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A B S T R A C T

In the nonrelativistic approximation of fluctuation electrodynamics, using the specular reflection model and the
nonlocal dielectric permittivity of a metal, we obtained simple analytical expressions for the friction forces in the
particle-plate and plate-plate systems upon relative motion of the bodies with constant velocity. It is shown that
at separations of about 1÷10 nm, for an Au nanoparticle (or a gold plate) moving near another gold plate at rest,
the dissipative forces are 2 to 4 orders of magnitude higher than in the case when the local Drude dielectric
permittivity is used.

1. Introduction

A rigorous description of the fluctuation-electromagnetic (FEM)
friction and dissipative effects in nanostructures is of great fundamental
and practical importance in connection with the intensive development
of micro- and nanotechnology, since these effects may affect the be-
haviour of micromechanical devices (MEMS) [1]. However, until re-
cently, theoretical calculations of these effects caused a lot of discussion
even for the simplest configurations of particle — plate and plate —
plate (see Refs. 2–4 and the corresponding references). In contrast to
the measurements of the static conservative van der Waals and Casimir-
Lifshitz forces [5,6], experimental measurements of the relevant dis-
sipative (friction) forces are still at the initial stage. In the latter case, as
shown in Refs. 6,7, the role of the spatial dispersion (SD) effect is re-
latively small, but in the case of quantum friction, spatial dispersion has
a much stronger influence on the friction force magnitude [8,9]. This is
due, in particular, to the possibility of generating electron-hole pairs
when interacting bodies are in relative motion even at a low speed.

The aim of this work is to calculate the van der Waals friction force
(FEM friction at a nonzero temperature T) and quantum friction force
(FEM friction at T = 0) with a more detailed justification of the ap-
proach based on using the specular reflection model (SRM)
[10,11,12,17] and the nonrelativistic approximation (c → ∞) of fluc-
tuation electrodynamics in the case of arbitrary temperatures and di-
rection of motion of a small particle relative to a thick plate. In parti-
cular, SRM is known to reproduce many properties of real surfaces and
it was successfully used when calculating the energy losses of energetic
ions near a solid surface and the dynamics of electrons captured by the

wake potential [13].
Based on these results, the case of the interaction of two plates in

relative motion is treated using the “correspondence principle” between
the particle–plate and plate–plate configurations [14]. Unlike [8,9],
where the authors explored the quantum friction between two plates
and an atom with a surface at T = 0, the use of a realistic analytical
approximation for the nonlocal dielectric function of a metal enables
performing analytical and numerical calculations of the quantum fric-
tion force and van der Waals friction force at an arbitrary temperature T
in a much simpler way.

2. Theoretical formulation

Coordinate system used and a schematic representation of the
specular reflection model corresponding to a particle with fluctuating
dipole moment d(t) moving relative to the surface of a polarizable
metal plate are shown in Fig. 1. In vacuum region z > 0, the electric
field is created by the dipole d(t) with Cartesian components (Vx,0,
−Vz) of the velocity vector V, its mirror image d′(t), mirror-symmetric
relative to the plane z = 0 (with components (Vx,0, Vz) of the velocity
vector V′ and other components), and a fictitious charge density ρs(x,y,
t)δ(z) on the plane z = 0 fixed by the boundary conditions. In the case
of moving charged particles, the SRM construction was described in
detail in Refs. 11, 12.

The field inside the plate (z < 0) is also created by the charge
density ρs(x,y, t)δ(z). By setting the polarization vectors of the dipole
sources in the form P = d(t)δ(r − Vt) and P′ = d′(t)δ(r − V′t) (with

= ′ = −d d d d d dd d( , , ) and ( , , )),x y z x y z decomposing the electric
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potential and the corresponding charge densities − divP, − divP′, ρs
(x,y, t)δ(z) into Fourier integrals with respect to frequency ω and three-
dimensional wave vector k = (q, kz) = (kx,ky,kz), solution of the
Poisson equations ΔΦ = −4πρ for the Fourier components of the po-
tential at z > 0 and z < 0 can be written as

