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Abstract

We study theoretically the magnetoresistance properties of magnetic films (Fe/Cr) grown following the Fibonacci

sequence. We use a theoretical Hamiltonian which includes Zeeman, cubic and uniaxial anisotropy, bilinear and bi-

quadratic exchange energies. In particular, the presence of the uniaxial anisotropy in the Hamiltonian gives new

symmetries to the system which were not discussed in previous works. Our physical parameters are based on experi-

mental data recently reported, which contain biquadratic exchange coupling with magnitude comparable to the bilinear

exchange coupling. We show the influence of the biquadratic exchange and anisotropies on the self-similar properties of

the magnetoresistance profiles.
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The discovery of quasicrystals in 1984 [1]

aroused a great interest, both theoretically and

experimentally, in quasiperiodic systems. One of

the most important reasons for that is because they

can be defined as an intermediate state between an

ordered crystal (their definition and construction
follow purely deterministic rules) and a disordered

solid (many of their physical properties exhibit an

erratic-like appearance) [2]. On the theoretical

side, a wide variety of particles, namely electrons

[3], phonons [4], polaritons [5], spin waves [6], etc.

have been and are currently being studied. A quite

complex fractal energy spectrum, which can be

considered as their basic signature, is a common
feature of these systems. On the experimental side,

the procedure to grow quasiperiodic superlattices

became standard after Merlin et al. [7], who re-

ported the realization of the first quasiperiodic

superlattice following the Fibonacci sequence by

means of molecular beam epitaxy (MBE).

Parallel to these developments in the field of
quasicrystals, the properties of magnetic exchange

interactions between ferromagnetic films separated

by non-magnetic spacers have been also widely

investigated [8]. In these magnetic structures, the

interfilm couplings are very weak when compared

to the strong exchange coupling between spins in a

given ferromagnetic film. Thus, this system can be

modeled by representing each ferromagnetic film
as a spin with a classical magnetization ~MM , formed

by the spins within the film. These classical spins

interact through the interfilm exchange couplings

and can also experience some anisotropy. The

discovery of physical properties like antiferro-

magnetic coupling [9], giant magnetoresistance

(GMR) [10], oscillatory behavior of the exchange
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coupling [11], and biquadratic exchange coupling

[12], made these films attractive objects of re-

search.

Recent theoretical studies [13], applied to Fe/Cr

Fibonacci multilayers, showed that a self-similar

behavior of the magnetic properties occur when
the biquadratic and bilinear exchanges are com-

parable and there are first order phase transitions

induced by the external magnetic field. In those

articles the authors included effects of a cubic an-

isotropy. However, some magnetic multilayers

may instead exhibit uniaxial anisotropy [14], and

this gives a new symmetry to the system that may

lead to new configurations and phase transitions.
In fact, Bezerra and Cottam [15] very recently

found a self-similar magnetization curve in Fe/Cr

Fibonacci multilayers presenting uniaxial anisot-

ropy even when the biquadratic coupling is small

compared to the bilinear one. They surmized that

the lower symmetry of the uniaxial anisotropy

changes the nature of the phase transitions and

consequently the conditions for a self-similar pat-
tern to occur in the magnetization curves. There-

fore, an analogous behavior may also apply for the

transport properties of the system.

The study of GMR properties in magnetic

multilayers has attracted a lot of attention due to

their potential for technological applications. For

example, the GMR in magnetic multilayers has

been widely considered for applications in infor-
mation storage technology [16]. On the other

hand, a self-similar magnetoresistance, due to the

presence of a quasiperiodic arrangement of the

system, can open new possibilities in reading/

writting magnetic sensors [13]. The aim of this

work is to investigate the influence of the anisot-

ropy (cubic or uniaxial) on the self-similar pattern

of the magnetoresistance curves of Fe/Cr Fibon-
acci multilayers.

Let us now briefly describe a Fibonacci struc-

ture. In order to construct a Fibonacci magnetic

multilayer we juxtapose two building blocks (or

layers) A and B following a Fibonacci sequence. In

our specific case we choose Fe as the building

block A, with thickness t, and Cr as the building

block B (thickness d). A Fibonacci sequence SN is
generated by appending the N � 2 sequence to the

N � 1 one, i.e., SN ¼ SN�1SN�2 (N P 2). This con-

struction algorithm requires initial conditions

which are chosen to be S0 ¼ B and S1 ¼ A. Thus,
for example, the well known trilayer Fe/Cr/Fe is

the magnetic counterpart of the third Fibonacci

generation sequence S3 ¼ A=B=A and the magnetic

counterpart for the fifth Fibonacci generation se-
quence S5 ¼ A=B=A=A=B=A=B=A is Fe/Cr/Fe/Fe/

Cr/Fe/Cr/Fe, respectively. We remark that only

odd Fibonacci generations have a magnetic

counterpart because they start and finish with an A
(Fe) building block.

