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A B S T R A C T

The origin of the anomalously compliant behavior of nanoporous gold is studied by comparing the elasticity
obtained from molecular dynamics (MD) and finite element method (FEM) simulations. Both models yield
a compliance, which is much higher than the predictions of the Gibson-Ashby scaling relation for metal
foams and thus confirm the influence of other microstructural features besides the porosity. The linear
elastic FEM simulation also yields a substantially stiffer response than the MD simulation, which reveals
that nonlinear elastic behavior contributes decisively to the anomalous compliance of nanoporous gold
at small structure size.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoporous metals, and specifically nanoporous gold (NPG),
made by dealloying are emerging as model systems for understand-
ing the mechanical behavior of small-scale solids and of nanoma-
terials [1–17]. The materials exhibit a uniform microstructure in
the form of a network of nanoscale “ligaments”, whose size can be
adjusted to values between a few and several hundred nanome-
ters [4]. Macroscopic samples typically exhibit highly reproducible
mechanical behavior. Their excellent deformability under compres-
sion enables experiments that provide access to strain-rate sensi-
tivity [10], elastic and plastic Poisson’s ratios [13,16], as well as the
evolution of flow stress and stiffness during the plastic densification
of the network [12,14,17,18]. Of particular relevance is the observa-
tion of strong variations of strength as well as stiffness with ligament
size [1,2,6-8,10,11,14]. This finding connects experiments on NPG to
topics of interest in the field of small-scale plasticity. Yet, exploit-
ing this connection presupposes that the influence of the network’s
microstructural features on the mechanical behavior can be disen-
tangled from size effects. This issue is controversially discussed and
one aspect of that controversy motivates our work.
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As an apparent inconsistency, the early micron-scale tests on
NPG indicated a substantially higher strength than the more recent
millimeter-scale tests [14]. The tests on macroscopic samples
also revealed an anomalously high compliance [14,18]. This was
explained in two fundamentally different ways.

Ngô et al. [18] carried out molecular dynamics (MD) simula-
tions, which model the mechanical behavior in quite good agreement
with experiments, and proposed a nonlinear elastic response and
specifically shear softening in the bulk of the nanoscale ligaments as
the origin of the enhanced compliance. Jin et al. [15] and Mameka
et al. [14], in contrast, independently emphasized that the anoma-
lous compliance and low strength of NPG are compatible with a
conventional, bulk-like elastic response in each ligament, if disor-
der or defects at the network level are admitted. Indeed, Huber et
al. [12] and Roschning et al. [17] have shown that disorder in the
array of connecting nodes substantially reduces the stiffness. A less-
than-ideal connectivity of the network – for instance in the form of
“broken ligaments” – would act similarly [14,15,19,20].

Here, we present a simulation study that is designed to dis-
criminate between these two opposing views. First, we explore the
stiffness of a given network structure in a fully atomistic simula-
tion [18] that admits a conceivable nonlinear bulk elastic behavior.
Then, we feed the microstructural geometry at various states of plas-
tic strain into finite element method (FEM) simulations for studies
of the elastic response. The constitutive law used in the FEM sim-
ulations is restricted to linear elasticity, with elastic parameters
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matching to those of the atomistic simulation. Thus, the FEM sim-
ulations explore the impact of the microstructure on the elastic
response, but explicitly exclude nonlinear elasticity. If one adopts the
view of the “network geometry” put forward in Refs. [12,14,15], both
simulations should yield an identical result for the effective macro-
scopic stiffness. By contrast, the “nonlinear bulk elasticity” picture of
Ref. [18] implies that the atomistic simulation gives a larger anoma-
lous compliance. Thus, this comparison provides a basis for assessing
the two distinct views.

2. Methods

2.1. Microstructure generation

A nanoporous microstructure was created by mimicking spin-
odal decomposition of a binary solid solution on an FCC lattice
with 144 × 144 × 144 lattice spacings (587.52 × 587.52 × 587.52
Å) and 〈100〉 edges, using the Metropolis Monte Carlo algorithm
with an Ising-type Hamiltonian and periodic boundary conditions.
After the phase separation, the atoms of one component were
removed, leaving behind an interconnected network of atoms with
the solid fraction v = 0.302. The alpha-shape surface reconstruction
algorithm [21,22] gives the surface-to-volume ratio a = 0.877/nm.
Using the conversion rule given in [18] (cf. Equation (1) therein),
a ligament size, L, of 3.76 nm is obtained for the as-prepared NPG
structure.

2.2. Molecular dynamics simulation

MD simulations using an EAM potential for gold [23] were carried
out with the open-source simulation code LAMMPS [24]. For the visu-
alization and analysis we used the open-source software OVITO [25].
The simulation procedure started with a relaxation of atom positions
via an energy minimization using the conjugate gradient algorithm.
At convergence, the relative change in energy and the specified force
tolerance were less than 10−12 and 10−4 eV/Å, respectively. After this
initial, athermal relaxation, the NPG sample was thermally relaxed
for 1 ns at 300 K with no load applied.