= − − + − + >ω k π
k

ω ω ρ ω q zkd kV kd kVΦ( , ) 4 [i ( ) i ( ) ( , )], 0.s2 (1)

= <ω
πρ ω q

k ε ω
zk

k
Φ( , )

4 ( , )
( , )

, 0.s
2 (2)

where d(ω − kV), d(ω − kV′) and ρs(ω,q) are the Fourier-components
of the dipole moments and ρs(x,y, t) . The continuity condition for po-
tential Φ at the boundary z = 0 determines the quantity ρs(ω,q):

∫= − − + + − −

= − − + − + − +

−

+
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+

+ + − +
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∫=
′

∞
I

dk
k ε ω k( , )

,z
0 0 2 (4)

where ω± = ω± iqVz. When calculating integral (3), it is considered
as the limit at z → 0 from the same expression with additional factor
exp(ikzz) in the integrand, and the integration over kz is performed
along a contour including the real axis and the upper semicircle of the
complex plane. It should be noted that the proposed option of SRM in
the case of fluctuating dipoles differs from that in Ref. 15, where the
form kd = qd − ikzdz was used in order to regularize the term in (3)
involving the component dz of an image dipole moment. If such a recipe
is used, we obtain the twice lower numerical factor for the FEM friction
force in the reference case of local dielectric permittivity.

The boundary condition for the continuity of induction at the
boundary z = 0 is satisfied automatically, since the component of po-
tential (1) with a Fourier term due to the contribution of dipoles is
symmetric with respect to the boundary z = 0 and has a zero derivative
with respect to the z coordinate, and the contributions of fictitious
charges to induction are dropped out at z → ±0. In the framework of
SRM, any charge distribution associated with a moving particle has the
same property. The Fourier component Φind(ω,k) of the potential in-
duced in the vacuum region is found from Φ(ω, k) by subtracting the
Fourier component Φvac(ω,k) of the potential for a particle moving in
vacuum. In order to do this, we should make the replacement ε(ω, k) →
1 in (1) –(4) . As a result, we obtain

= − + − +

− + −

+ −

+ −

ω π
k

ω q ω q V ω q V qd

ω q V qd ω q V

k qd qdΦ ( , ) 2 Δ( , )·[i ( ) i ( )

( ) ( )],
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x x x x z

x x z x x

2

(5)

=
−
+

ω q
π qI
π qI

Δ( , ) .0

0 (6)

Taking into account (5), the expression for the induced potential at
the point (r, t) = (R, z, t) = (x, y, z, t) in the vacuum region takes the
form

∫= + −
π

dωd qdk ω i k z ωtR k qRΦ ( , z, t) 1
(2 )

Φ ( , )exp( ( )).ind
z

ind
z4

2

(7)

When a particle moves parallel to the surface, substituting (5) into
(7), one needs to use the limit Vz → 0, Vx → V under the condition
Vzt → ± z0, where z0 is the particle distance from the surface. After
that, integrating (7) by kz in the same way as in (3), we obtain the
Fourier component of the potential with a decomposition by frequency
and a two-dimensional wave vector

= ⎡

⎣
⎢ − + − +

− ⎤

⎦
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(8)

Formula (8) fully coincides with the exact solution of the electro-
dynamic problem in the case of parallel motion, when local dielectric
permittivity ε(ω) is used [15].

Using (8), further calculation of the dissipative van der Waals force
follows the way of the calculation with local ε(ω). The starting equation
for the force acting on a particle is given by

= +F d E d E( )sp ind ind sp (9)

where dsp,ind and Esp,ind are the spontaneous and induced components of
the dipole moment and the electric field, the angular brackets denote
the quantum-statistical averaging. The projections of F on the x, z axes
correspond to the friction force and the force of attraction to the surface
(dynamic van der Waals force). The first correlator in the right-hand
side of (9) is calculated via the standard fluctuation-dissipation relation
for the components of the dipole moment dsp . In the second correlator,
the induced dipole moment dind is expressed through Espand the atomic
polarizability, and the fluctuation-dissipation relation for the field
components is used (see Refs. 3, 15).

