig. 1. Diagram of the smooth crossover in the two-impurity Kondo effect. T is the
temperature. TK is the Kondo temperature and JRKKY is the RKKY coupling constant.
Here diσ
†
, ckσ

†
and cpσ

† correspond to creation operators for adatom
d electrons, metal surface conduction electrons, and tip electrons
with spin σ, respectively. niσ=diσ

†
diσ. Ed, Ek and Ep correspond to the

energies of adatom d electrons, conduction electrons and tip
electrons, respectively. Adatom index i=1,2. k corresponds to the
metal surface electron wavenumber, and p corresponds to eigenstate
quantum number of the STM tip electrons. Tpdi, Wpk, and Vkdi

correspond to the tip-adatom, tip-surface, and adatom–surface
electron tunneling matrix elements, respectively. U gives the on-site
Coulomb repulsion on adatoms. We approximate the coefficients in
the Hamiltonian (1) as

Vkd1 = V0exp ik⋅a= 2ð Þ;Vkd2 = V0exp −ik⋅a= 2ð Þ; ð2Þ

Wkp = W0exp − zp−Rs + Ro

� �
= λ

� �
exp −i k⋅rp

� �� �
; ð3Þ

Tpdi = T0
ψdi rp−Ri

� �
ψdi rm + Rð Þ = T0Φdi; ð4Þ

and

Φdi =
ψdi rp−Ri

� �
ψdi rm + Rð Þ : ð5Þ

ψdi corresponds to the d electron orbital of adatom i. In this study,
we use the dz2 orbital of Co as ψdi [26].We approximate the tip apex
as a nonmagnetic metal sphere whose center is positioned at
rp = a= 2;0; zp

� �
with radius Rs. rm = 0;0;Rmð Þ R = 0;0;Rsð Þ, and

a = a;0;0ð Þ.W0 and T0 correspond to the values of the tunnelingmatrix
elements when the STM tip is in contact with the surface or adatoms,
respectively. V0 is the tunneling matrix element between a localized d
electron and a metal surface in the single impurity case. Using these
parameters and the density of state of the metal surface conduction
electron (ρk), Γ is defined as Γ=πρkV02.

2.2. Expression of tunneling current and differential conductance

Based on the model Hamiltonian (1), we calculate the tunneling
current from the STM tip to the surface. The tunneling current can be
calculated from the time derivative of the occupation number of
electrons at the STM tip.

I = − ∂
∂t e∑p;σ

b c†pσ tð Þcpσ tð Þ N ð6Þ

image of Fig.�2
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By the equation of motion (EOM), Eq. (6) can be rewritten as:

I = −e
1
iℏ

∑
p;σ

b c†pσ tð Þcpσ tð Þ;H tð Þ
h i

N

=
ie
ℏ f∑

p;i;σ
Tpdi b c†pσ tð Þdiσ tð Þ N −Tdipb d†iσ tð Þcpσ tð Þ N

� �

+ ∑
p;k;σ

Wpkb c†pσ tð Þckσ tð Þ N −Wkpb c†kσ tð Þcpσ tð Þ N
� �g

ð7Þ

From the definition of the Keldysh Green's function [11,27,28],

I =
e
ℏf∑

p;i;σ
TpdiG

− +
dipσ 0;0ð Þ−TdipG

− +
pdiσ 0;0ð Þ

� �

+ ∑p;k;σ WpkG
− +
kpσ 0;0ð Þ−WkpG

− +
pkσ 0;0ð Þ

� �g
= −2e

ℏ
ℜf∑

p;i;σ
TdipG

− +
pdiσ 0;0ð Þ + ∑

p;k;σ
WkpG

− +
pkσ 0;0ð Þg

ð8Þ

The structure of the EOM for the Keldysh Green's function is the
same for the equilibrium zero-temperature Green's function. Solving
the EOM for the equilibrium zero-temperature Green's function, we
obtain

Gpd1σ t; t′ð Þ=∫dt2g0ppσ t; t2ð ÞTpd1Gd1d1σ t2; t′ð Þ+g0ppσ t; t2ð ÞTpd2Gd2d1σ t2; t′ð Þ
+ ∫∫dt1dt2 ∑

k
g0ppσ t; t2ð ÞWpkg

0
kkσ t; t1ð ÞVkd1Gd1d1σ t1; t′ð Þ

+ ∑
kσ

g0ppσ t; t2ð ÞWpkg
0
kkσ t; t1ð ÞVkd2Gd2d1σ t1; t′ð Þ

+ ∑
kp′σ

g0ppσ t; t2ð ÞWpkg
0
kkσ t; t1ð ÞWkp′Gpd1σ t1; t′ð Þ;

