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Abstract

In this work we investigate characteristics of the adhesive friction during sliding of a rubber body on a rough self-

affined surface. The latter is characterized by the rms roughness amplitude w, the in-plane correlation length n, and the

roughness exponent H (0 < H < 1). The friction coefficient is shown to be proportional to the roughness amplitude w.

Moreover, the friction coefficient is shown to depend strongly on the roughness exponent H. The influence of the latter

is more prominent at intermediate slidding velocities, where the friction coefficient is independent of the slidding veloc-

ity. Similar, but weaker in magnitude, is the influence of correlation length n on lad. In any case, our work shows that

understanding of the adhesive friction should take properly into account of the precise roughness nature both at all

lateral roughness wavelengths.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The friction which develops between a rubber

body sliding onto a hard solid surface is important

from the fundamental and technological point of
view in car industry (tire construction, wiper rub-

ber blades), cosmetic industry etc. [1–4]. The major
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difference in the frictional properties of rubbers

with respect to other solids arise from their low

elastic modulus E, and the high internal friction

that is present over a wide frequency range [5].

The friction force between a rubber body and a
hard rough solid substrate has two major contri-

butions which are the hysteric and the adhesive

ones [1]. The hysteric component arise from the

oscillating forces that the surface asperities exert

onto the rubber surface leading effectively to cyclic

deformations and energy dissipation due to inter-

nal frictional damping [5]. As a result the hysteric
ed.
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contribution will have the same temperature

dependence as that of an elastic complex modulus

E(x) [5]. On the other hand, the adhesive compo-

nent is important for clean and relative smoother

surfaces [5].
In actual situations besides adhesive and hys-

teric friction, the rubber produces traction forces

through tearing and wear. As deformation stresses

and sliding speeds increase (e.g., tires in racing

cars), the local stress can exceed the tensile

strength of the rubber especially near the point

of a sharp irregularity. The high local stress can

deform the internal rubber structure beyond the
point of elastic recovery. Indeed, when polymer

bonds and cross-links are stressed to failure the

material can no longer recover completely leading

to tearing. The latter absorbs energy and results in

additional friction forces within the contact sur-

face. The wear processes are the ultimate result

of tearing.

For rubbers and other elastically soft solids a
weak adhesive junction due to van der Waals inter-

actions between the surfaces may be well elongated

before it breaks at a distance that is larger than the

size of the surface asperities [6]. Thus, during the

block sliding a large fraction of the junctions will

be simultaneously (elastically) elongated and exert

a force on the moving body in contact with the

rough substrate. Furthermore, sliding onto real
solid surfaces occurs in many cases onto rough

surfaces with a significant degree of randomness

[7–10]. The latter implies that these surfaces pos-

sess roughness over various length scales rather

than a single one. This is a fact that has to be taken

carefully into account in contact related phenom-

ena (i.e., friction and adhesion) [5,6].

Up to now, it has been shown that for self-affine
random rough surfaces the coefficient of hysteric

friction depends significantly on the roughness

exponent H (0 6 H 6 1), which characterizes

the degree of surface irregularity at short length

scales [5,7]. Nevertheless, the previous studies did

not considered how self-affine roughness influence

the adhesive component of friction. This will be

investigated in this article by inclusion of contribu-
tions from all lateral roughness wavelengths in

terms of an analytic roughness model in Fourier

space.
2. Friction theory in the presence of adhesion

As it was mentioned earlier, for rubbers an

adhesive junction due to van der Waals interac-

tions between the surfaces may be well elongated
before it breaks at a size larger than that of the sur-

face asperities. In general, the energy dissipated in

a viscoelastic medium is given by [6]

E ¼
Z

rij
deij
dt

� �
d3xdt ð1Þ

with rij the stress tensor and eij the strain tensor. If

we assume uniaxial deformations of a cylindrical

bar, then in the frequency domain we obtain [6]