Expressing the dielectric response of the particle via the frequency-
dependent polarizability α(ω), we obtain the following result for Fx
with T1 and T2 being the local particle and plate temperatures in the
units of energy, ω+ = ω + qxV)

∫ ∫ ∫= −

−

∞

−∞

+∞

−∞

+∞
−

+ +

F

π
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x
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qz

2
0

2

2 1

0

(10)

It is worthwhile noting that the concept of local or total thermal
equilibrium in a dynamical nonequilibrium situation is not trivial (see
Ref. 16, for example), but currently, the construction with two local
temperatures is actively used. [3,4,21]

In the linear approximation in velocity and T1 = T2 = T, from (10)
it follows

∫ ∫⎜ ⎟= − ⎛
⎝

⎞
⎠

∞ ∞
− −F

π
V

T
dω dqq e ω q α ω ω T1

2
ћ ImΔ( , )Im ( )sinh (ћ /2 )x

qz
2

0 0

4 2 20

(11)

Fig. 1. (a) A particle with fluctuating dipole moment d(t), being reflected at
t = 0 from the surface and the Cartesian coordinate system used. (b) Schematic
representation of the fluctuating dipoles and charges used in the specular re-
flection model to calculate the induced potential in vacuum.
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and in the limit of quantum friction (T = 0), respectively,

∫ ∫ ∫= −
∞ ∞

−F
π

dq q dq qe dω α ω q V ω q4ћ Im ( )ImΔ( , ).x x x y
qz

q V

x2
0 0

2

0

x
0

(12)

Formulas (10) – (12), quite naturally, completely coincide with the
known results in the case of the local dielectric permittivity of plate
materials [2-4].

3. Spherical particle above metal surface

For the practical calculation of the force Fx by formulas (11), (12),
we use the expression for the polarizability α(ω) = R3(ε(ω) − 1)/
(ε(ω) + 2) of a spherical particle with radius R and the Drude dielectric
constant = − +ε ω ω ω ω γ( ) 1 / ( i )p

2 , where ωp and γ are the plasma fre-
quency and the damping factor (ωp = 9 eV and γ = 30 meV for gold).
For the function ε(ω, k) of the metal plate, we use the well-known
approximation [18], which takes into account the linear-frequency
asymptotic behaviour of the Lindhard permittivity, the generation of
electron-hole pairs and plasmons (this is in line with the hydrodynamic
approximation)

= −
− − − +

ε ω
ω

s k πωθ k k kV ω ω γ
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p

F F

2

2 2 (13)

where kF is the Fermi wave vector, s = VF/3, VF is the Fermi velocity,
θ(x) is the unit Heaviside function. In this case, the low-frequency ex-
pansion of the integral (4) leads to the expression I0 = A + B + C,
where

= +− −A πk x(1 ) ,TF
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Here = =x q k k ω V/ , 3 /TF TF p F is the inverse Thomas-Fermi
screening length, = =p k k π a r2 / 3 /2 /F TF B s

23 , aB and rs are the Bohr
radius and the jellium parameter (rs/aB = 3.01 and p= 1.415 for gold).
We also mean one and the same value γ in ε(ω) and in (13). It should be
noted that Eq. (15) is somewhat different from that presented in Ref. 11
(the expression in square brackets and the presence of θ(p − x)).
However, the difference is not crucial for the results. With allowance for
(6) and (14)–(16) we obtain
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In (18), and hereinafter, we omitted the small argument β= γ/ωp in
writing S(x) for simplicity. In the case of low particle velocities V ≪ VF

and S(x) ~ 1 (VF is the Fermi velocity), the terms proportional to ω2 in
(17) can be ignored, since only low frequencies ω ≪ ωp contributes to
integrals (11), (12). Similarly, for Imα one can use a simpler expression

≈α iγω ωIm 3 / p
2. Then, as a result of integration over frequency ω,

formulas (11), (12) are reduced to
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The function f2(x) is given by (21) when replacing z4 → z6.
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If the local Drude function is used in calculating Fx, then Δ(ω, q) →
(ε(ω) − 1)/(ε(ω) + 1) and performing elementary integration in (11),
(12) yields
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Comparing the fractions F F/x T
nl

x T
l

,
( )

,
( ) and F F/x q

nl
x q

l
,

( )
,

( ) corresponding to
(19), (23) and (20), (24), we see that the increase in the friction force
due to SD is mainly due to the presence of the large parameter 1/
β = ωp/γ ≫ 1. This is in agreement with Ref. 9.