ð9Þ

Gpkσ t; t′ð Þ=∫dt2Gpd1σ t; t2ð ÞVkd1g
0
kkσ t2; t′ð Þ+Gpd2σ t; t2ð ÞVkd2g

0
kkσ t2; t′ð Þ

+ ∫dt2g0pp t; t2ð ÞWpkg
0
kkσ t2; t′ð Þ

+ ∫∫dt1dt2 ∑
pσ

Gpd1σ t; t1ð ÞTd1p′g0p′p′σ t1; t2ð ÞWp′kg
0
kkσ t2; t′ð Þ

+ Gpd2σ t; t1ð ÞTd2p′g0p′p′σ t1; t2ð ÞWp′kg
0
kkσ t2; t′ð Þ

+ ∑
k′p′σ

Gpk′σ t; t1ð ÞWp′k′g
0
p′p′σ t1; t2ð ÞWp′kg

0
kkσ t2; tð Þ:

ð10Þ

We neglect 3rd and higher order terms in Wpk and Tdip, that is, we
drop the last term of Eqs. (9) and (10). Using the Langreth theorem [28]
and theFourier transformation, the tunnelingcurrent canbe rewrittenas

I = −2e
h
∫dωℜf∑

pσ
Tpd1G

b
pd1σ ωð Þ+ Tpd2G

b
pd2σ ωð Þ+ ∑

pkσ
WkpG

b
pkσ ωð Þg

= −2e
h ½∫dωℜf∑

pσ
Tpd1G

b
pd1σ ωð Þ + Tpd2G

b
pd2σ ωð Þ

+ ∑
pkσ

Wkp Gr
pd1σ ωð ÞVkd1g

0b
kkσ ωð Þ + Gb

pd1σ ωð ÞVkd1g
0a
kkσ ωð Þ

� �

+ ∑
pkσ

Wkp Gr
pd2σ ωð ÞVkd2g

0b
kkσ ωð Þ + Gb

pd2σ ωð ÞVkd2g
0a
kkσ ωð Þ

� �

+ ∑
pkσ

Wkp g0rpp ωð ÞWpkg
0b
kkσ ωð Þ + g0bpp ωð ÞWpkg

0a
kkσ ωð Þ

� �

+ ∑
pp′kiσ

WkpG
r
pdiσ ωð ÞTdip′g0rp′p′σ ωð ÞWp′kg

0b
kkσ ωð Þ

+ ∑
pp′kσ

WkpG
r
pdiσ ωð ÞTdip′g0bp′p′σ ωð ÞWp′kg

0a
kkσ ωð Þ

+ ∑
pp′kσ

WkpG
b
pdiσ ωð ÞTdip′g0ap′p′σ ωð ÞWp′kg

0a
kkσ ωð Þg�

ð11Þ

As Eqs. (9) and (10), we drop the last three terms in Eq. (11) which
include 3rd and higher order term in Tdip and Wpk.
Here,

∑
kσ

exp −ik⋅rð Þg0rkkσ = ∑
σ

−iπρk J0 kFrð Þ
J0 is the 0th order Bessel functionð Þ

ð12Þ

and,

g0bkkσ ωð Þ = −2ifk ωð Þℑg0rkkσ ωð Þ ð13Þ

g0bppσ ωð Þ = −2ifp ωð Þℑg0rppσ ωð Þ ð14Þ

(fk and fp are the Fermi distribution function for the metal surface and
the STM tip, respectively.)

Inserting Eqs. (2)–(4) and (12)–(14), we obtain

I = −2e
h ½∫dωℜf∑

pσ
T0Φd1G

b
pd1σ ωð Þ + T0Φd2G

b
pd2σ ωð Þg

−∑
pkσ

πρkW0V0e
−2 z−Rsð Þ=λJ0 kFrp1

� �
2fk ωð ÞℑGr

pd1σ ωð Þ+ℑGb
pd1σ ωð Þ

� �

−∑
pkσ

πρkW0V0e
−2 z−Rsð Þ=λJ0 kFrp2

� �
2fk ωð ÞℑGr

pd2σ ωð Þ+ℑGb
pd2σ ωð Þ

� �

+ ∑
pkσ

2π2ρkρpW
2
0 e

−2 z−Rsð Þ=λ fk ωð Þ−fp ωð Þ
� �

�: ð15Þ

Here, rp1 and rp2 are defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1x−rpx
� �2 + R1y−rpy

� �2q
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2x−rpx
� �2 + R2y−rpy

� �2q
, respectively. The Green's functions in

Eq. (15) are expanded as:

Gr
pdiσ ωð Þ = T0Φdig

0r
ppσ ωð ÞGr

didiσ ωð Þ
+ T0Φdjg

0r
ppσG

r
djdiσ ωð Þ

−iJvw rpi
� �

g0rppσG
r
didiσ ωð Þ

−iJvw rpj
� �

g0rppσG
r
djdiσ ωð Þ

ð16Þ

Gb
pdiσ ωð Þ = T0Φdifg0rppσ ωð ÞGb

didiσ ωð Þ−2ifp ωð Þℑg0rppσ ωð ÞGa
didiσ ωð Þg

+ T0Φdjfg0rppσ ωð ÞGb
djdiσ ωð Þ−2ifp ωð Þℑg0rppσ ωð ÞGa

djdiσ ωð Þg
−iJvw rpi

� �
g0rppσG

b
didiσ ωð Þ

+ 2ifk ωð ÞJvw rpi
� �

g0rppσG
a
didiσ ωð Þ

+ 2ifp ωð ÞJvw rpi
� �

ℑg0rppσG
a
didiσ ωð Þ

−iJvw rpj
� �

g0rppσG
b
djdiσ ωð Þ

+ 2ifk ωð ÞJvw rpj
� �

g0rppσG
a
djdiσ ωð Þ

+ 2ifp ωð ÞJvw rpj
� �

ℑg0rppσG
a
djdiσ ωð Þ

� Jvw rð Þ = πρkJ0 kFrð ÞV0W0e
− z−Rsð Þ=λð Þ� �

ð17Þ

ρp gives the density of states of the STM tip electrons. We define Jvw(r)
as:

Jvw rð Þ = πρk J0 kFrð ÞV0W0exp − zp−Rs + Ro

� �
= λ

� �
: ð18Þ



Table 1
Values of coefficients in Eq. (22) in the case of Γ=0.022 eV at several adatom
separations (a).

a (Å) A11 (eV) A12 (eV) B11 (eV) B12 (eV)

5.0 −6.6225×10−4 −1.6792×10−9 5.3360×10−7 1.7792×10−7

6.0 −6.6225×10−4 6.8125×10−10 5.3360×10−7 6.6775×10−8

7.0 −6.6225×10−4 2.9035×10−11 5.3360×10−7 −3.5216×10−8

8.0 −6.6225×10−4 −4.6240×10−11 5.3360×10−7 −1.1929×10−7

9.0 −6.6225×10−4 −7.1997×10−11 5.3360×10−7 −1.7886×10−7
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Finally, we approximate the Keldysh lesser Green's function in
Eq. (18) as:

Gb
didiσ ωð Þ = −2ifk ωð ÞℑGr

djdi ωð Þ: ð19Þ

The reason is that our target is very small bias region (−0.01–
0.01 V). The bias voltage in this region is much smaller than the other
dominant parameters such as the hybridization between the STM
tip and the surface (Tdip and Wpk=0.02 eV), and the hybridization
between the magnetic atoms and the metal surface (Γ≥0.02 eV). We
believe that the non-equilibrium effect is negligibly-small in such a
region. Eventually, we obtain the expression of tunneling current as:

I =
2e
h
∑
σ

∫dω fk−fp
� �f2πT2

0 Φ2
d1 + Φ2

d2

� �
ρpℑG

r
d1d1σ ωð Þ

+ 4πT2
0Φd1Φd2ρpℑG

r
d1d2σ ωð Þ−2π2ρkρpW

2
0 e

−2 zp−Rsð Þ=λ

−4πT0 Φd1Jvw rp1
� �

+ Φd2Jvw rp2
� �� �

ρpℜGr
d1d1σ ωð Þ

−4πT0 Φd1Jvw rp2
� �

+ Φd2Jvw rp1
� �� �

ρpℜGr
d1d2σ ωð Þ

−2π J2vw rp1
� �

+ J2vw rp2
� �� �

ρpℑG
r
d1d1σ ωð Þ

−4πðJvw rp1
� �

Jvw rp2
� �

ρpℑG
r
d1d2σ ωð Þg

ð20Þ

Here we use the relation that Gd1d1
r = Gd2d2

r and Gd1d2
r = Gd2d1

r

which are ensured by the symmerty of the Hamiltonian. The dif-
ferential conductance (dI / dV) of the tunneling current is

dI = dV Vð Þ= 2e
h
∑
σ

∫dω−∂fk ω−eVð Þ
∂V f2πT2

0 Φ2
d1+Φ2

d2

� �
ρpℑG

r
d1d1σ ωð Þ

+ 4πT2
0Φd1Φd2ρpℑG

r
d1d2σ ωð Þ−2π2ρkρpW

2
0e

−2 zp−Rsð Þ=λ

−4πT0 Φd1Jvw rp1
� �

+ Φd2Jvw rp2
� �� �

ρpℜGr
d1d1σ ωð Þ

−4πT0 Φd1Jvw rp2
� �

+ Φd2Jvw rp1
� �� �

ρpℜGr
12σ ωð Þ

−2π J2vw rp1
� �

+ J2vw rp2
� �� �

ρpℑG
r
d1d1σ ωð Þ

−4πðJvw rp1
� �

Jvw rp2
� �

ρpℑG
r
d1d2σ ωð Þg

ð21Þ

At T=0 K, dI /dV can be rewritten in the following simplified form:

dI = dV Vð Þ∝A11ℑG
r
d1d1σ eVð Þ + A12ℑG

r
d1d2σ eVð Þ

+ B11ℜGr
d1d1σ eVð Þ + B12ℜGr

d1d2σ eVð Þ
ð22Þ

Coefficients such as A11,B11 can be derived from the coefficients of
the Green's function in Eq. (21), i.e.,

A11 = −2πT2
0 Φ2

d1 + Φ2
d2

� �
ρp;