E ¼ V
2p

Z
xIm

1

EðxÞ

� �
jrðxÞj2 dx ð2Þ

where V = �d3x. If a rubber boddy slides with

velocity V over a sinusoidal rough surface with
period L, then it will feel fluctuating forces

with a characteristic frequency �V/L. In addition,

if the surface has a wider distribution of length

scales L, then it will be present a wider distribution

of frequency components in the Fourier decompo-

sition of the surface stresses acting on the sliding

rubber [5]. The main energy dissipation will occur

within a volume V � L3 (asperity volume) where if
we denote by r = r0cos(x0t) the fluctuating stress

(r0 = FN/L
2 and FN the normal force) [6], we set

E = VTFfriction with T an oscillation period, we ob-

tain an expression for the friction coefficient [6]

l ¼ F friction

F N
’ r0Im

1

Eðx0Þ

� �
ð3Þ

where Im[� � �] denotes the imaginary part of a com-

plex number.

In order to take into account the dependence of
the stress factor r0 in Eq. (3) on contact details

over a distribution of lateral length scales that is

present for random rough surfaces, we proceed

as follows. We will assume complete contact of

the rubber body with the solid substrate up to

macroscopic dimensions. We denote by C(q) the

Fourier transform of the auto correlation function

CðrÞ ¼ hhð~rÞhð0Þi with hð~rÞ the surface roughness
height (hhi = 0). h� � �i is an ensemble average over

possible roughness configurations. If we denote

by Uel the energy that is spent to push the rubber
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body into contact with the rough substrate then we

have [11,12]

U el ¼ Aflat

jEðx0Þj
4ð1� v2Þ

Z Qc

Qk

qCðqÞd2q ð4Þ

where Aflat is macroscopic flat surface area, and

Qc = p/a0 with a0 of microscopic dimensions. The
characteristic frequency in x0 in Eq. (4) (and in

the following formulas) is given by x0 = V/n with

n the in-plane roughness correlation length. More-

over, Qk = 2p/k and k the system size of macro-

scopic dimensions so that k � n � a0. If we

denote by w ¼
ffiffiffiffiffiffiffiffi
hh2i

q
the rms roughness amplitude

then the average normal force per unit area (FN/L
2)

in Eq. (3) can be obtained by differentiating Ue

from Eq. (4) by the rms roughness amplitude �w�.
The latter is the magnitude of effective depth that

the rubber will have to be pressed in order to stay

in contact with the rough substrate surface. There-

fore, we have for the average normal stress hr0i

hr0i ¼
1

Aflat

oU el

ow
ð5Þ

where we ignore any weak frequency dependence

of the Poisson ratio �v�. If we combine Eqs. (3)–

(5) we obtain the adhesive friction coefficient

lad ’
jEðx0Þj
4ð1� v2Þ

Z Qc

Qk

q
oCðqÞ
ow

d2q

( )
Im

1

Eðx0Þ

� �
:

ð6Þ
Although sliding is assumed to take place in one

direction over a two dimensional isotropic rough
surface, the calculation of the average stress hr0i
is performed on a two dimensional isotropic sur-

face, which is the reason to consider also a two-

dimensional roughness model for C(q) in Eqs.

(4)–(6).
c k 0
3. Results and discussion

A model for the modulus E(x) that will be used
for the calculations is given by [5]

EðxÞ ¼ E1½ð1þ aÞ þ ðxsÞ2�
ð1þ aÞ2 þ ðxsÞ2

� j
axsE1

ð1þ aÞ2 þ ðxsÞ2

ð7Þ
with E1 = E(1), E(1)/E(0) = 1 + a (typically a =

103), and 1/s the flip rate of molecular segments

that are responsible for the viscoelastic properties

of the rubber body.

As Eq. (6) indicates, in order to calculate the
coefficient of friction lad the knowledge of the

spectrum C(q) is necessary. A wide variety of sur-

faces/interfaces are well described by a kind of

roughness associated with self-affine fractal scaling

[7], for which C(q) scales as a power-law C(q) /
q�2�2H if qn � 1, and C(q) / const if qn � 1 [7].