We consider the ferromagnetic films with mag-

netization in the xy-plane and take the z-axis as the
growth direction. The very strong demagnetization
field generates by tipping the magnetization out of

plane will suppress any tendency for the magneti-

zation to tilt out of plane. The global behavior of

the system is well described by a simple theory in

terms of the magnetic energy per unit area [17],

i.e.:

ET ¼ EZ þ Ebl þ Ebq þ Ea; ð1Þ
where EZ is the Zeeman energy, Ebl is the bilinear

energy, Ebq is the biquadratic energy and Ea is the

anisotropy energy, which can be cubic or uniaxial.

More explicitly, for n magnetic films we have,

ET

tM
¼

Xn

i¼1
ðti=tÞf�H0 cosðhi � hHÞ þ Eag

þ
Xn�1

i¼1
f�Hbl cosðhi � hiþ1Þ

þ Hbq cos
2 ðhi � hiþ1Þg; ð2Þ

where t and M are the thickness and the saturation

magnetization of a single Fe layer (the basic tile).

Also, Hbl is the conventional bilinear exchange

coupling field which favors antiferromagnetic

alignment (ferromagnetic alignment) if negative

(positive). We are concerned here to the case
Hbl < 0 because magnetoresistive effects occur only

for this case. The biquadratic exchange coupling

Hbq is responsible for a 90� alignment between two

adjacent magnetizations and is experimentally

found to be positive [12]. We consider H0 as an

external in-plane magnetic field and hH is its an-

gular orientation. From now on we take hH ¼ 0

which means that the magnetic field is applied
along the easy axis. The thickness and the angular
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orientation of the ith Fe layer are given by ti and
hi, respectively. The explicit form for the anisot-

ropy energy Ea be uniaxial is,

Ea ¼ �
Xn

i¼1
ðti=tÞ

Hua

2
cos2 ðhi � huaÞ: ð3Þ

For cubic anisotropy energy Ea, we have:

Ea ¼
Xn

i¼1
ðti=tÞHca sin

2 ð2hiÞ: ð4Þ

From a theoretical point of view, the spin-depen-

dent scattering is accepted as responsible for the
GMR effect [18]. It has been shown that GMR

varies linearly with cosðDhÞ, when electrons form a

free-electrons gas (there is no barriers between

adjacent films) [19]. Here Dh is the angular differ-

ence between adjacent magnetizations. In metallic

systems like Fe/Cr, this angular dependence is

valid and thus we ought to determine the set fhig
of equilibrium angles in order to obtain normal-
ized values for magnetoresistance from [13],

RðH0Þ
Rð0Þ ¼

Xn�1

i¼1

1� cosðhi � hiþ1Þ
2ðn� 1Þ ; ð5Þ

where Rð0Þ is the resistance at zero field.

The set fhgi of equilibrium angles is calculated
numerically by minimizing the magnetic energy

given by Eq. (2). For that purpose we use two

methods, namely, the simulated annealing and the

gradient methods (see [13] for descriptions). The

simulated annealing method is based on the fact

that heating and then cooling a material slowly

brings it into a more uniform state, which is the

minimum energy state. In this process, the role
played by a pseudo temperature T is to allow the

configurations to reach higher energy states with

probability p given by the Boltzmann law

p ¼ expð�DE=kT Þ, where DE is the energy differ-

ence. Energy barriers, that would otherwise force

the configurations into local minima, can then be

overcome. On the other hand, the gradient method

is based on finding the directional derivative of the
magnetic energy in the search for its global mini-

mum in the n-dimensional space composed of the

variables fhgi. It is the gradient of the magnetic

energy with relation to the angles that provides the

direction, and eventually the location, of the re-

quired global minimum. Both cited methods are

used for each value of the applied magnetic field

and for each set of magnetic parameters. We

choose the configuration with the lowest energy

provided by both methods as giving the equilib-
rium configuration fhgi.

Now we present numerical calculations for the

magnetoresistance curves for Fibonacci multi-

layers. We assume two specific situations: (i) the

system presents a cubic anisotropy energy [20]

and (ii) the system presents a uniaxial anisotropy

energy (that for simplicity we consider hua ¼ 0)

[14]. We chose the biquadratic and bilinear fields,
Hbq and Hbl, in such a way that the absolute

value of their ratio r ¼ Hbq=jHblj is between zero

and the unit.

Magnetoresistance curves found for the (a)

third, (b) fifth and (c) seventh Fibonacci genera-

tions are shown in Fig. 1. We assumed r 	 0:33
and a cubic anisotropy field Hca ¼ 0:5 kOe (see

[13,17]). For N ¼ 3 one can see two first order
phase transitions at H1 	 100 Oe and H2 	 220 Oe.

