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Abstract

At low temperature prepared quench-condensed Cs surfaces are analysed on a nanometer scale via scanning tunneling microscopy.
The analysis of surface roughness is presented with the help of the evaluation of their autocorrelation function. In order to extract the
correct autocorrelation function we present the requirement regarding the scan resolution of scanning probe microscopy (SPM) images in
general. This is supported by a ‘numerical experiment’. Furthermore, we present some methods of deducing higher orders of autocor-
relation lengths, which are needed to evaluate SPM images with non-random distribution of roughness amplitudes. These characteristic
values of the autocorrelation function could play the key role in further statistical calculations, e.g., on how surface roughness alters the
wetting behaviour of liquid helium adsorbed on the cesium surfaces.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The characterisation of cesium surfaces is important to
understand the wetting behaviour of liquid helium on Cs
[1], since this is, in principle, an ideal model system for wet-
ting studies [2]. However, Cs is highly reactive, hence it is
difficult to access with probing instruments. Despite these
difficulties it was possible to investigate, on a sub-micron
lengthscale, the surface of in situ prepared Cs films via
scanning tunneling microscopy (STM) at low temperatures
[3].

In general, surface roughness is an inevitable property of
nearly all solid substrates (except cleaved substrates under
proper environmental conditions [4]) and so usually plays
an important role in wetting phenomena and thin film
physics. This applies, for example, for wetting experiments
where the contact angle hysteresis as function of the rough-
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ness of nano-structured surfaces are studied [5], fluid
dynamics measurements where the influence of roughness
on the no-slip boundary condition is analysed [6], theoret-
ical investigation of roughness-induced wetting [7],
increased thickness of liquid films in the presence of rough-
ness [8], scattering experiments from non-perfect liquid-
vapour interfaces (see e.g. Ref. [9]), roughness limited
mobility measurements in low dimensional charged
systems (see e.g. Refs. [10–12]), thermal fluctuation
physics (see e.g. Ref. [13]), and so on. A summary of the
common approaches of quantitative descriptions of surface
roughnesses is given in Ref. [14].

For a surface analysis we use two basic characteristics of
a one-dimensional roughness profile Z(x), where Z is the
height over a fixed zero level (usually the mean Z-value)
at the position x. One of them is the distribution function
W(Z,D) of the roughness amplitude, i.e.,Z þ1

�1
W ðZ;DÞdZ ¼ 1; hZ2i ¼ D2: ð1Þ
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For example, for a random roughness W(Z,D) is a Gauss
distribution, where D is the standard deviation with respect
to Z. The second characteristic is the autocorrelation func-
tion C(l), where

Cðx� x1Þ ¼ hZðxÞZðx1Þi with Cð0Þ w D2 and l ¼ x� x1:

ð2Þ

As the mean values of the profiles or images treated in this
paper are equal to zero C(l) could also be called autoco-
variance function [14]. A purely random roughness, in
sense of the spatial distribution of surface heights, leads
to an autocovariance function with the shape of a delta
function centered at the origin [14,15]. Definitions (1) and
(2) correspond to the so-called ‘normal’ randomness, where
the roughness properties are translationally invariant.
To be as simple as possible we use ‘one-dimensional’
definitions.

The aim of this paper is the analysis of STM measure-
ments concerning the roughness properties, as defined in
Eqs. (1) and (2), of in situ and at low temperature prepared
cesium surfaces. We complement the experimental data by
methodical considerations which help to classify scanning
probe microscopy (SPM) measurements. In most cases of
autocorrelation analysis so far only the initial portion of
the autocorrelation function is evaluated, e.g., fitted [16].
We investigate the further development of the curve and
extract, for example, higher orders of correlation lengths.
These efforts are needed to investigate SPM data which
have a non-random distribution of roughness amplitudes,
as many images of scanned surfaces show the existence of
more than one correlation length. Under these points of
view we structure the paper as follows:

In Section 2 we discuss how accurate the profile mea-
surements have to be in order to extract the correct corre-
lation length c from the experimental data. Intuitively, the
measuring distance should be less than the correlation
length. But in the beginning of the measurements there is
no information about the real scale of c. Therefore it is
useful to have a reliable method for optimising the mea-
surement regarding the necessary resolution. The develop-
ment of these considerations helps to formulate details of
fitting STM data in presence of several correlation lengths.