Fig. 2 shows the calculated ratio F F/x
nl

x
l( ) ( ) depending on 2kTFz0 for

the force of quantum friction (dashed line) and friction at a finite
temperature (solid line). It is worth noting that in the case of gold we
have 2kTFz0 = 34 at z0 = 1 nm. As follows from Fig. 2, the effect of SD
leads to an increase in the dissipative van der Waals force by more than
two orders of magnitude at z0 = 1÷10 nm.

4. Two plates in relative motion

As Lifshitz first showed [16], there is a simple “rule-of-thumb” be-
tween plate-plate (1) and particle-plate (2) configurations. This enables

Fig. 2. F FDependence /x
nl

x
l( ) ( ) as a function of reduced distance 2kTFz0 for an Au

nanoparticle above the surface of gold. Dashed line: quantum friction force,
solid line: friction force at a finite temperature; (nl) –nonlocal approximation
(Eqs. (19), (20)), (l) –local approximation (Eqs. (23), (24)). The log functions
hereinafter are with basis 10. For gold, 2kTFz0 = 34 at z0 = 1 nm.
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calculating the Casimir-Polder force in configuration 2 using the cor-
responding expression for the force in configuration 1. The rule reads

→ω πnα ωΔ( ) 2 ( ) (25)

= − =F z
nS

d
dl

F l( ) 1 ( )l z
(2) (1)

(26)

where α(ω) is the polarizability of a particle of a rarified medium with
density n of particles that models the material of one of the plates, and S
is the surface area of the plates in a vacuum contact.

In systems out of thermal and dynamic equilibrium, in the non-
retarded limit, the corresponding transition rule was established in
Refs. 3, 14. It was proved that relations (25), (26) are valid for all other
quantities describing the FEM interaction, such as the rate of heat ex-
change and friction force. Such a correspondence rule, obviously, must
be valid in the nonlocal case too, for a limiting transition from the
nonlocal case to the local one to exist. In addition, relations (25), (26)
can be applied for both transitions: from configuration 1 to configura-
tion 2 and vice versa. At first sight, the validity of the opposite transi-
tion F(2) → F(1) with the presence of “reflection denominator” in the
expression for F l( )x

(1) is not obvious. However, in addition to relations
(25), (26), it is based on the transformation properties between the
normal (lateral) projections of the forces Fx z,

(1,2) and the rates of heating
dQ(1,2)/dt within each configuration (in the nonretarded limit), and the
fact that we have exact expressions for these quantities, known from
solving one and the same electrodynamic problem in each configura-
tion [3,14] .

With this in mind, to take SD in configuration 1 into account, one
should use the replacement Δ(ω) → Δ(ω, q) in (9). It is worth noting
that the above approach is different from that used in the calculations
of the Casimir-Lifshitz attraction and friction forces with allowance for
SD [4,6], where the authors used the nonlocal Lindhard- Mermin di-
electric permittivity ε(ω, k) (Ref. 19) in the expressions for the ampli-
tudes of reflection of electromagnetic waves. The difference is due to
the fact that Eq. (6) for Δ(ω, q) calculated in the framework of SRM can
not be obtained by inserting ε(ω, k) into the reflection factor for P-
waves.