The roughness exponent H is a measure of the de-

gree of surface irregularity [7,8], such that small
values of H characterise more jagged or irregular

surfaces at short length scales (<n). The self-affine

scaling behaviour is satisfied by the simple model

[8]

CðqÞ ¼ 1

2p
w2n2

ð1þ aq2n2Þ1þH ð8Þ

with a ¼ ð1=2HÞ½1� ð1þ aQ2
cn

2Þ�H � if 0 < H < 1

(power-law roughness), and a ¼ ð1=2Þ ln½1þ
aQ2

cn
2� if H = 0 [8]. For other correlation models

see also Refs. [9,10].

Upon substitution of Eq. (8) into Eq. (6) we ob-

tain for the coefficient of friction

lad ’
jEðx0Þj
2ð1� v2Þw

Z Qc

Qk

n2q2

ð1þ aq2n2Þ1þH dq

( )

� Im
1

Eðx0Þ

� �
ð9Þ

Analytic calculations of lad are possible for H = 0,

0.5, and 1. Therefore, we have

ladjH¼0 ¼
2w
w2

0

1

a
ðQc � QkÞ

�

� 1

a3=2n
tan�1ðX cÞ � tan�1ðX kÞ
� �	

� Im
1

Eðx0Þ

� �
ð10Þ

ladjH¼0:5 ¼
2w
w2

0

1

a3=2n
sinh�1ðX cÞ � sinh�1ðX kÞ
� ��

� 1

a
Qcffiffiffiffiffi
T

p � Qkffiffiffiffiffi
T

p
� �	

Im
1

Eðx Þ

� �
ð11Þ



10-3 10-2 10-1 100

0.2

0.4

0.6

0.8

H = 0.9 

H = 0.5 

H = 0.7 

H = 0.3 

µ ad

V(m/s)

Fig. 2. Friction coefficient lad vs. sliding velocity V for w = 10

nm, n = 200 nm, s = 10�3, and various roughness exponents H

as indicated.
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ladjH¼1 ¼
2w
w2

0

1

a3=2n
tan�1ðX cÞ � tan�1ðX kÞ
� ��

� 1

2a
Qc

T c

� Qk

T k

� �	
Im

1

Eðx0Þ

� �
ð12Þ

with X c ¼
ffiffiffi
a

p
nQc, X k ¼

ffiffiffi
a

p
nQk, and w0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð1� v2Þ=jEðx0Þj
p

.

Fig. 1 shows the dependence of the friction

coefficient for various relaxation times s. The in-
verse dependence of lad on s is observed before

and after the plateau regime, where the coefficient

of friction is independent of the sliding velocity. At

low velocities the friction coefficient decreases with

decreasing relaxation time, while after the plateau

region at relatively high velocities it increases with

decreasing s. The plateau is rather wide with width

that depends also on the particular model for
E(x). With decreasing relaxation time s the pla-

teau location shifts to higher velocities since the

characteristic velocity V � n/s also increases with

decreasing s.
Furthermore, Eq. (9) yields for the friction coef-

ficient (at high velocities) the simple dependence

lad / w, while any more complex dependence will

arise solely from the roughness parameters H and
n as for example Eqs. (10)–(12) clearly indicate.

Fig. 2 shows the dependence of lad on the rough-

ness exponent H. It is shown that with decreasing

roughness exponent H (or increasing roughness
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Fig. 1. Friction coefficient lad vs. sliding velocity V forH = 0.7,

w = 10 nm, n = 200 nm, and various relaxation times s as

indicated.
irregularity at short length scales <n) the friction

coefficient increases. The influence of the exponent

H is more prominent at intermediate velocities

within the plateau regime.
Similar is the behaviour of lad as a function of

the lateral roughness correlation length n where

with decreasing n (or equivalently for surface

roughening at long roughness wavelengths) lad in-
creases with highest effect observed within the pla-