In Section 3 we apply the obtained methodic rule to the
real surface data from the STM images of quench-con-
densed cesium films. The analysis of these data shows that
Fig. 1. STM image of a Cs surface with a side length of s = 660 nm. The white l
has a height-to-length ratio of 1:20. The line consists of 256 sample points wh
a formalism with just one correlation length is not enough
to explain the details of STM measurements. Hence, we
need a more complicated scenario for a better understand-
ing of the qualitative progression of the curve of the auto-
correlation function.

2. Optimisation of scanning probe microscopy measurements

(A): As it was indicated in the introduction we will sup-
port the correlation analysis of STM data with some kind
of numerical ‘experiment’, and so to illustrate the optimal
conditions for extracting the autocorrelation function. To
motivate the following procedure we show in Fig. 1 an
experimental STM image of a cesium surface, which will
be analysed in Section 3, and a profile Z(x) corresponding
to the position marked with the white line.

For a systematic study we replace the profile with a sim-
ple analytic definable function which has a random compo-
nent, though: a so-called random telegraph function. The
simplest version consists of only two amplitudes: Z+ =
+1 and Z� = �1. The position where the sign changes
are determined by a process described below. For a better
comparability with an experimental profile several random
telegraph functions could be summed up to get many differ-
ent amplitudes. However, the simplest version is sufficient
for a correlation analysis and our numerical ‘experiment’.
An example of a possible Z(x) for the simplest case is
shown in Fig. 2a:

ZðxÞ ¼ ð�1ÞnðxÞ; ð3Þ

where n(x) is created in the following way: We generate
N = 50 random real numbers within the interval s = 50
unit lengths (UL), which is the length of the investigated
profile. These random numbers are sorted by size. Hence,
we form a discrete Markov chain which contains correla-
tions [17,18]. The sorted numbers are taken as the x-values
where n(x) increases by one, see for example Fig. 2b, and
where, according to Eq. (3), Z(x) changes its sign, see
Fig. 2a.

So N is the total number of points, where the profile sign
changes, and m = N/s is the value of the average slope of
n(x) and thus the average number of changes in sign of
the profile per UL. We will use this parameter later on.
To improve the statistical distribution we take 40 profiles
with the same parameters, but different random numbers,
ine indicates the position of the profile Z(x) shown on the right. The profile
ich hence have a distance of about 2.6 nm.



Fig. 2. (a) An example of the so-called telegraph function Z(x), see Eq. (3), with the n(x) as shown in (b). (b) An example of n(x). The x-values are
randomised and sorted by size (Markov process [17]).
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and we will average the resulting autocorrelation functions
of each profile.

The autocorrelation function of Z(x) is analytically
established [18]:

hZðxÞZðx1Þi ¼ D2 exp � 1

c
ðx� x1Þ

� �
; ð4Þ

where x P x1. In these terms the correlation length c is that
l-value where C(l) has decreased to 1/e (�37%) and D is the
value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlÞjl!0

p
, which conforms the standard deviation

from Definitions (1). Hence, we have c = 0.5 UL and
D = 1.

Now we investigate, on the basis of our test profile Z(x),
how dense a set of selective points has to be in order to ex-
tract with sufficient accuracy the autocorrelation function
from the profile. We fix a set of selective points
Mð b¼sampling pointsÞ along the profile length and sample
Z(x) from Eq. (3) at these points. So we get a ‘virtually
measured’ profile Z 0(x), which is used for the calculation
of the correlation length, as explained below. M corre-
sponds to the set resolution of a scanned line of a SPM im-
age. This sampling accuracy is given in a more general way
by the sampling points per UL: m(=M/s) divided by m. In
the following we will use the three ratios (with m = 1):

m=m ¼ 10; M ¼ 500; ð5Þ
m=m ¼ 1; M ¼ 50; ð6Þ
m=m ¼ 0:1; M ¼ 5: ð7Þ
Fig. 3. (a) Approximated surface profile Z 0(x) for case (5), i.e., m/m = 10.
Fig. 3a and b show the resulting profiles Z 0(x) for the
cases (5) and (6). In Fig. 3a the original profile is reflected
quite well, whereas in Fig. 3b much less details are shown.
The third case describes the approximated profile with only
six points (not shown), which are obviously too few to
show any structure and just lead to an almost flat surface.