There are three magnetic phases: (i) antiferro-

magnetic (H0 < 100 Oe); (ii) 90� phase (100 <
H0 < 220 Oe); and (iii) saturated phase (H0 > 220

Oe). N ¼ 5 presents four first order phase transi-

tions at H1 	 100 Oe, H2 	 150 Oe, H3 	 220 Oe,

and H4 	 440 Oe. Five magnetic phases are pre-

sent: (i) antiferromagnetic phase (H0 < 100 Oe);
(ii) almost antiferromagnetic phase (100 < H0 <
150 Oe); (iii) 90� phase (150 < H0 < 220 Oe); (iv)

almost saturated phase (220 < H0 < 440 Oe); and

(v) saturated phase (H0 > 440 Oe). For N ¼ 7

there are nine first order phase transitions between

H1 	 40 Oe and H8 	 440 Oe. Eight magnetic

phases are present from the antiferromagnetic

phase (H0 < 40 Oe) to the saturated one (H0 > 440
Oe). Our numerical results recover the results of

Ref. [13] and they show a beautiful self-similar

pattern of the magnetoresistance curves which is

associated with the strong value of the biquadratic

coupling [13].

In Fig. 2 we show the magnetoresistance curves

for the (a) third, (b) fifth and (c) seventh Fibonacci

generations with r 	 0:1 and a uniaxial anisotropy
field Hua ¼ 0:5 kOe (see [14,15]). For N ¼ 3, as

before, the magnetizations in adjacent layers are
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antiparallel at low fields (antiferromagnetic phase).

As the external magnetic field increases, a first

order phase transition occurs (at 	0.8 kOe) and a
spin-flop phase emerges [15]. The saturated phase

is reached at H0 	 1:9 kOe. For N ¼ 5, there are

four magnetic phases from antiferromagnetic

phase (H0 < 1:0 kOe) to the saturated one

(H0 > 2:9 kOe). There are first order phase tran-

sitions at H0 	 1:0 kOe and H0 	 1:6 kOe. When

N ¼ 7 there are three first order phase transitions

at H0 	 0:5, 1.0 and 1.6 kOe. Five magnetic phases
are present from antiferromagnetic phase

(H0 < 0:5 kOe) to the saturated one (H0 > 3:0
kOe). Although the biquadratic field is weak when

compared to the bilinear one (r 	 0:1) a self-simi-

lar pattern is again present in the curves.

Another set of magnetoresistance curves is

shown in Fig. 3, taking a larger biquadratic ex-

change (r 	 0:7) and other parameters as in Fig. 2.
For N ¼ 3, due to the strong Hbq the adjacent layer

magnetizations are only approximately antiparal-

lel at low field (corresponding to an asymmetric
phase [15]). A first order phase transition occurs at

H0 	 0:4 kOe to a spin-flop phase and saturation is
reached at H0 	 4:3 kOe. For N ¼ 5 all transitions

appear continuous (second order phase transi-

tions) and saturation is reached at H0 	 6:4 kOe.

For N ¼ 7 there appears to be a first order phase

transition at H0 	 0:15 kOe and saturation is

reached at H0 	 6:6 kOe. For this set of parame-
ters, although there is a strong biquadratic field,

there is no self-similar pattern at all! One can
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Fig. 1. Magnetoresistance versus applied field H0 for the (a)

N ¼ 3, (b) N ¼ 5 and (c) N ¼ 7 Fibonacci generations. The

parameters are r 	 0:33 and a cubic anisotropy field Hca ¼ 0:5

kOe.
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Fig. 2. As in Fig. 1 with physical parameters r 	 0:1 and a

uniaxial anisotropy field Hua ¼ 0:5 kOe.
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conclude that the presence of the uniaxial aniso-

tropy changes the nature of the phase transitions.

Moreover, it means that the presence of first order

phase transitions is a necessary condition for a
self-similar pattern in the observable of these

quasiperiodic multilayers.

In conclusion, we have modeled the magneto-

resistance versus applied field curves of Fe/Cr Fi-

bonacci multilayers including both bilinear and

biquadratic exchange couplings. The role of cubic

and uniaxial anisotropies is studied. One can see a

self-similar pattern in the system when most tran-
sitions are of the first order type. Specifically, the

magnetoresistance curves of higher generation N
reproduce some aspects of the magnetoresistance

curves of lower generation N � 2. By contrast,

when most of the transitions are second order

type, there is no apparent self-similarity. We can

conclude that the lower symmetry of uniaxial

anisotropy changes the nature of the phase tran-

sitions and consequently the conditions for a self-

similar pattern to occur in the magnetoresistance

curves.
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