teau region. Notably with increasing correlation

length n the plateau shifts to higher velocities since

the characteristic velocity V � n/s also increases.
Thus the correlation length n has the opposite ef-

fect on the location of the plateau region from that

of the relaxation time s. This indicates that posi-

tion of the plateau can be adjusted with a specific

range of velocities as long as both parameters s
and n are simultaneously increasing or decreasing

so that the ratio n/s remains constant. If we com-

pare Figs. 2 and 3 we can infer that the roughness
exponent H has more dominant contribution on

the friction coefficient lad than that of the lateral

correlation length n. Therefore, any roughening

procedure at short length scales (<n) will lead to

faster increment of frictional forces.

A intuitive procedure to understand the role of

the rubber-solid substrate adhesion at short lateral

length scales where contact occurs is as follows. If
w/n � ra/E, then the perpendicular uniform pres-

sure ra applied on the rubber body the will be large

enough to deform the rubber making contact with
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Fig. 3. Friction coefficient lad vs. sliding velocity V forH = 0.7,
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indicated.
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the substrate [5,6]. If we equate the elastic energy

Uel � Enw2 that is stored in the rubber with the

gain in adhesion energy Uad � �Dcn2 (where

�Dc is the local change of surface free energy upon
contact due to the rubber–substrate interaction),
then we obtain n � (w/n)�2(Dc/E) [5,6]. For strong
roughness or w/n � 1 and typical parameters E � 1

MPa and Dc � 3 meV/A2, the adhesion will be able

to deform the rubber and follow the substrate

morphology for length scales n < 100 nm. For

smoother surfaces or w/n � 0.01, the rubber will

follow the roughness profile up to a macroscopic

length scale �1 mm. Note that ratio w/n represents
effectively the local surface slope of the substrate

roughness or j$hj � w/n. This is effectively valid

for large roughness exponents (e.g., H � 1) [13].

The local surface slope, for which an effective

measure is the average value qrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjrhj2i

q
de-

pends strongly on the roughness exponent for
H < 1 [12,13], and it can be calculated analytically

by Eq. (8) [13]

qrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Qc

Qk

q2CðqÞd2q

s

¼ wffiffiffi
2

p
an

� �
1

1� H
fT 1�H

c � T 1�H
k g

�

þ 1

H
fT�H

c � T�H
k g

�1=2
ð13Þ

with T c ¼ ð1þ aQ2
cn

2Þ, and T k ¼ ð1þ aQ2
kn

2Þ.
Therefore, a more precise estimation of the length
scales that can be followed by the rubber body

should take into account the effect of the rough-

ness exponent H.
4. Conclusions

In conclusion, the adhesive coefficient of fric-

tion upon sliding onto rough self-affine surfaces

strongly depends on the roughness exponent H

or the degree of surface irregularity at short length

scales. The effect of the latter becomes more prom-

inent at intermediate sliding velocities where the
coefficient of friction appears to be independent

of the sliding velocity (plateau area). Similar, but

weaker in magnitude, is the influence of correla-

tion length n on the friction. At any rate, our work

shows that any estimation of adhesive friction

should take properly into account of the precise

roughness characteristics (both at short and long

lateral roughness wavelengths) of the involved
substrate.

We should note that in the present work we as-

sume that the hysteric and adhesive components of

friction are separable. This is plausible approxima-

tion since the two components are based on two

different mechanisms (internal energy dissipation

for hysteric friction due to cyclic deformation from

substrate roughness, and for adhesive friction
bonding with the substrate that excerpt a force

on the moving boddy) [6,11,14]. In addition, these

two frictional components are significant for a dif-

ferent type of morphologies, namely, for rougher

surfaces the hysteric component and for smoother

surfaces the adhesive component. Nevertheless, we

should keep in mind that due to the cross-linked

macromolecular structure of the rubber, a block-
ing at the surface, due to a bond with the track,

can excite the cross-linked framework [14], leading

to further complications of the frictional phenom-

ena which are not considered here.
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