By definition, C(l) can be extracted from the ‘measured’
data Z 0(x) using the corresponding Fourier analysis:
Z 0ðqÞ ¼ 1

2p

Z þ1

�1
Z 0ðxÞ eiqx dx; ð8Þ

CðlÞ ¼
Z þ1

�1
ðZ 0ðqÞÞ2e�iql dq: ð9Þ
For a C(l), which fulfils the requirements as described in
the introduction, the distance between the ‘numerical’
points has to be small compared to the correlation length.
If we use the ratio of parameters from Eqs. (5)–(7), i.e., a
finite number of sampling points, then the integrals (8)
and (9) will exchange into discrete sums with the lower
and upper limits �M/2 and +M/2, respectively. In this
way, we receive autocorrelation functions as presented in
Figs. 4 and 5. In these diagrams we can see that for the case
(5) the autocorrelation function has the expected structure,
since the exponential decay can be recognised. So there are
enough points between zero and c (dotted line in the inset
of Fig. 4 and in Fig. 5). Theoretically the autocorrelation
function should exponentially approach zero. The limited
(b) Approximated surface profile Z 0(x) for the case (6), i.e., m/m = 1.



Fig. 4. Autocorrelation function C(l) plotted in linear scale versus
distance l for the three cases (5)–(7). The full range of l is plotted, which
is the half of s and the maximum distance of two points, so that each point
has an associate partner to correlate with. Inset: Zoomed in view of C(l).
The correlation length c = 0.5 UL is drawn in (dotted line). If there are too
few measure points one gets an artificial c* that is too long, e.g., for
m/m = 1: c�lin ¼ 0:75 UL (dash-dotted line), for m/m = 0.1: c�lin ¼ 7:25 UL
(out of range).

Fig. 5. Zoomed in autocorrelation function C(l) (from Fig. 4) in natural
logarithmic scale for the three cases (5)–(7). It is clearly visible that the
beginning decay is exponential with a characteristic length c = 0.5 UL
(dotted line). c corresponds to the negative, reciprocal slope in the natural
logarithmic plot. With too big measuring steps (m/m = 1) the exponential
fit leads to an artificial correlation length c�exp ¼ 0:55 UL (dash-dotted
line). For m/m = 0.1: c�exp ¼ 5:0 UL (out of range).
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number of 50 points and the limited length of the profile
lead to noise and oscillations given by boundary effects
around zero.

The natural logarithm of the autocorrelation function
can be approximated, in the interval 0 6 l 6 1, as a linear
function with slope �2 (see Fig. 5). This behaviour is in
agreement with the analytical definition, Eq. (4), with
c = 0.5 UL.

For case (6) we can see that the autocorrelation function
in the inset of Fig. 4 (2nd curve) has a correlation length
smaller than the distance between the neighbour ‘experi-
mental points’ (dash-dotted line). If we just connect the
first two points with a straight line and take the position
where this line crosses the 37% line as correlation length,
we see that c has been shifted to higher values and, hence,
has become an artificial correlation length c*. In the linear
graph we get c* � 0.75 UL. In the logarithmic graph there
is a less dramatic change from c = 0.5 UL to c* � 0.55 UL,
since here a straight line contains already an exponential
fit.

The results for condition (7) are shown in Fig. 4 (3rd
curve). There are only three points calculated from the
originally constructed profile Z(x), which leads to a very
high c* � 7.25 UL in the linear plot and c* � 5.0 UL in
the logarithmic plot.

We observe the following tendency: if the measuring
step Dx is greater than c, the artificial correlation length
c* increases with increasing Dx. So the intuitive condition
Dx < c has been confirmed. Deducing the autocorrelation
function with parameters m/m between 1 and 10 and com-
paring the resulting correlation lengths we can give a more
quantitative result: For Dx < 0.2c the deviation of the arti-
ficial correlation length c* from the analytically determined
c is less than 1.5%, and for 0.2c < Dx < c the deviation is up
to approximately 6%. If we remember the definitions of the
parameters, we can formulate a methodic rule: To be sure
to achieve a reasonable definition of c (±�1.5%) extracted
from SPM data, it is necessary to assure that

Dx < 0:2c() 5 or more datapoints in the interval ½0; c�:
ð10Þ

If this condition is not fulfilled, one has to increase the
number of sampling points, i.e., the scan resolution
(decreasing Dx) in order to optimise the SPM measure-
ment. This sort of quality check of SPM images could be
directly integrated in the SPM control software. So it could
indicate, even after only a few scanned lines, if the resolu-
tion is sufficient for a correct autocorrelation analysis.

