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Abstract

The negative electron affinity (NEA) peak of differently terminated and oriented diamond surfaces is investigated
by means of ultraviolet photoemission spectroscopy. Electron emission measurements in the range below the
conduction band minimum (CBM) up to the vacuum level Evac permit the quantitative calculation of the upper limit
of the NEA value. The inelastic scattering at the surface to the vacuum interface and the emission of electrons from
the unoccupied surface states, situated in the band gap, are the mechanisms responsible for explaining this below
CBM emission. All the H-terminated diamond surfaces present NEA. However, the characteristic NEA peak observed
in the spectra is only detected for the (100)-(2×1):H surface and to a lesser extent for the (110)-(1×1):H surface,
while it is absent for the (111)-(1×1):H surface because of the k||-conservation in the photoemission process. © 1999
Published by Elsevier Science B.V. All rights reserved.

Keywords: Diamond; Electron emission; Hydrogen; Low index single crystal surfaces; Photoelectron spectroscopy; Surface electronic
phenomena; Surface structure

1. Introduction electrons excited into the conduction band can
easily escape into the vacuum. The attractive NEA
property of diamond surfaces has gained a lot ofElectrons in the conduction band are generally
interest in recent years as a result of its potentialprevented from escaping into the vacuum by the
application as a low-voltage field emission deviceelectron affinity barrier x. However, the diamond
[7–10], or as a surface channel field-effect transis-(100), (110) and (111) surfaces are known to
tor [11,12]. The diamond-based devices show evenexhibit a negative electron affinity (NEA) when
better characteristics owing to a hydrogen ter-terminated with hydrogen [1–6 ]. NEA is defined
mination, inducing a NEA behavior [13–15]if the vacuum level Evac lies below the conduction
Field-emission measurements [8–10] on nitrogen-band minimum (CBM ) at the surface and, hence,
doped diamond show threshold fields less than
0.5 V mm−1. The mechanism of emission and the
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hydrogen plasma at 870°C at a hydrogen pressure
of 40 mbar in order to smooth and to clean the
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mond cathodes based on the enhancement of
electric fields at metal–diamond–vacuum triple
junctions. They explained the mechanism as surface [6,17]. After the microwave hydrogen

plasma treatment, the surface roughness of theelectrons tunneling from a metal into diamond
surface states where they are accelerated to energies crystals is less than 10 Å RMS [6 ].

The surfaces present no surface contaminationsufficient to be ejected into vacuum. For a better
understanding of the emission process and its ( less then 0.5 at.% of oxygen which is the detection

limit of the technique) as shown by the MgKaoptimization for the synthesis of thin diamond
films, the exact determination of the NEA peak as X-ray photoelectron normal emission overview

spectrum [4,18,19]. Even after several weeks expo-well as the NEA value as a function of surface
termination and surface orientation are of prime sure to air, the surfaces present no surface contami-

nation. The so-treated hydrogen-terminated (100)importance.
In this work we present an investigation of the surface presents a (2×1) reconstruction as shown

by the low energy electron diffraction (LEED)NEA peak as well as quantitative NEA values of
the different terminated and oriented diamond pattern [4,17] and by the atomic resolution scan-

ning tunneling microscopy (STM ) images [6,20].surfaces. We discuss the presence of the NEA peak
combined with the k||-conservation in the photo- The hydrogen-terminated (111) surface shows a

(1×1) reconstruction as shown by very high qual-emission process. We demonstrate that for
differently oriented diamond surfaces, the NEA ity LEED patterns [21] and by the atomic reso-

lution STM images [6,21]. Finally the hydrogen-peak is present when the k||-conservation in the
photoemission process is satisfied. We will further terminated (110) surface has a (1×1) reconstruc-

tion as shown by the LEED patterns [21].show that NEA is not only limited to hydrogen
termination, but also a hydrogen oxide at the
surface can even result in a stronger NEA in
agreement with calculations. 3. Results and discussion

In Fig. 1 we present the low kinetic energy part
of the He I normal emission spectra of the2. Experimental methods
hydrogen-terminated diamond (100), (110) and
(111) surfaces. The numbers in the graph presentThe hydrogen plasma cleaned crystals [6,17] are

mounted on a heatable (up to 1200°C) sample the cutoff energy position with extrapolation to
zero intensity estimating an error of 0.1 eV. Thisholder. They are transferred to a VG ESCALAB

