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A mathematical approach to transformation toughening
in bulk metallic glasses
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A mathematical framework used to describe transformation toughening in zirconia-based ceramics is adapted to apply to trans-
formation toughening in bulk metallic glass matrix composites. The method is applied to the Cu47.5Zr47.5Al5 bulk metallic glass,
showing that the low volume change of transformation in this alloy leads to negligible toughening via the proposed mechanism.
An alternative mechanism for toughening is presented, whereby shear bands propagate more easily in the early stages of advance.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Bulk metallic glasses are a class of material that
have attracted attention due to their exceptional strengths
[1]; however, poor ductility has limited their industrial
applications. Metallic glasses fail by shear localization
along a shear band, resulting in catastrophic failure [2].
A leading method for increasing ductility is the formation
of a composite containing a volume fraction of crystalline
material [2]. This tends to lead to nucleation of multiple
shear bands, and the particles inhibit propagation, lead-
ing to distribution of shear through multiple shear bands
across the material and hence plastic flow.

A series of recent work has focused on alloys in the Cu–
Zr–Al shape memory system, which undergo a thermo-
elastic martensitic transformation. Alloys cast almost en-
tirely glassy but with a small volume fraction of
nanocrystals in the B2 austenite structure show unusual
ductilities, including plastic strain in compression of
16% [3]. Samples examined after deformation show clo-
sely spaced, wavy and diffuse shear bands, and twinned
or transformed nanocrystals. The volume fraction of
B190 martensite phase has been shown to increase with
deformation.

A mechanism has been proposed by Pauly et al. [4]
whereby under applied stress particles nucleate in the ma-
trix and twin or undergo a martensitic transformation.
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This transformation has a volume change component
and hence exerts a compressive stress on the matrix,
inhibiting shear transformation zone activation. This
leads to toughening.

We note, however, that the nature of a martensitic
transformation in a shape-memory system is such as
to produce minimal volume change. Indeed, work by
Schryvers et al. [5] shows a volume component of
0.137% in the transformation from B2 to B190 in equi-
atomic CuZr. This appears to be very small, and
would seem to call the proposed mechanism into
question.

Currently, there is no mathematical framework pre-
sented in the literature for modelling transformation
toughening in metallic glass composites. However, there
exists a body of literature surrounding the transforma-
tion toughening behaviour in zirconia-based ceramics
[6]. Developed in its original form by McMeeking and
Evans [7], the method considers the surface tractions re-
quired to compress the transformed particle into its ori-
ginal space in the matrix in an Eshelby-type model.

The original model considers only the mode I case.
Furthermore, the shape change component of the trans-
formation strain is neglected – only the volume compo-
nent is considered. This is due to self-accommodation of
martensite variants, which usually results in negligible
shape change. Later work on the subject recognized that
shape change is important in nucleation of martensites
even if it then contributes little to the stresses in the
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matrix. In zirconia, it should be noted, the volume
change component is rather more significant.

In order to adapt the model to shear banding in
metallic glasses, a number of assumptions and adapta-
tions must be made. First, we model shear bands as
mode II cracks, a model found in prior literature [8].
This requires us to adapt the mathematics for the mode
II case. We then take into account the shape change
component of the transformation.

The objective of this adaptation is to develop a math-
ematical framework that will allow us to model the
transformation toughening behaviour in these metallic
glasses, and to determine whether the proposed mecha-
nism can be supported despite the low volume change
involved in the transformation.

We begin by calculating the extent of the transforma-
tion zone, which is determined from the stress needed to
cause a particle to transform and the stresses around the
shear band tip. For this purpose, considering the full
shape strain is valid since one full martensite variant
must nucleate before other corresponding variants can
form.

Mathematics as explained by Evans and Heuer [9] are
used. Details of the method used can be adapted from
the original paper, so we will not reproduce the full
working here. The paper uses mode I expressions for
the stresses around the crack tip, resulting in a value
for the transformation radius rc of
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where eT is the volume component of the transformation
strain, eS is the shear component of transformation
strain, Ep is the Young modulus of the particle, Em is
the Young modulus of the matrix, n is the value of eS/
eT, b is given by Ep/Em, and KI is the applied stress
intensity factor at the crack tip (before transformation).
We define a plane polar co-ordinate system r, h about
the crack tip, with the plane defined as perpendicular
to the shear band front – see Figure 1 below.