(B): After optimisation of the analysis we can formulate
a guidance for the extraction of several correlation lengths,
as it is necessary for SPM imaged surfaces with non-ran-
dom distribution of roughness amplitudes. The first and
quite general way is the systematic analysis of STM data
using monotonously increasing intervals Dx. Under the
assumption of two autocorrelation lengths c1 and c2, with
c1 < c2, and the result from Section 2A the following pro-
cess is quite intuitive. Starting with an interval Dx1 < c1

we know now that the autocorrelation function and c1

can be correctly determined. Increasing the interval to
Dx2 with c1 < Dx2 < c2 we lose the information about the
first, short autocorrelation length c1, but we are now able
to extract the second, longer autocorrelation length c2.
Further increasing to Dx3 > c2 > c1 would only lead to arti-
ficial correlation lengths as shown in Section 2A.

The second possibility to analyse data with several ci is
less general, but more powerful. We fit the autocorrelation
function of an STM image, using a supplemented version
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of the random telegraph function, eZðxÞ, of which the auto-
correlation function is deduced. For this purpose we com-
bine the telegraph function, Eq. (3), with a sinusodial
function in the following way:

eZðxÞ ¼ ð�1ÞnðxÞ þ c sin p
2p
s

x
� �

; ð11Þ

where c is the amplitude of the overlayed periodic struc-
ture, p is the number of periods and we remember s as
the profile length. Thereby we do not get a correlation
length defined by a decay of C(l) to 1/e, but a characteristic
length, which for periodical structures is also called corre-
lation length. With Eq. (11) c2 is calculated as s/p.

A simpler way to extract a characteristic length is to
look for local maxima of the autocorrelation function. Pro-
nounced maxima point to a periodicity of the surface struc-
ture. This will be demonstrated and applied on series of
cesium images at the end of the next chapter.

3. STM data and their interpretation

In this section we present STM data of several quench-
condensed cesium surfaces. These surfaces are in situ
prepared in an evacuated experimental cell at low temper-
atures [3] (the pressure at the pump outside the cryostat is
in the order of 10�8 mbar, but since the walls of the cell are
at 4.2 K, they act as a cryogenic pump and hence the
vacuum in the cell is much less). As mentioned in the intro-
duction Cs is, in principle, an ideal substrate for wetting
studies with liquid helium [2]. Merely the surface roughness
gives reason for complicating the wetting behaviour and
therefore its characterisation is important [1].

Fig. 6 shows a cesium surface that was evaporated at
14.5 K. In a chemical reaction, driven by a high current
through a Cs dispenser, cesium atoms are released and
deposited on HOPG or mica substrates. During the evapo-
ration the temperature rises up to 80 K, but afterwards
cools down again to its starting value in about 30 min.

Before analysing the topography of the imaged Cs
surfaces, we have to discuss the reliability of the images
themselves. SPM techniques have to be regarded as two
Fig. 6. (a) STM image with a side length of s = 660 nm of cesium evaporated o
height is 22.1 nm (from black to white). Tunneling current: 40 nA, tunneling bia
a better view of the structure of the surface.
surfaces, one of the tip and one of the sample, which are
scanning each other [19]. If, for example, the curvature of
the features of the sample surface is smaller than the curva-
ture of the tip, the scanned image at this position will be
dominated by the shape of the tip. We believe that this ef-
fect is negligible in the STM image shown in Fig. 6, since
the tip is able to resolve the small valleys between the is-
lands, which have a width of approximately 10 nm (so fea-
tures below 10 nm could hardly be imaged). In our case
most features have sizes of the order of 40–60 nm and
should therefore be quite well reproduced.