Mk II spectrometer with a base pressure of error value is estimated from the error for the
determination of the energy position and by the2×10−11 mbar, equipped with a MgKa (hn=

1253.6 eV ) anode and a helium discharge lamp reproduction of the results (surface preparation)
[6 ]. At low kinetic energies the hydrogen-termi-(He I, hn=21.2 eV ). The energy resolution is at

its best 0.9 eV for X-ray photoelectron spectro- nated (100), (110) and (111) surfaces show a high
intensity with the spectra cutoffs at 3.9, 3.9 andscopy ( XPS) and 35 meV for ultraviolet photo-

electron spectroscopy ( UPS) with He I radiation. 4.2 eV, respectively. The cutoff energy position for
the H-free surfaces is situated at higher kineticThe diamond substrates used in this study are

boron-doped, natural type IIb (B-doped, energies around 5 eV [6,18]. The NEA-peak char-
acterizing the electrons from the CBM, determinedNA=1016 cm−3) (100), (110) and (111) crystals.

They are oriented within 3° of the crystallographic at 4.9 eV in the UP spectrum by extrapolation to
zero intensity, is only observed for the (100)-planes and the surface roughness of the as-received

crystals is more than 2 nm RMS [17]. Our natural (2×1):H surface and to a lesser extent for the
(110)-(1×1):H surface while it is absent for thediamond surfaces were mechanically polished by

Meyer AG (Anton Meyer & Co. Ltd, Biel, (111)-(1×1):H surface. The NEA peak with its
cutoff extrapolated to zero intensity corresponds,Switzerland) and afterwards cleaned by microwave
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below the NEA peak we measure a low kinetic-
energy peak or shoulder with an abrupt cutoff
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situated below the CBM. This abrupt cutoff can
be due to the fact that the vacuum level is situated
at this position. By secondary electron-emission
spectroscopy, Yater et al. [22] also observed this
low kinetic energy shoulder for the caesiated dia-
mond (100) surface. They suggested that for a
strong NEA, low kinetic-energy electrons at the
surface which populate energy levels below the
CBM can still be emitted into the vacuum. The
inelastic scattering at the surface to the vacuum
interface and the transitions of electrons from the
CBM to unoccupied surface states, situated in the
band gap, are potential possible mechanisms [22].Fig. 1. Low kinetic-energy part of the He I (hn=21.2 eV )
The direct excitation from the valence band isnormal emission spectra of the H-terminated boron-doped dia-

mond (100), (110) and (111) surfaces. The energy scale is cor- another possible mechanism to populate the un-
rected for an applied bias voltage of −1.5 V to overcome the occupied surface states. A non-uniform hydrogen-
work function of the analyzer. The inset shows a energy band terminated surface resulting in two peaks (reflect-
diagram for the boron-doped (100)-(2×1):H diamond surface.

ing regions with different pinning positions of theThe values are estimated to lie within an error value of 0.1 eV.
surface Fermi level ) is less possible. First, youThe values from the literature are written in italic style, the

calculated values in plain style and the measured values in have to observe the different pinning positions of
bold style. the surface Fermi level with core level photo-

electron spectroscopy. Secondly, the two compo-
nents of the NEA peak and of the C 1s core leveltherefore, to the position of the CBM at the surface

and will be used for the following calculations of have to show the same proportions. The first
aspect is observed for all three orientations wherethe electron affinity value. Subtracting the energy

distance from the Fermi level EF to the CBM a shoulder at higher binding energies is observed
[18]. In effect, the second condition is only partly(EF−CBM=4.9 eV ) and the band gap (5.5 eV ),

we obtain 0.6 eV for the energy distance from the satisfied for the (100) surface while it fails for the
(110) and (111) surfaces. Another indication isvalence band maximum (VBM) to the Fermi level

EF (i.e. VBM−EF). The determined energy dis- that for the (111) surface we should not measure
photoelectrons at low kinetic energies in order totance VBM−EF is in agreement with earlier He II

measurements [4]. The determination of the VBM satisfy the conservation of the parallel wave vector
component (k||) in photoemission discussed below.position in the He II parts of the spectra is only

correct provided that there are no occupied surface The NEA peak consists of low kinetic-energy
electrons with diffusion lengths between 150 andstates and that states near the C-point of the bulk