In our case, the friction force acting on moving plate 1 per unit
surface of the vacuum contact is formally the same as in Ref. 3 provided
that Δ1(ω+) → Δ1(ω+,q) and ω+ = ω + qxV:
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where D = 1 − Δ1(ω+,q)Δ2(ω,q)exp( − 2ql) and l is the spacing be-
tween interacting plates. Using (27), the expressions for the friction
force in a linear approximation in velocity (at T1 = T2 = T) and in the
case of quantum friction (T = 0) take the form
( = −n ω ω T( ) 1/(exp(ћ / ) 1) is the Planck factor)
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It is worth noting that in contrast to (27) and (29), the D-factor in
(28) reads D = 1 − Δ1(ω,q)Δ2(ω,q)exp( − 2ql). Formulas (28), (29)
agree with those obtained by many authors [2-4,15,21] using local
ε(ω), while (29) fully coincides with Eq. (24) in Ref. 8, obtained in the
framework of the nonlocal quantum field theory.

As in Sec. 3, in the case under consideration (V ≪ VF), we can omit

the terms proportional to ω2 in Eq. (16). Then Δ1,2(ω, q)≅1 and
ImΔ1,2(ω, q)≅2(ω/ωp)S1(x), and substituting these relations into (28),
(29) yields (assuming that both plates are of the same material)

i) T1 = T2 = T
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The function f4(x) is given by (32) when replacing y3 → y5.
On the other hand using the local Drude function

= − +ε ω ω ω ω γ( ) 1 / ( i )p
2 , we have Δ1,2(ω)≅1, ≅ω ωγ ωImΔ ( ) 2( / )p1,2

2 .
Substituting these relations into (28), (29) yields
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where ζ(3) = 1.202 and ζ(5) = 1.037 are the Riemann zeta-functions.
Shown in Fig. 3 are the calculated ratios F F/x T

nl
x T

l
,

( )
,

( ) and F F/x q
nl

x q
l

,
( )

,
( )

depending on 2kTFl, for two gold plates in relative motion. One can see
that in the range l= 1÷10 nm, friction forces increase by four orders of
magnitude if SD is accounted for. The effect is due to the large factor
ω γ/p

2 2.

5. Discussion

It is expedient to perform a more thorough comparison of the nu-
merical values of forces Fx obtained using different approaches. Fig. 4
shows a linear in velocity friction force between two plates of gold, as a
function of separation l for T1 = T2 = 300 K, V = 1m/s.

Solid curve in Fig. 4 shows the nonlocal approximation, Eq. (30).
The dashed-dotted curve (S-local Drude) and the curve shown by dots
(P-local Drude) show the results with local Drude function, performed
using a recently transformed formula of the Rytov-Levin-Polevoy theory

Fig. 3. F FDependence /x
nl

x
l( ) ( ) as a function of reduced distance 2kTFl for two

plates of gold in relative motion Dashed line: quantum friction force, solid line:
friction force at a finite temperature; (nl) –nonlocal approximation Eqs. (30),
((31)), (l) –local approximation Eqs. (33), ((34)).

G.V. Dedkov and A.A. Kyasov Surface Science 700 (2020) 121681

4



[21] (see Eq. (A2) in the Appendix and Ref. 22). These curves corre-
spond to the contributions of the second and first terms in square
brackets of (A2). It is worth noting that in (A2), both evanescent and
propagating modes are accounted for, though at short separations l
under consideration, the propagating modes make a small contribution
to the result. The dashed curve shown in Fig. 4 was calculated by
Eq. (33) and corresponds to the nonretarded local Drude approxima-
tion. We see that SD has a large effect only at short separations l <
2 nm, whereas at larger l the local Drude approximation due to the
modes with S- polarization is dominant. All the curves in Fig. 4 obeys
the law Fx ~ V, but the l − dependence is different: ∼ −F lx