The histogram of the roughness distribution of this
cesium surface (Fig. 6) is presented in the inset of Fig. 7.
The data are fitted with the statistical defined W(Z), see
Eq. (1), here in the form of a Gaussian distribution, i.e.,

W ðZÞ ¼ 1

ð2pD2Þ1=2
exp �ðZ � ZosÞ2

2D2

 !
; ð12Þ

where the standard deviation D is equal to 2.09 nm. Zos is
an horizontal offset value, which exists because we set, for
an uniformly treatment of the images, the mean value of all
heights to zero (instead to set the value with the highest fre-
quency to zero as it is done often).

The histogram gives only information about the fre-
quency of the different heights that appear in the image.
The fact that the Gaussian distribution fits quite well ar-
gues for a random distribution of roughness of this cesium
surface. We will compare this result with the correlation
properties below.

The autocorrelation function of this surface can be
extracted from the single scan lines ð b¼Z 0ðxÞÞ of Fig. 6 by
using Eqs. (8) and (9) and subsequent averaging. Fig. 7
shows the corresponding C(l) of Fig. 6. Also drawn in is
the correlation length where the correlation decays to
roughly 37% (i.e., 1/e). An evaluation of the image perpen-
dicular to the scan direction has to be considered with cau-
tion. If the STM image has not a perfect quality, artefact
lines could noticeably distort the autocorrelation function.
During averaging in scan direction such a line can be con-
sidered as negligible, but in the perpendicular direction
n HOPG at 14.5 K (heated up to 80 K during evaporation). The range of
s: 180 mV. (b) 3D view of (a). The scale of height is three times inflated for



Fig. 7. Normalised autocorrelation function of the cesium surface shown
in Fig. 6. The curve corresponds to the averaged autocorrelation function
of the lines in scan direction. Inset: Histogram of the Cs surface shown in
Fig. 6. The Gaussian fit has an x-offset of Zos = � 0.71 nm and the half of
its width is equal to Dð b¼standard deviationÞ, which is 2.09 nm.
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there would be a wrong value in all lines. So we just discuss
the evaluation of STM images in scan direction.

In order to apply the results of Section 2 we have to
compare the measuring step with the correlation length,
see Eq. (10). To demonstrate this, we count the measuring
points in the plot of the autocorrelation function (Fig. 7)
from zero to the drawn-in correlation length (dotted line).
If this number is around 5 or higher, the condition (10) is
fulfilled. Otherwise we have to increase the scan resolution,
i.e., to decrease Dx.

Furthermore, we see that the amplitude offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlÞjl!0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:19 nm2
p

¼ 2:49 nm and the standard devi-
ation in W(Z), D = 2.09 nm (see inset in Fig. 7), are compa-
rable. According to Eq. (2) this should be the case for a
random roughness distribution.

A random roughness, in the way it occurs in the random
telegraph function, has an exponential decay behaviour in
C(l). This corresponds to a description with only one char-
acteristic length c. Real cesium surfaces, however, show a
subsequent increase in the correlation, which indicates that
the surface image contains a periodicity. This suits to the
Fig. 8. (a) An example of a telegraph function with an added sinusodial func
profile with a decay correlation length and a further correlation length on a diffe
50 realisations of a profile as shown in (a) versus distance (open circles). This
squares).
roughly periodic island structure, visible in Fig. 6. There-
fore it can be described with a second correlation length
c2, and if the correlation length of the smallest measurable
structure is c1, we get c1 < c2. The overlayed structure on a
larger length scale is also responsible for the appearance of
negative correlation values.

Now we want to extract c2. The first way of extracting
correlation lengths of higher order, as described in Section
2B, is in our case not applicable. Indeed c1 and c2 are suf-
ficiently separated in length to distinguish from each other,
as we saw above. But if we increase the sampling width Dx

in such a way that c1 can not be extracted anymore, there
are too few points to extract c2 without becoming artificial.
Such a situation is demonstrated in Section 2A, i.e., the
scanned fraction of the surface is too small to have enough
sample points in the profile at this lower resolution.