We instead use mode II expressions for the stresses
around the crack tip [10]:
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Figure 1. Co-ordinate system.
where KII is the applied stress intensity factor at the shear
band tip (before transformation). Using this adaptation,
we can determine a mode II transformation zone radius
of
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where DGo is the free energy change per unit volume
from parent to martensite phase.

This gives us the transformation zone before the
shear band begins to advance. Once it advances, we
must consider several regions, as shown in Figure 2.
We model in the way described in Ref. [11], using Eq.
(5) for the region ahead of the shear band tip until the
distance from the shear band plane reaches a maximum,
w, which we call the zone height. From here, we consider
straight zone sides at distance w from the shear band
plane, and also take into account the shear band edges,
for a shear band advance distance Da.

We now have a model for the transformation zone. In
order to determine the toughening effect of this transfor-
mation zone, we adapt the work of McMeeking and
Evans [7] applied in the mean field case. For full details
of the method, consult their original paper; our ap-
proach follows their work closely. We use the above
zone shape instead of the simpler expression given in
their paper. We also work in the mode II case; this
means replacing the mode I expressions for the weight
function h [8] with
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where v is Poisson’s ratio for the glass. We consider the
case of the transformation zone around an extending
crack, and hence an important parameter is the crack as-
pect ratio Da=w.

The original paper suggests that the change in stress
intensity factor caused by the transformation can be
found via an integral given by
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where n represents the zone normal and dS is the surface
element around the edge of the transformation zone.
Note that many of the explicit results during the
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Figure 2. Calculation regions.
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working produce extremely lengthy expressions and we
will not reproduce them all here.

We calculate dS via

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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To calculate the transformation strain, we have used
experimental data for the CuZr system obtained from a
paper by Schryvers et al. [5]. We obtain

eT ¼
0:00137 0:124

0:124 0:00137

� �
ð10Þ

We integrate Eq. (7) over the three main regions, as
shown in Figure 2. The integral ahead of the crack tip
is just given by calculating the above using Eq. (5) for
radius (and hence obtaining h, dS and n from Eqs. (6),
(8), and (9)), and then evaluating Eq. (7) from � p

3
to p

3
(which is where the distance from the crack plane is at
a maximum).

For the zone sides, we give the radius as

rc2
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ð11Þ

We can then calculate h from Eq. (6), dS through

equation Eq. (8) and use n ¼ 0
1

� �
. We calculate the

contribution to stress intensity factor via Eq. (7), evalu-
ated from p

3
to arctan ½Da=wþ p=2�. We calculate for a

range of values of Da=w (see Table 2 and Fig. 3).
We also calculate for a range of values of Da=w the

contribution from the crack sides. Here, we can set
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�1
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case h ¼ 2p from a = 0 to a ¼ Da
w w. We tabulate also

in Table 2 and Figure 3.
We calculate the sum of these three terms to get the

total contribution of the transformation zone to tough-
ening. We use values for the material shown in the ori-
ginal work on this subject, a Cu47.5Zr47.5Al5 alloy. The
material characteristics are shown in Table 1 [12,13].

Figure 3 shows a number of clear trends in the contri-
bution of transformation to toughening as the shear
band advances. Important to note is that a negative va-
lue implies a reduction in stress intensity and hence
toughening, a positive contribution favours propagation
of the shear band.

We can draw a number of observations from Fig-
ure 3. First, the contribution from the volume strain
alone is insignificant compared to that from the shape
strain. Secondly, the shape strain contribution peaks
rapidly with shear band advance and then rapidly
Table 1. Material properties for Cu47.5Zr47.5Al5.

Poisson’s ratio Ep (GPa) Em (GPa)

0.373 [12] 82 [12] 82 [12]

Values are evaluated for T = 298 K and with a sample initial stress intensity
decreases. These observations lead to a number of
conclusions.

First, if there is no significant shape change component
to toughening (such as is often assumed in the literature,
due to variant self-accommodation), we have negligible
toughening even at the steady-state value. If we input a
sample initial applied stress intensity factor of
5 MPa m1/2 and a crystalline volume fraction of 0.1, we
get �0.2 MPa m1/2 for the component caused by the
shape strain and + 1.12 MPa m1/2 if we consider both
components. As such, this model suggests volume change
alone cannot be the mechanism behind toughening in the
Cu47.5Zr47.5Al5 alloy.