+ 2π J2vw rp1
� �

+ J2vw rp2
� �� �

ρp;
ð23Þ

A12 = −4πT2
0Φd1Φd2ρp + 4π Jvw rp1

� �
Jvw rp2

� �
ρp; ð24Þ

B11 = 4πT0 Φd1 Jvw rp1
� �

+ Φd2 Jvw rp2
� �� �

ρp; ð25Þ

B12 = 4πT0 Φd1 Jvw rp2
� �

+ Φd2 Jvw rp1
� �� �

ρp: ð26Þ

The third and fourth terms are related to the Fano effect and make
the dI /dV spectra asymmetric. We show several values of each
coefficient Eq. (22) in the case of Γ=0.022 eV at several adatom
separation in Table 1.

As can be seen fromTable 1,A11ℑG11σ
r is dominant andother parts play

only minor roles in Eq. (22). This means that the decoupling layer
suppresses the Fano effect.

2.3. Calculation of dI /dV by numerical renormalization group

To derive the imaginary and the real part of the retarded
Green's function in Eqs. (21) and (22), we adopt the NRG technique
[18,29–32]. We can calculate the single particle excitation spectra
(SPES) by this technique. The SPES in zero-temperature is defined as

ρdiσ ωð Þ = ∑
a

e−βEa + 1
Z T = 0ð Þ f b aj jd†iσ g Nj j2δ ω−Eað Þ+ b aj jdiσ g Nj j2δ ω + Eað Þg

= ∑
a

e−βEa + 1
Z T = 0ð Þ fjbajd†iσ jg Nj2δ ω−Eað Þ+ b gj jd†iσ a Nj j2δ ω+ Eað Þg:

ð27Þ

The first term corresponds to electron excitations and the second
term corresponds to hole excitations. |gN indicates the ground states
and |aN indicates an excited state. Ea is the energy of the excited state.
Z is the partition function. The imaginary part of the retarded Green's
function is calculated from the SPES, because of the following relation:

ρdiσ ωð Þ = − 1
π
Gr
didi: ð28Þ

Whenthe imaginarypart of the retardedGreen's function is calculated,
we can also calculate the real part by using the Kramers–Krönig relation.

In the present study, we transform HA2 in Eq. (1) into two semi-
infinite chains form so as to be suitable for the calculation of the SPES
by NRG [19,21,22,31]:

HA2 = ∑
nq=�

�nq f
†
nq fnq + ∑

nq=�
tnq f

†
nq fn+1q + H:c:

� �

+ ∑
q=�

Edndq + U∑
i=1;2

ndi↑ndi↓

+

ffiffiffiffiffiffiffiffiffi
2DΓ
π

r
∑
q=�

ffiffiffiffiffiffiffiPγ
p

f †0qdq + h:c:
� �

:

ð29Þ

Here, fnq corresponds to the nth site of the conduction electron part
of the chain (Wilson chain) with the parity q. q=+,− denotes the

even and odd parity states, respectively. dþ = d1 + d2ffiffiffi
2

p and d− = d1−d2ffiffiffi
2

p .

D gives the conduction electron band width. �nq and tnq are the
corresponding matrix elements for the Wilson chain. When the metal
surface conduction band is that for a two dimensional free electron,

f0� = ∫D
−D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ� �ð Þ

p
c�� =

ffiffiffiffiffiffiffi
γ�

p
d�; ð30Þ

γ� �ð Þ = 1� J0 kað Þ
2

; ð31Þ

γ�
P

= ∫D
−Dγ� �ð Þd�: ð32Þ
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The Hamiltonian HA2 in Eq. (29) can be viewed as a series of
Hamiltonian HA2

N which approaches HA2 in the limit of N infinite:

HA2 = lim
N→∞

2Λ N−1ð Þ=2lnΛ
D 1 + Λ−1� � HN

A2; ð33Þ

with

HN
A2 =

2Λ N−1ð Þ=2lnΛ
D 1 + Λ−1� � f ∑

N−1

n;q=�
tnq f

†
nq fn+1q + H:c:

� �

+ ∑
N

n;q=�
Enq f

†
nq fnq + ∑

q=�
Edndq + U ∑

i=1;2
ndi↑ndi↓

+

ffiffiffiffiffiffiffiffiffi
2DΓ
π

r
∑
q=�

ffiffiffiffi
γ

p
f †0qdq + h:c:

� �g
: ð34Þ

Here Λ is the descretization factor and we set Λ=2.5. The factor
2Λ N−1ð Þ=2lnΛ
D 1 + Λ−1ð Þ has been introduced so as to make 2Λ N−1ð Þ=2lnΛ

D 1 + Λ−1ð Þ tnq∼1 in the

limit of N→∞. This HA2
N satisfy the following recursive relation:

HN+1
A2 = Λ1=2HN

A2 +
2ΛN =2lnΛ

D 1 + Λ−1� �f ∑
q=�

EN+1q f
†
N+1q fN+1q

+ ∑
q=�

tNq f
†
Nq fN+1q + h:c:

� �g ð35Þ

Repeated use of this recursive relation enables us to solve the
whole Hamiltonian (HA2) in Eq. (1) and calculate physical properties
such as the reterded Green's function. The reterded Green's function
Fig. 3. dI /dV calculation results at several adatom separations with a) Γ=0.025 eV (TK=6.64
at zp=4.0 Å. We set RS=3.0 Å and W0=T0=0.02 eV.
of the transformed HA2 in Eq. (29) and that of the original HA2 in
Eq. (1) keeps the following relation:

Gr
d+d+ + Gr

d−d− = Gr
d1d1 + Gr

d2d2; ð36Þ

Gr
d+d+ −Gr

d−d− = Gr
d1d2 + Gr

d2d1: ð37Þ

Thus, we can calculate the imaginary and the real part of Gd1d1
r and

Gd1d2
r in Eq. (21) from the calculation results of ρd+ and ρd− .

3. Numerical results and discussions

The two dominant parameters TK and JRKKY strongly depend on the
value of Γ. TK decaysmuch faster than JRKKY as Γdecreases. The values of Γ
(therefore TK) depend on the thickness, the surface condition and the
type of the decoupling layer. In the present study,we set the thickness of
the decoupling layer to 5Å. The experimentally estimated TK of the
magnetic atoms on ametal surface covered by a decoupling layer ranges
from 2 to 6K [8,24,25]. Thus, we calculate the dI/dV spectra with
Γ=0.025,0.022, and 0.02 eV at several adatom separations. (From Ref.
[33], corresponding TK is estimated at 6.64, 3.07,and 1.63K, respectively).
In Fig. 3, we show the calculation results for the dI/dV spectra.

At a=5.0 Å and a=9.0 Å, there is a sharp peak structure near the
Fermi level. With these adatom separations, the RKKY interaction is
weak antiferromagnetic and the Kondo effect is dominant [22]. The
sharp peak corresponds to the Yosida–Kondo peak. With our settings,
the antiferromagnetic RKKY interaction becomes largest around
a=7.0 Å. As the adatom separation becomes close to 7.0 Å, the peak
structure changes gradually. When Γ=0.025 eV, the dI/dV spectra
broaden as a becomes close to 7.0 Å. However, when Γ=0.022 eV, a dip
structure appears near the Fermi level. This dip structure develops to a
deeper one as Γ decreases.
K), b) Γ=0.022 eV (TK=3.07 K), and c) Γ=0.02 eV (TK=1.63 K). The STM tip is placed

image of Fig.�3
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We find that the “parity splitting” of the single electron excitation
spectra is the origin of the dip structure in the dI/dV spectra. As shown in
Eq. (29), theoperators in themodelHamiltonianare indexedby theparity
q. Thus, the obtainedphysical properties such as single electron excitation
spectra are divided with respect to the parity. The dI/dV spectra are
proportional to the average of the single electron excitation spectra
of adatom electrons on each parity channel (ρ+,ρ−). As shown in Fig. 4,
ρ+ and ρ− have different peak positions. The asymmetry of the spectra
results from the difference in the coupling between the adatom and
conduction band in each parity channel (see Eqs. (29) and (31)). Previous
studies shows that the parity splitting is one of the signatures of the
smearing out of the critical point due to the breaking of the e-h symmetry
[17,18]. In the present study, based on the model Hamiltonian (1), the
tunneling matrix element between the localized d electrons and the
metal surface conduction electrons has energy dependence,whichbreaks
the e-h symmetry.

Another characteristic in single electron excitation spectra in
each parity channel is suppression of spectra around the Fermi level
when Γ is small and adatom separation becomes close to 7.0 Å. This
suppression of spectra and parity splitting would induce the dip
structure in observed STS spectra.

In order to investigate the electron state, we plotted the flow of
low-lying many-particle energies in the NRG calculation with several
adatom separations (Fig. 5).

The states are labeled by the quantum numbers total charge Q,
total spin S, and total parity P. Here we show the flows of the lowest
Fig. 4. Single electron excitation spectra of ad
state for (Q,2S,P)=(0,0,1), (1,1,1), (−1,1,1), (1,1,−1), (−1,1,−1),
(0,2,1) and (0,2,−1). The ground state is the (Q,2S,P)=(0,0,1) state.
(Q,2S,P)=(±1,1,±1) states are the single electron (hole) excited
states.