So, we try to fit the details of such behaviour of C(l) with
the supplemented telegraph function, see Eq. (11), as an-
nounced in Section 2B. The sinusodial function, added to
Eq. (3), with a certain period and amplitude inserts a second
correlation, in this case a periodic one. For p = 1.9 and
c = 0.33 the generated surface profile is shown in Fig. 8a
and its autocorrelation function in Fig. 8b. This leads to
the same qualitative development of the autocorrelation
function as in Fig. 7. So we conclude that the surface in
Fig. 6 has an additional periodic correlation of the length:
c2 � s/p = 350 nm, where we remember that s is the profile
length, in this case s = 660 nm. Though c2 is rather large, it
seems reasonable as even the bare eye can recognise a super-
ordinated structure. In the lower half of Fig. 6 we see two
holes that cover several of the small islands. This corre-
sponds to a characteristic length about half of s.

Although the histogram, see inset of Fig. 7, indicates a
random distribution of roughness for the data shown in
Fig. 6, we get a different information from the correlation
analysis. The deviation of C(l) from a delta function and
even from the standard exponential behaviour, together
with the existence of a second correlation length, argue
against a normal random roughness. This confirms the
usefulness of correlation analysis in addition to the usual
histogram, see also Ref. [14].
tion with the parameters p = 1.9, c = 0.33, and m = 0.25. This results in a
rent length scale. (b) Averaged and normalised autocorrelation function of
serves as a qualitative fit for the autocorrelation function in Fig. 7 (solid



Fig. 10. Normalised autocorrelation function of the cesium surface shown
in Fig. 9. Inset: Histogram of the Cs surface shown in Fig. 9. The Gaussian
fit has an x-offset of Zos = �0.53 nm and the half of the width is equal to
Dð b¼standard deviationÞ, which is 3.83 nm.

Fig. 11. Averaged and normalised autocorrelation function of 50 profiles,
created with the parameters p = 1.45, c = 1.2, m = 0.14 and m/m = 14.29,
versus distance (open circles). This serves as a qualitative fit for the
autocorrelation function corresponding to the cesium surface shown in
Fig. 9 (solid squares).
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Different preparation methods lead to different profiles
of cesium surfaces. For example, a higher starting temper-
ature leads to a smoother surface (Fig. 9) with a longer cor-
relation length (Fig. 10: c = 175 nm). For this surface the
histogram, inset of Fig. 10, cannot be well described by a
Gaussian function, since it has an asymmetric shape.
Therefore, the corresponding D = 3.83 nm is somewhat less
similar to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlÞj!0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50:27 nm2
p

¼ 7:09 nm.
Similar to Fig. 8b we apply the same sort of fit to the

autocorrelation function deduced from the image shown
in Fig. 9. As this surface has much longer correlation
lengths, the parameters of supplemented telegraph function
have to be more strongly modified, see Fig. 11. Hence, a
periodicity of p = 1.45 gives a good fit and leads to a sec-
ond correlation length of c2 � s/p = 915 nm. In this case
c2 is more than 2/3 of s and its illustrative interpretation
is more difficult than the result of the image shown in
Fig. 6. The surface shown in Fig. 9 seems smoother, but
has a big protrusion at the upper side of the image. This
could explain that c2 is almost comparable with s. Thus
for a more reliable extraction of the second order correla-
tion of this structure an image of a larger section of the sur-
face would have been of advantage, however, this is not
possible with our current setup.

A further application of analysing details of the autocor-
relation function is described in the following by looking at
the changes of two series of cesium surfaces. Fig. 12 shows
the first and the third image of a series of three images,
which was taken one after the other at exactly the same po-
sition and at the same temperature. The time between the
two images is about 57 min. There are indications of a dou-
ble tip as we find many pairs of features with similar dis-
tance (�28 nm) and angle (��15�). However, a few
double structures are also visible under quite different an-
gles. In addition, there are also single features of bigger size
but of round shape. These facts do not fit to the apparent
double tip.

The visible changes in the surface structure are accom-
panied by changes of the first correlation length c1 as well
Fig. 9. (a) STM image with a side length of s = 1330 nm of cesium evaporated on HOPG at 85 K (heated up to 135 K during evaporation). The range of
height is 34.8 nm (from black to white). Tunneling current: 4 nA, tunneling bias: 100 mV. (b) 3D view of the section indicated in (a), equal in size to
Fig. 6b. The scale of height is three times inflated.



Fig. 12. (a) First image of a series of three cesium surfaces with a side length of 464 nm of cesium (same substrate as in Fig. 6). The range of height is
14.7 nm (from black to white). (b) Third image of the series described in (a). The range of height is 17.3 nm. Both images: tunneling current: 40 nA,
tunneling bias: 180 mV, T = 14.5 K. The time between the two images is about 57 min.