5 for P-
nonlocal Drude, ∼ −F lx

0.9 for S-local Drude, whereas for other two
curves we have ∼ −F l .x

4

Fig. 5 compares the quantum friction forces at T = 0. The solid
curve was calculated by Eq. (31). The dashed-dotted curve (local
Drude) was calculated by Eq. (A3) with account of both P-waves and S-
waves. Curve P-local Drude corresponds to the contribution from P-
waves only (Eq. (A3), the first term). The values of the force calculated
by Eq. (34) nearly coincide with those for P-local Drude curve, and
these results are not shown. We see that the range of distances with
strong SD effect (l < 8 nm) is greater than in the case of “thermal

friction” (Fig. 4). The solid curve (P-local Drude) obeys the law
Fx ~ V3/l7.2 at 1 < l< 2 nm and Fx ~ V3/l2 at 2 < l<20 nm. The local
Drude curve obeys the law Fx ~ V3/l3.2 at 1 < l < 2 nm and Fx ~ V3/l2

at 2 < l < 20 nm.
We also compared the results with Ref. 8 (i.e. in the case of quantum

friction, F ~ V3), using two reference points in Fig. 8(a,b) of this paper
corresponding to V/VF = 0.2 and separation distances of 1.27 nm (24
a0) and 5.3 nm (100 a0). The jellium parameter (rs = 3 aB) in Ref. 8 is
close to our's (rs = 3.01 aB). According to these data, Fx ≈ 9 N/m2 and
Fx ≈ 0.004 N/m2, whereas Eq. (31) yields Fx = 10.8 N/m2 and Fx ≈
0.0055 N/m2, i.e. the matching is quite good.

Despite the “positive” influence of SD at small separations, the ab-
solute values of the friction forces are still very small. For example, in
an ideal sphere-plane configuration, Fsp ≈ πRaFz(a,V), where R and a
are the curvature radius of the probing tip and the minimum separation
distance, even at R = 100 μm, V = 300 m/s (T = 300K,a = 1nm) we
find by Eq. (30) Fsp = 3 • 10−15N at Fz = 0.01 N/m2. In turn, in typical
experimental situation, when the AFM technique is used, even this ra-
ther “moderate” velocity value requires a very large product of oscil-
lation amplitude A and frequency f (2πAf = 300 m/s). The high values
of A, R, along with the small separation distance, make such an ex-
periment very difficult. Probing the quantum friction force is still more
difficult, since at V = 300 m/s we obtain a much lower value Fz = 6 •
10−8 N/m2, or we should increase the velocity to about 105m/s. In Ref.
[23], the author reported on resonance effects in the friction force and
radiative heat emission at relative sliding of two polar dielectric plates
(SiO2, SiC) with velocities of 104–105 m/s. In our case of metal plates
with local Drude and nonlocal (Eq. (13) dielectric permittivities, we did
not find any resonances at these velocities, since the value V/a is much
less than an important frequency of metals. The case V/a ~ ωp requires
special consideration.

Finally, it is worthwhile to discuss the role of temperature.
According to Eq. (30), the nonlocal friction force scales as Fx ~ T2 and
decreases with decreasing temperature. Since the dissipation me-
chanism at SD is mostly due to the electron-hole excitation, this is quite
natural. As for the general local theory [22], our recent numerical
calculations showed an unexpectedly sharp growth in the friction force
at T < 50 K, when the damping factor γ in the Drude formula for ε(ω)
obeys the Bloch-Grüneisen law, γ ~ T5. Perhaps, this is due to some
interference of the temperature–dependant quantities in the formula for
Fx. This low-temperature behaviour is an intriguing issue and should be
studied more thoroughly.

6. Conclusion

In this paper, we provide a derivation of the van der Waals friction
force on a particle (thick metal plate) moving at constant velocity
parallel to another thick metal plate (configurations 1 and 2). The
theory is a generalization of the specular reflection model and the FEM
theory with account of the spatial dispersion of the material of the
plate. Using the analytical approximation for the bulk dielectric per-
mittivity ε(ω, k) of a metal, we obtained closed analytical expressions
for the friction forces at a finite temperature T and in the case of
quantum friction (T = 0). When obtaining expressions for the friction
force in the configuration of parallel plates, we used the principle of
correspondence between configurations 1 and 2. This provides an un-
ambiguous limit transition between formulas obtained in local and
nonlocal theory.