As shown in Fig. 5, the energy levels converge to some values for
large N. Because the eigenvalues obtained in the NRG calculation are
scaled (Eq. (35)), we cannot obtain information from the eigenvalues
themselves in a straightforward manner. The convergence of the
eigenvalues means that the Hamiltonian becomes close to the fixed
point Hamiltonian of renormalization transformation [29,30,32]. Once
we find the fixed point, we can extract the effective Hamiltonian
which describes the electron state at the fixed point, which helps us to
discuss the electr on states at 0 K. Referring [30], we define the fixed
point Hamiltonian as follows:

HN
eff = Λ N−1ð Þ=2f ∑

N−1

q=�;n=0
ηqn f †qn fqn+1 + H:C:

� �
+ Kq f

†
q0 fq0g: ð38Þ

q=± is the parity index. The second term with Kq is related to the
influence of potential scattering in each channel. Heff

N is a quadratic
Hamiltonian. It can hence be diagonalized exactly in terms of new
operators αpj such that

HN
eff = ∑

N

q=�; j=0
ξqjα

†
qjαqj: ð39Þ
atom electrons for each parity channel.
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ξqj is single particle energy levels. Introducing the electron operator gqj
and hole operator hqj, we can express Heff

N for odd N as,

HN
eff = ∑

N + 1ð Þ=2

q=�;l=1
ηe
qlg

†
qlgql + ηh

qlh
†
qlhql: ð40Þ

Here, ηqle and ηqlh are single particle levels of electron and hole,
respectively.

Comparing ηq1e,h and the scaled energy of (Q,2S,P)=(±1,1,±1), we
evaluate the value of Kq.

To clarify the discussion, we estimate the phase shift δq from the
following relation:

δq = −tan−1 πρKq

� �
: ð41Þ
Fig. 5. Flows of the low-lying many-particle energy levels in odd iterations. N+1 correspo
a) Γ=0.025 eV b)Γ 0.02 eV. The states are labeled by the quantum numbers total charge Q
The phase shift is related to the number of electrons and holes
which are virtually bound by localized spin — i.e., the phase shift is
a barometer of the existence of the Kondo effect. If δ±=π /2, it
means that one electron-hole pair is bound to each localized spin and
quenches it individually (i.e., two Yosida–Kondo singlets are formed).
On the other hand, δ±=0 indicates that a localized spin–spin singlet
is formed [18]. In Fig. 6, we show the result of the phase shift
calculation as a function of adatom separationwith several values of Γ.

The phase shift changes gradually and has an intermediate value
between ±π /2 and 0 (Fig. 6). Though the values of δ± at each adatom
separation are different by Γ, the change of δ± is smooth in all cases. If
a critical point separates the Kondo region and the antiferromagnetic
region, thepossible values of δ± are only 0 or ±π /2 [18,19,34]. The
intermediate value of δ± would result from the crossover transition
and support the conclusion that there is no critical point in the system
of a magnetic dimer on a metal surface.
nds to the iteration step number. In this calculation we calculate at a=5.0,6,0,7,0 Å
, total spin S, and total parity P. The discretization factor Λ=2.5. D=1.0 eV.

image of Fig.�5


Fig. 6. Phase shift as a function of adatom separation (in units of π radians).
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The smallest value of δ± becomes close to 0 as Γ decreases. From
the calculation result for the spin correlation function between
adatom localized spin (Fig. 7), we conclude that the dip structure
around a=6.0∼7.0 Å originate from the dominance of the spin–spin
singlet state in the ground state.

The spin correlation is almost 0 at a=5 Å and has quite large
negative value at a=6∼7 Å. In our model, the crossover transition
connects the antiferromagnetic region and the Kondo region con-
tinuously and the ground state would be the hybrid of the localized
spin–spin singlet state and the Yosida–Kondo singlet state. As the
antiferromagnetic correlation between the localized spins becomes
large, the localized spin–spin singlet state would become dominant
which induce the suppression of the excitation at the Fermi level and
change of the low-lying many-particle energy levels as shown in
Figs. 4 and 5.
4. Comparison with experiments

Recently, there are several STS experiments with a magnetic dimer
on a surface [20,25,35,36]. Among them, we focus on the result of the
magnetic dimer including Co atoms on Cu2N/Cu(100) surface [25].
Although the bare Co atom has large spin, it is known that the ground
state of Co atom on Cu2N is a twofold degenerate ground state with
Sz=±1/2 because of the crystal field ,i.e., Co spin is reduced to an
effective spin 1/2 [38,39]. Thus, the spin 1/2 model used here should
well describe the experimental system. As shown in [25], when the
second magnetic atom (Fe, Mn, and Co) is placed 7.2 Å apart, a deep
dip appears in STS spectra. The dip width reported in Ref. [25] is
Fig. 7. Spin correlation function (bS1 ⋅S2N) as a function of adatom separation.
around 2 mV, which is in the same order of magnitude as the dip
width in Fig. 3(a). Furthermore, experimental TK of a single Co atom
on Cu2N/Cu(100) was estimated to be around 2 K from the full width
at half maximum of the Yosida–Kondo peak [24,25], which is also the
same order of magnitude as the TK in Fig. 3(a) (1.63 K). From these
comparisons, we propose that the dip structure observed in STS
spectra originates from the hybrid ground state between the Yosida–
Kondo singlet and the localized spin–spin singlet caused by the
crossover transition as discussed above.