Brillouin zone (BZ) are probed. The diamond 250 mm [23] and, therefore, it contains bulk and
surface contributions submitted to the(100)-(2×1):H surface is known to have no occu-

pied surface states near EF [18], states near the k||-conservation in photoemission. The low kinetic-
energy peak or shoulder below the NEA peakC-point of the bulk BZ are probed and, therefore,

the determination of the VBM for this surface consists only of low kinetic-energy electrons emit-
ted from the surface (by inelastic scattering or bytermination is possible. Calculations [6 ] predict

the bulk Fermi level at 0.30 eV above the VBM emission from surface states). On one side,
subtracting the NEA peak, the low kinetic-energyand therefore a downward band bending of 0.3 eV

can be deduced [6 ] as shown in the inset of Fig. 1. spectrum is similar to the background resulting
from secondary electrons due to the inelastic scat-The low kinetic-energy electron emission

spectrum of the (100)-(2×1):H surface shows that tering at the surface to the vacuum interface. This



Table 1
Upper limit of the negative electron affinity (NEA) value x and
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hypothesis fits well for the (110) and (111) surfaces
and partly for the (100) surface. The intensity of

of the work function w for the differently terminated and ori-
the background only increases as a function of the ented diamond surfaces determined in the low kinetic-energy
applied bias voltage (to overcome the work func- part of the normal emission He I spectra from Figs. 1 and 3
tion of the analyzer) due to the increased field

NEA [eV ] w [eV ]between sample and analyzer. The photoelectron
emission from the unoccupied surface states would B-doped C(100)-(2×1):H −1.0 3.9
not increase so strongly as a function of the applied B-doped C(111)-(1×1):H −0.9 4.2

B-doped C(110)-(1×1):H −1.0 3.9bias voltage. On the other side, for the (100)
B-doped C(100)-(2×1):OH −1.1 3.8surface, the low kinetic-energy peak below the

NEA peak also includes photoelectron emission
from unoccupied surface states. Transitions of

(111) surfaces, the obtained maximal NEA valueselectrons from the CBM or the direct excitation
are −1.0, −1.0 and −0.9 eV, respectively. Forfrom the valence band to the unoccupied surface
the (111) surface, the band bending is only 0.1 eVstates, situated in the band gap, seem to be the
and therefore we would expect the CBM at 5.1 eVmost probable mechanisms. An indication for this
[6 ]. These results show that the absolute NEAis that the lowest unoccupied surface states of the
values show little differences in function of the(100)-(2×1):H surface are localized at the C9 point
surface orientation. The NEA peak itself is relatedat 1 eV below the CBM [24] exactly where we
to the surface orientation of the diamond crystal.measure the sharp feature at the spectra cutoff.

To explain the behavior of the NEA peakThe occupied surface states for this surface are
observed for the H-terminated diamond surfacessituated 2.3 eV below the VBM [24,25]. For the
with different surface orientations, we show in(110)-(1×1):H and (111)-(1×1):H surfaces, the
Fig. 2 the high symmetry plane of the [011] andunoccupied surface states at the C9point are local-
[100] directions of the bulk Brillouin zone. Boron-ized at lower energies or are absent, respectively
doped diamond is a semiconductor with an indirect[26,27]. Using a band mapping method Jiménez
band gap, which can affect the escape probabilityet al. [28] determined the width of the valence

band to be 23 eV. These measurements encourage
the mechanism of direct excitation from the
valence band to the unoccupied surface states
using a photon energy of 21.2 eV (He I ). By
measuring these low kinetic-energy electrons, we
are always near the C9 point using the formula
given in the reference [25], and therefore, we
cannot measure the dispersion of these states.
Using photoelectron yield spectroscopy, Ristein
et al. [23] also measured photoelectrons below the
CBM, but accorded them to emission from defect
states. This is a clear indication that you can
populate these states by direct excitation from the
valence band.

Considering the low kinetic-energy cutoff as the
upper value of the vacuum level (even it can lie
below), we can deduce an upper value of the NEA

Fig. 2. High symmetry plane of the [011] and [100] directionsvalue x by the distance CBM−Evac. The obtained
of the bulk Brillouin zone. The minimum of the conduction

maximal NEA values for the differently oriented band in the CX direction is shown by stairs as well as the
diamond surfaces are shown in Table 1. For the corresponding parallel projections to the different surface

normal.H-terminated B-doped diamond (100), (110) and
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of electron emission for different oriented diamond in Fig. 3. The OH-terminated (100) surface was
obtained by a hydrogen/oxygen plasma and thesurfaces. The CBM is at kmin=0.76kx in the [100]
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direction [29] where kx is the zone boundary surface shows the same (2×1) reconstruction as
for the H-terminated surface. The oxygen coveragewavevector. For the (100) surface electrons from

the CBM arrive with a zero k|| while for the (111) was checked by core level photoemission. The
maximal NEA value for the OH-terminated (100)surface CBM electrons arrive with a large k||