Uniaxial compression tests were simulated with a strain rate
of 108/s at 300 K. Load/unload sequences were interspersed. The
stresses normal to the strain axis were kept at 0 bar. In all simula-
tions, temperature and pressure were controlled by a Nosé–Hoover
thermostat and barostat [26–29]. For more details see the report of
our earlier, analogous work in Ref. [18].

The EAM interatomic potential exhibits the following linear elas-
tic parameters at small strains and zero temperature: C11 = 183 GPa,
C12 = 159 GPa, C44 = 45 GPa [23]. The linear elastic constitutive law
of the FEM simulation used identical values.

2.3. Finite element simulation

To transfer the microstructures in MD to the FEM study, the
surface at each strain state was reconstructed by the alpha-shape
method [22] via the Edelsbrunner’s algorithm [21]. This algorithm
is based on a Delaunay triangulation of the point cloud represent-
ing the atoms [21]. As the surface is unrealistically rough, smoothing
was applied to obtain a realistic representation of the mesoscale
geometry of the ligaments. The surface models were exported to
the commercial FEM software ABAQUS and meshed with ∼3.5 × 106

10-node quadratic tetrahedron (C3D10) elements [30]. With that
number of elements the computation is expensive, but remains
manageable, since the restriction to purely elastic behavior drasti-
cally reduces the number of iterations. The Delaunay triangulation
interpolates the surface at the atomic center points, which are sys-
tematically inside any sensible location of the surface in a continuum
picture. The accumulated volume of the individual elements of the

FEM models corresponded to solid fractions which are less than in
the original MD structure; the reduction is by Dv = 3.39 ± 0.16
percentage points.

Periodic boundary conditions were applied via linear constraint
equations, coupling the nodal displacements on opposing faces of
the representative volume element (RVE) in all spatial directions. In
order to allow for lateral extension, inhomogeneous constraints were
prescribed via dummy nodes which are not attached to any part of
the model. Since the input mesh did not provide congruent nodes on
the opposing faces of the RVE, the nodes on one of two associated
faces were duplicated. Nodal based surfaces of the duplicated node
set and the opposing node set were defined and coupled via tie con-
straints. Linear constraint equations were then defined between the
initial node set and the congruent duplicated node set.

An orthotropic linear elastic material model was used with the
stiffness parameters derived from the EAM potential (see above). The
effective stiffness of the RVE was determined from the net compres-
sive stress (reaction force in load direction divided by current cross
section) at the macroscopic strain of 0.02.

2.4. Verifying the reconstruction approach

As a verification of our FEM study of the nanoporous structure
we have studied the elastic response of network structures with dia-
mond geometry. We created diamond lattices with nominally iden-
tical geometries i.) from the reconstruction of the atomistic model,
using the analogous procedure as for the nanoporous structure, and
ii.) by a classic design of the network microstructure as in a con-
ventional FEM study. The rationale of this approach is to investigate
possible artifacts occurring from surface meshing and smoothing of
the atomistic input structure. Since the volume fraction of the atom-
istic input structure and the reconstructed FEM model are slightly
different, we were also interested in how this small difference affects
the calculated moduli.

The microstructure here consisted of cylindrical struts, linking
spherical nodes on diamond lattice positions. As in a previous study
by Huber et al. [12], acute connecting angles at ligament junctions
were avoided by setting the node radius to

√
3/2 times the ligament

radius.
For the atomistic model, the RVE comprised four diamond lattice

unit cells in each spatial direction. The RVE was then inscribed on
an FCC lattice, with 144 lattice spacings along each dimension. This
resulted in a simulation box edge-length of 58.752 nm and a liga-
ment radius of 2.0 nm. The solid fraction of this atomistic model was
v = 0.302. Thermal relaxation at 300 K slightly increased the solid
fraction to v = 0.304. Reconstructing an FEM model by the same
procedure as for the NPG structure of Section 2.3 yields a diamond
structure with v = 0.268 and Yeff = 3.289 GPa.

For the stick-and-ball diamond geometry, a reference diamond
structure was created in ABAQUS CAE and meshed with C3D10 ele-
ments. The RVE here consists of one unit cell. Congruent nodes on
opposing faces allow the direct application of periodic boundary con-
ditions via linear constraint equations. For v = 0.268, which is the
solid fraction of the FEM diamond structure which we reconstructed
based on the atomistic model (see above), we obtain Yeff = 3.107
GPa. This differs only by 6% from the value obtained before of the
reconstructed structure.

This comparison implies that our strategy for transferring the
microstructures from the atomic-scale data set of the MD simulation
to the FEM simulation is appropriate and provides results that agree
with more conventional FEM models to within a few percent.