The dip structure in the STS spectra observed for single magnetic
atoms [4–7] are of a different origin. This is mainly caused by the Fano
effect [9–11,37]. Next, we show how we can distinguish between the
dip resulting from the antiferromagnetic RKKY interaction (antifer-
romagnetic dip) and the dip resulting from the Fano effect (Fano dip)
by comparing the STS spectra measured with several tip heights (zp).
In Fig. 8, we show the STS spectra of magnetic dimer on a metal
surface covered by a decoupling layer when a=7.0 Å(antiferromag-
netic) and Γ=0.022 eV. In this case, the Fano effect is suppressed by
the decoupling layer. The height of the STS spectra becomes
considerably decreased with increase in zp, but, the shape of the STS
spectra are almost unchanged. For comparison, we calculate the
STS spectra of magnetic dimer on a bare metal surface with a=50 Å
(almost a single magnetic atom) and Γ=0.022 eV (Fig. 9). In this case,
both the height and the shape of the STS spectra are considerably
changed with the increase of zp. When zp=4.0 Å, there is a sharp
peak structure near the Fermi level. However, when zp=5.3 Å, a dip
structure appears near the Fermi level. The form of the dip structure at
zp=5.3 Å is reminiscent of the STS spectra of the single magnetic
atom in Ref. [4–7,9–11].The tip-height dependence of the antiferro-
magnetic dip and the Fano dip is clearly different and enables us to
distinguish these two kinds of dip.

Finally, we discuss why the antiferromagnetic dip and the Fano dip
have different tip-height dependence. The antiferromagnetic dip
originates in the dip structure in the total SPES. On the contrary, the
Fano dip is caused by the interference between the current from the
STM tip to the metal surface (first-order process) and from the STM
tip to the adatoms (second-order process). Whether a dip or a peak
appears by the Fano effect depends on the ratio between the first-
order process, the second-order process, and the interference be-
tween them. This ratio is strongly depends on the tip-height. Thus,
the Fano dip only appears when the tip-height is enough large.
To discuss this point in more detail, we resolve the dI /dV by the
tunneling processes. In the two adatoms case, within our treatment,
there are seven tunneling processes which are labeled J1–J8 in the
expression of the dI /dV in Eq. (42).

dI = dV Vð Þ = 2e
h
∑
σ

∫dω−∂fk ω−eVð Þ
∂V

�f2πT2
0 Φ2

d1 + Φ2
d2

� �
ρpℑG

r
11σ ωð Þ J1ð Þ

+ 4πT2
0Φd1Φd2ρpℑG

r
12σ ωð Þ J2ð Þ

− 2π2ρkρpW
2
0 e

−2 zp−Rsð Þ =λ J3ð Þ
−4πT0 Φd1Jvw rp1

� �
+ Φd2Jvw rp2

� �� �
ρpℜGr

11σ ωð Þ J4ð Þ

−4πT0 Φd1Jvw rp2
� �

+ Φd2Jvw rp1
� �� �

ρpℜGr
12σ ωð Þ J5ð Þ

−2π J2vw rp1
� �

+ J2vw rp2
� �� �

ρpℑG
r
11σ ωð Þ J6ð Þ

−4π Jvw rp1
� �

Jvw rp2
� �

ρpℑG
r
12σ ωð Þ J7ð Þg�

ð42Þ

J1 and J2 are the second-order processes. J3, J6 and J7 are the first-
order processes. (J3 has no bias dependency, and we neglect J3 in
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Fig. 8. dI/dV calculation results of a magnetic dimer on a metal surface covered by a
decoupling layer with a=7 Å (antiferromagnetic) at several tip heights (zp). a) zp=4.0 Å,
b) zp=4.5 Å, and c) zp=5.3 Å. We set Γ=0.022 eV, Ro=5.0 Å, and W0=T0=0.02 eV.

Fig. 9. dI /dV calculation results of a magnetic dimer on a bare metal surface with
a=50 Å(almost a single magnetic atom) at several tip heights (zp). a) zp=4.0 Å,
b) zp=4.5 Å, and c) zp=5.3 Å. We set Γ=0.022 eV, and W0=T0=0.02 eV.
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the following dI /dV calculations.) J4 and J5 include both the first-
order and the second-order process, and result in the Fano effect. We
calculate the tunneling process-resolved dI /dV and plot the results in
Figs. 10 and 11. Fig. 10 is for the two adatoms separated by 7 Å on a
metal surface covered by an insulating layer (antiferromagnetic
coupling) and Fig. 11 is for the two adatoms separated by 50Å on a
bare metal surface (almost a single magnetic atom). In Fig. 10, J1 is
always dominant in every tip-height. However, in Fig. 11, the
dominant component switches from J1 to J4 and J6. J4 is the Fano
effect term and it makes the dI /dV spectra asymmetric near the Fermi
level. J6 originates in the current of the conduction electrons scattered
by the adatoms and results in a dip around the Fermi level. The
contribution from J4 and J6 makes the asymmetric dip structure, the
Fano dip.
The switch of the dominant component originates in the following
coefficients for each dI /dV components.