The question becomes rather more interesting if we
allow the shape change to contribute, neglecting for
the moment self-accommodation of variants. We then
observe a significant contribution to the stress inten-
sity factor at the shear band tip, but in such a manner
as to make propagation easier. However, we also note
that propagation is favoured significantly more during
the early stage of shear band advance than when it
grows longer. As such, we propose an alternate mech-
anism whereby propagation of new shear bands is fa-
voured over extension of existing longer ones. This
leads to propagation of multiple shear bands, distrib-
uting shear through the material and hence promoting
ductility.

We have so far considered the transformation zone as
a region with a discrete boundary, with all particles
transforming inside the zone and none without. As
understanding of transformation toughening has ad-
vanced, it has become clear that considering the trans-
formation zone as a whole and neglecting the reverse
transformation [6] gives a subtly wrong estimate of the
toughening. A case with a full-width transformation
zone behind the shear band is known as “supercritical”,
and is what we have considered here. The “subcritical”
case, where some of the outer transformation zone is
not fully transformed in the shear band wake, however,
should in this case simply reduce the contribution to
stress intensity factor as the crack advances further –
i.e. increase the height of the peak and contribute to
the proposed toughening mechanism.

It should be noted that the model as proposed is a
mean-field model, which considers the particle-contain-
ing region around the shear band to be a homogeneous
region and averages the effects of individual particles
transforming. This should still give a reasonably accu-
rate output in the general case. A further assumption
to identify is that we have neglected the effects of the
ends of the transformation zone, where the zone sides
and the shear band edges are joined. However, this
should be negligible with longer shear bands and, run-
ning the ahead-of-tip calculations from p to �p, we ob-
tain a value of zero – showing the contribution prior to
shear band advance to be zero, and in fact suggesting a
DG (J mol�1) eT eS

2.702�T–1408.52 [13] 0.00137 [5] 0.124 [5]

factor of 5 MPa m1/2.



Table 2. Stress intensity factor change with crack advance.

Dw/a DKII/(Ep � Vf � w½) Dw/a DKII/(Ep � Vf � w½)

0.3 1.48E�01 1.8 1.52E�01
0.5 1.62E�01 2.3 1.40E�01
0.6 1.66E�01 3.1 1.25E�01
0.7 1.69E�01 4.3 1.08E�01
0.8 1.70E�01 5.1 9.98E�02
0.9 1.70E�01 7 8.58E�02
1 1.69E�01 9 7.58E�02
1.1 1.68E�01 12 6.57E�02
1.2 1.66E�01 15 5.88E�02
1.3 1.64E�01 20 5.09E�02
1.4 1.62E�01 30 4.14E�02
1.5 1.59E�01 50 3.19E�02
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Figure 3. Contribution to toughening.
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positive contribution from the region at the zone end as
the shear band advances.

Also worth considering is the impact of size effects on
the toughening behaviour. Size effects in bulk metallic
glasses can have a significant impact on plasticity, as ob-
served in the recent review by Greer and De Hosson [14].
In this instance, it is perhaps most interesting to consider
particle size – we have assumed an ideal thermoelastic
martensite and hence no interfacial energy term [15],
but it now seems likely that the interfacial effects may
play a significant part in the toughening behaviour,
and this bears further investigation. We also note, how-
ever, that our approach may break down when the par-
ticle size approaches the transformation zone size.
To conclude, we establish a mathematical model for
transformation toughening behaviour in the Cu47.5Z-
r47.5Al5 bulk metallic glass composite, based on the
mathematics developed for use in zirconia-based ceram-
ics and a model of shear bands as mode II cracks. We
demonstrate that, considering volume change alone, this
mechanism cannot explain the unusual ductility of the
composite, contributing only �0.2 MPa m1/2 if we set
an initial applied stress intensity of 5 MPa m1/2. We pro-
pose a mechanism whereby, if shape change components
are considered, ductility is enhanced via propagation of
shorter shear bands being favoured over more mature,
longer ones (by 1.12 MPa m1/2 with an initial applied
stress intensity of 5 MPa m1/2). This leads to the propa-
gation of multiple short shear bands and hence distribu-
tion of shear, leading to ductility.
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