Comparison of nonlocal and local formulations shows that the van
der Waals friction force calculated using the nonlocal approach is 2–4
orders of magnitude higher than using the local approach (both for
quantum friction and friction at a finite temperature). Mathematically,
the increase in friction is due to the large factor ωP/γ. This is in
agreement with Refs. 8,9. Moreover, a comparison of the numerical
values of the nonlocal quantum friction force with those obtained in
Ref. 8 within the quantum-field theory formalism, shows a very good

Fig. 4. Friction force between two gold plates at T1 = T2 = 300 K, V = 1m/s.
Curve P-nonlocal: Eq. (30); curve S-local Drude: Eq. (A2), the second term (the
contribution from S-waves); curve P-local Drude: Eq. (A2), the first term (the
contribution from P-waves); dotted line: Eq. (33).

Fig. 5. Quantum friction force for two flat gold plates in parallel motion as a
function of separation l at V = 0.1VF (VF = 1.4 • 106 m/s) . Solid curve (P-
nonlocal): Eq. (31), curve local Drude: Eq. (A3) (summary contribution from S-
waves and P-waves), dashed curve (P-local Drude) corresponds to the con-
tribution from P-waves in (A3). The curve calculated by Eq. (34) (nonretarded
local Drude for P-waves) is very close to P-local Drude curve and is not shown.
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coincidence.
The main theoretical result of this paper is that it provides a simple

analytical approach for calculating the van der Waals friction force at
separations between the bodies of order several nm, using a model
expression for the dielectric permittivity of materials, which takes into
account the frequency and spatial dispersion.
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Appendix A

In Ref. 20, based on the original Rytov-Levin-Polevoy theory with local ε(ω)[21], we obtained a general expression for the friction force in
configuration of two parallel thick plates with account of retardation (the corresponding quantities relating to plates 1 and 2 have the subscripts 1,2)
at V/c ≪ 1

∫ ∫= − +∼∼ ∼ ∼
∞

− −F
π

dω d kk q q ε q ε Q q μ q μ Qћ
4

[Im( / )Im( / ) Im( / )Im( / ) ]x x ε μ3
0

2 2
1 1 2 2

2
1 1 2 2

2

(A1)

−−ω T ω T[coth(ћ /2 ) coth(ћ /2 )]2 1

where = −q k ω c( / )2 2 , = −q k ε μ ω c( / )1
2

1 1
2 , = −q k ε μ ω c( / )2

2
2 2

2 , the tilde means that the corresponding arguments of ε1,2 and μ1,2 (dielectric
permittivities and magnetic permeabilities) are taken at ω− = ω − kxV . Eq. (A1) describes the friction force acting on plate 1 that moves in the
x − direction with constant velocity V. Moreover, in (A1) we have = + + − − − −∼ ∼∼ ∼Q q q ε q q ε ql q q ε q q ε ql( / )( / )exp( ) ( / )( / )exp( )ε 1 1 2 2 1 1 2 2 , and Qμ is
described by the same expression with the change ε → μ. An important feature of (A1) is that it does not use the reflection factors, and the
contributions from evanescent and propagating modes are not separated. Using (A1), the first-order-velocity approximation at T1 = T2 = T yields
(Eq.23) in Ref. 22)

∫ ∫= +
∞

− −F V
π

dn ω d kk q q ε q ε Q q μ q μ Qℏ
2

( ) [Im( / )Im( / ) Im( / )Im( / ) ]x x ε u2
0

2 2
1 1 2 2

2
1 1 2 2

2

(A2)

In the case T1 = T2 = 0, from (A1) we obtain the quantum friction force [22]

∫ ∫ ∫= − + →∼

−∞

+∞ ∞
−F

π
dk dω dk k kl D ε μћ

4
exp( 2 )ImΔ Im Δ ( ).x y x x

k V

ε ε ε3
0 0

1 2
2

x

(A3)

Here Δiε = (εiqi − qi)/(εiqi + qi), i = 1, 2, = − −∼D kl1 Δ Δ exp( 2 )ε ε ε1 2 , and the same expressions are used for magnetic contribution (ε → μ) . Note
that in this paper we consider the case of nonmagnetic materials with μ1,2 = 1.
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