C1 = 2πT2
0 Φ2

d1 + Φ2
d2

� �
ρp

C2 = 4πT2
0Φd1Φd2ρp

C4 = 4πT0 Φd1Jvw rp1
� �

+ Φd2Jvw rp2
� �� �

ρp

C5 = 4πT0 Φd1Jvw rp2
� �

+ Φd2Jvw rp1
� �� �

ρp

C6 = 2π J2vw rp1
� �

+ J2vw rp2
� �� �

ρp

C7 = 4π Jvw rp1
� �

Jvw rp2
� �

ρp
�

ð43Þ
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Fig. 10. Tunneling process-resolved dI /dV of a magnetic dimer on a metal surface
covered by a decoupling layer with a=7 Å (antiferromagnetic) at several tip heights
(zp). a) zp=4.0 Å, b) zp=4.5 Å, and c) zp=5.3 Å. We set Γ=0.022eV, Ro=5.0 Å, and
W0=T0=0.02 eV.

Fig. 11. Tunneling process-resolved dI /dV of a magnetic dimer on a bare metal surface
with a=50 Å(almost a single magnetic atom) at several tip heights (zp). a) zp=4.0 Å,
b) zp=4.5 Å, and c) zp=5.3 Å. We set Γ=0.022 eV, and W0=T0=0.02 eV.

Table 2
Values of coefficients in Eq. (43) in the case of Γ=0.022 eV and a=7.0 Å on a metal
surface covered by an insulating layer for several tip-height (zp).The thickness of the
insulating layer Ro=5.0 Å.W0=T0=0.02 eV.

zp=4.0Å zp=4.5Å zp=5.3Å

C1 −1.22E−5 −3.8E−7 −1.27E−9
C2 9.95E−13 3.45E−14 −1.56E−16
C4 1.09E−7 1.09E−8 2.54E−10
C5 −7.17E−9 −7.18E−10 −1.67E−11
C6 2.43E−10 7.82E−11 1.27E−11
C7 −3.19E−11 −1.03E−11 −1.68E−12
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Tables 2 and 3 are the calculation results of these coefficients for
several tip heights. Table 2 is for the two adatoms separated by 7 Å on
a metal surface covered by an insulating layer. (antiferromagnetic)
Table 3 is for the two adatoms separated by 50 Å on a bare metal
surface. (almost a single magnetic atom). As shown in Table 2, the
dominant coefficient is C1 for all tip-height. However, in Table 3, the
coefficient which has large absolute value switches from C1 to C6 and
C4 as the tip-height increases.

To summarize, the Fano dip originates in the dip structure from
scattered conduction electrons ( J6) and the asymmetric peak from
the Fano effect ( J4). Both two components strongly depend on the
tip-height on the bare metal surface. The antiferromagnetic dip is
observed on the metal surface covered by the insulating layer. In such
a case, the contribution of J4 and J6 is suppressed, and J1 becomes
dominant. The antiferromagnetic dip originates in the dip in J1. These
difference results in the different tip-height dependency between the
antiferromagnetic dip and the Fano dip.
5. Conclusions

To investigate how the crossover transition between the Kondo
effect dominant region and the antiferromagnetic RKKY interaction
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Table 3
Values of coefficients in Eq. (43) in the case of Γ=0.022 eV and a=50.0 Å on a bare
metal surface for several tip-height (zp). W0=T0=0.02 eV.

zp=4.0Å zp=4.5Å zp=5.3Å

C1 −6.62E−4 −2.19E−5 −7.79E−8
C2 0.00 0.00 0.00
C4 1.54E−4 1.59E−5 3.84E−7
C5 1.20E−6 1.24E−7 2.98E−9
C6 9.00E−6 2.90E−6 4.72E−7
C7 1.40E−7 4.50E−8 7.35E−9
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dominant region can be observed through scanning tunneling spec-
troscopy (STS), we calculate the differential conductance (dI /dV)
corresponding to STSmeasurements for twomagnetic atoms adsorbed
on a metal surface with the aid of the numerical renormalization
group technique. We find that the peak structure of the dI /dV spectra
changes gradually as a function of the adatom separation and the
coupling (Γ) between the adatoms and the metal surface conduction
band. When Γ becomes small, the peak disappears and a dip structure
appears near the Fermi level. This dip structure originates from the
parity splitting of the single electron excitation spectra and the
manifestation of the strong antiferromagnetic correlation between
the localized spins. The result of the phase shift calculation supports
the conclusion that there is no critical point between the Kondo effect
dominant region and the antiferromagnetic RKKY interaction domi-
nant region but rather a crossover transition connects these regions.

In conclusion, we show that the crossover transition from the
Kondo region to the antiferromagnetic region in two-impurity Kondo
problem can be observed through the change of the STS spectra. In
particular, the existence of the strong antiferromagnetic correlation
between localized spins is observed as dip structures in the dI /dV.
These findings are in good agreement with the experimental results of
Otte et al. [25]. Our results indicate the possibility in STM observation
of magnetic interactions on surface systemwith the atomic resolution,
which would contribute to the realization of spintronics.
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