Table 1
The first correlation lengths c1 and the positions of the first local maxima of the autocorrelation function, which correspond to the second correlation
lengths c2, of two series of cesium images

Series no. 1 (side length 464 nm, Fig. 12) Series no. 2 (side length 597 nm, not shown)

c1 (nm) 1st max. � c2 (nm) c1 (nm) 1st max. � c2 (nm)

1st image 28.6 ± 0.70 76 ± 1.17 26.8 ± 2.3 98 ± 6.1
2nd image 21.95 ± 0.62 78.5 ± 1.37 31.1 ± 2.3 103.5 ± 5.4
3rd image 20.1 ± 0.60 80 ± 1.83

The first series is shown in Fig. 12 (only first and third image), and its autocorrelation functions are plotted in Fig. 13. The second series is not shown.
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as shifts of the position of local maxima of the autocorre-
lation function, which corresponds to the second correla-
tion length c2. So here we use the simpler way of
extracting periodic lengths, as described in Section 2B. A
summary of the positions of the maxima averaged from
forward and backward scan of the corresponding image
is given in Table 1. The two images of the second series
are not shown (they were taken in the same experimental
run with similar parameters). In both series the positions
of the local maxima are shifted to higher values. In
Fig. 13 we see that the maxima are getting more pro-
0 40 80 120 160 200 240-0.2
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3rd image
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Fig. 13. Normalised autocorrelation function of a sequence of cesium
surface images. The first and the third curve corresponds to Fig. 12a and
b, respectively (the 2nd image is not shown). The deduced correlation
lengths (where C(l) decayed to �37%) are listed in Table 1.
nounced. And therewith c1 is getting shorter, since the de-
cay gets steeper. The maxima of the second series are not so
clearly developed. Here c1 increases slightly.

When there are changes in STM images, the standard
suspicion is a change of the shape of the tip. At first sight
it looks as if the image shown in Fig. 12a bases on a double
tip and the image shown in Fig. 12b does not. A closer look
reveals that most of the apparent double features also exist
in Fig. 12b, but with less contrast. However, the bigger is-
lands gained contrast and so seem to have risen. This is in
agreement with the increased range of height from 14.7 nm
to 17.3 nm. As in many places in Fig. 12b the small features
are still visible, an increased curvature of the tip seems not
to be responsible for the differences between Fig. 12a and b.

A possible reason for the changes of structure could be
the high average tunneling current of 40 nA and the shape
of the time variation of the current. It contains many sharp
needles of high values of current with very low values in be-
tween. This sort of tunneling current could have induced
energy into the surface and excite some changes of its struc-
ture [3].

4. Conclusion

Surface roughness is an omnipresent property of most
solid substrates. It plays an important role in many physi-
cal research activities, i.e., the wetting behaviour of liquid
helium on a cesium substrate. For this purpose we gained
access to the surfaces of quench-condensed Cs films which
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we analysed regarding their roughness properties. For our
analysis we have chosen two basic characteristics of rough-
ness, i.e., the distribution function of roughness amplitudes
(i.e., histogram) and the autocorrelation function. We
showed a way how to assure that the extraction of the
autocorrelation function from a scanning probe micros-
copy image is correct, so that the correlation length, where
the function decays to 1/e, is not artificially increased. This
was supported by a numerical ‘experiment’ with a random
telegraph function, which was simulatively scanned with
different scan resolutions. The resulting requirement was
that the correlation length should be at least five times lar-
ger than the probing step.

Often SPM imaged surfaces contain more than one cor-
relation length. We presented some methods of how to ex-
tract such further correlation lengths of higher order from
the data. With STM measurements of quench-condensed
cesium films as example we discussed and compared the
two basic roughness properties and applied, as far as pos-
sible, the above mentioned methods. We saw that the infor-
mation of the histogram does not contain all characteristics
of the surface structure. It does not indicate the deviation
of a random distribution of roughness amplitudes, whereas
the autocorrelation function reveals more details like high-
er orders of correlation. We think that these characteristic
lengths will play a role in further statistical calculation on
the influence of surface roughness on the wetting behaviour
of liquid helium on cesium surfaces.
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