(Fig. 2). Kane et al. [30,31] established a one- surface is −1.1 eV, 0.1 eV higher than for the
H-terminated surface. A similar phenomenon iselectron escape model of electron emission from a

perfect surface and required in this model not only known for the Cs–O-terminated diamond surface
[38]. A surface with different regions that arethe conservation of energy, but also the conserva-

tion of k||. In addition, k||-conservation of NEA partially O- and H-terminated would show a lower
NEA peak and the spectra cutoff at higher kineticsurfaces acts in some cases as a barrier to low

kinetic-energy electrons with large k||. Bandis et al. energies than for the fully hydrogen-terminated
surface. Generally we have done the plasma treat-[32] have analyzed this constraint for the diamond

(111) surface and found that x must be less than ments for more than 1 h, always resulting in uni-
form terminated surfaces [17]. Agreement between−4.55 eV in order to satisfy the energy and

k||-conservation. However, for the (111) surface, our measurements and the calculations by Rutter
and Robertson [35] is not found for the absolutex is above −4.55 eV, and therefore the electrons

are totally internally reflected at the diamond– NEA values, but is found for the electron affinity
change between the H-saturated and H-free ter-vacuum interface. We have calculated this con-

straint for the (111) and (110) surfaces and found mination as well as for the electron affinity differ-
ence between H- and OH-termination. For the H-that x must be less than −4.32 eV and less than

−0.68 eV, respectively, in order to satisfy the and OH-terminated (100) surfaces, the calculated
values are −2.05 and −2.13 eV [35], while theenergy and k||-conservation in photoemission.

Indeed, for the (110)-(1×1):H surface, x is less measurements from Fig. 3 reveal NEA values of
−1.0 and −1.1 eV, respectively. The absolutethan −0.68 eV and therefore we observe a weak

NEA peak. But the conditions, in order to satisfy NEA values do not agree, but the difference in the
NEA value (0.08 eV ) shows agreement betweenthe energy and k||-conservation, are not favorable

compared with those for the (100) surface. This
explains the fact that the NEA peak of the (110)-
(1×1):H surface is not as high as for the (100)-
(2×1):H surface.

The NEA values (−1.0 and −0.9 eV ) for the
(100) and (111) surfaces are slightly larger than
those measured by Bandis and Pate [2,33] (−0.8
and −0.7 eV ). These different NEA values could
arise from the fact that the crystals, as well as the
surface preparation methods, were not always the
same. For the (100) surface, the electron affinity
change of 2.3 eV [6 ] is similar to the one observed
by Thomas et al. [34] (2.2 eV ) and to the one
calculated by Rutter et al. [35] (2.54 eV ). But it
differs from the value observed by Cui et al. [36 ]
(1.65 eV ) and to the one calculated by Zhang et al.

Fig. 3. Low kinetic-energy part of the He I (hn=21.2 eV)[37] (3.0 eV ) who found a NEA value of −2.2 eV.
normal emission spectra of the H- and OH-terminated boron-

The low kinetic-energy part of the He I (hn= doped diamond (100) surfaces. The energy scale is corrected
21.2 eV ) normal emission spectra for the H- and for an applied bias voltage of −1.5 V to overcome the work

function of the analyzer.OH-terminated diamond (100) surfaces are shown
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our measurements and the calculations. The larger
NEA value for the OH-terminated (100) surface
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Schaller, O. Gröning, L. Schlapbach, Surf. Sci. 369(1×1):H surface because of the k||-conservation
(1996) L111.in the photoemission process.

[21] L. Diederich, Ph.D. Thesis, University of Fribourg, Swit-
zerland, 1998.

[22] J. Yater, A. Shih, R. Abrams, Phys. Rev. B 56 (1997)
R4410.

[23] J. Ristein, W. Stein, L. Ley, Phys. Rev. Lett. 78 (1997)
1803.Acknowledgements

[24] J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B 53
(1996) 7334.

The authors gratefully acknowledge P. Reinke [25] L. Diederich, P. Aebi, O.M. Küttel, E. Maillard-Schaller,
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