We have also studied the reference diamond structure with v =
0.308, which corresponds to the original atomistic disordered struc-
ture. Here, the FEM calculation yields Yeff = 4.015 GPa. Thus, the
comparison of MD and FEM simulations is primarily affected by the
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reconstruction and smoothing, since this modifies the volume frac-
tion. The modified v entails a difference of about 23%in Yeff. This
may be taken as a rough estimate of the impact of the different
solid fractions for the comparison of the MD and FEM results of the
nanoporous structure in our study.

3. Results

Fig. 1a depicts the microstructure of our NPG sample after the
thermal relaxation and prior to the onset of straining. The solid
fraction of this relaxed structure is v = 0.308, slightly more than
the initial value due to the densification during the thermal relax-
ation [18,31]. The maximum plastic compressive true strain, e =
0.335, of the MD study increased the solid fraction to v = 0.415. A
snapshot of that densified microstructure is shown in Fig. 1b.

Fig. 2 shows the compressive stress-strain curve from the MD
simulation. The result agrees well with that of Ref. [18], which used
identical procedures but a slightly smaller ligament size. Since that
reference also found agreement between the MD simulation and
experiment, the MD results of the present work may be considered
relevant for understanding the experimental observations.

The effective Young’s modulus, Yeff, at different strain states was
determined as the secant modulus [32] during the unload segments
of the stress-strain graph. The evolution of Yeff during the deforma-
tion event of Fig. 2 is shown as the upward-pointing triangles in
Fig. 3.

In the MD simulation, Yeff of the NPG sample starts out at 380
MPa. Several studies (see, e.g., Ref. [8] and the references therein)
refer the elasticity of NPG to the Gibson-Ashby scaling relation for
the stiffness of foams [33], Yeff = Ybulkv2. This relation here pre-
dicts Yeff ≈ 7.4 GPa for the present sample (this estimate is based

Fig. 1. Geometry of the porous structure. For the molecular dynamics simulation, (a)
and (b) show the initial geometry before onset of plastic deformation and the final
geometry after deformation to plastic compressive true strain of 0.335, respectively.
For the sake of clarity, surface atoms and bulk atoms are coded in different colors.
Figures in (c) and (d) depict the finite element meshes reconstructed from the atom
coordinates of the structure in (a) and (b), respectively. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this
article.)

0.0 0.1 0.2 0.3
0

20

40

60

[M
Pa

]

[no units]

Fig. 2. Mechanical behavior of nanoporous gold during compression by molecular
dynamics simulation. Graph of compressive virial stress, s , versus compressive true
strain, e. Load unload segments served to monitor the evolution of the effective
Young’s modulus during plastic densification, see main text.

on the elastic modulus, Ybulk = 78 GPa, of the nontextured polycrys-
talline Au calculated by using the Kröner’s formulation [34] with the
linear elastic constants of the EAM potential given above). Thus, the
MD simulation finds the initial Young’s modulus about a factor of 19
less than predicted by the scaling relation. This agrees with earlier
observations from simulation and experiment [14,18].

The effective Young’s modulus increases during the plastic com-
pression. The increase is partly expected because of the densification
(i.e. increase in the mean ligament thickness) that accompanies the
deformation. For example, the MD data in Fig. 3 are from an inter-
val of compression in which the density increases by a factor of
1.35, from v = 0.308 to v = 0.415, while the stiffness increases
more than 5-fold, from Yeff = 380 MPa to Yeff = 1.96 GPa. Other
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Fig. 3. Evolution of the stiffness during deformation. Effective Young’s modulus, Yeff ,
versus plastic strain, e. Data from molecular dynamics (MD) and linear-elastic finite
elementmethod(FEM)simulationsforNPG,asindicatedbylabels.Notethesubstantially
stiffer behavior of the linear elastic solid, in spite of identical network geometry.
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microstructural changes, for example changes in the network topol-
ogy [14,19,20,35], might also contribute to the increase of the elastic
modulus.

Next, we inspect the effective Young’s modulus from the linear-
elastic FEM simulation, using the MD microstructures at differ-
ent plastic deformation states as the initial, stress-free geometry.
Snapshots of the FEM meshes generated from the undeformed and
the most deformed atomistic NPG sample are shown in Figs. 1c–d.

Fig. 3 shows the FEM results for Yeff alongside the data from MD
simulation. We find the FEM value Yeff = 1.06 GPa for the initial
configuration. This is again much less than what would be predicted
by the Gibson-Ashby scaling law. More importantly, the value of Yeff

of the FEM simulation exceeds that of the MD study by a factor of
2.8. The relative difference remains high throughout the entire set of
configurations under investigation.

This difference is highly significant: In view of the practically
identical microstructures in the two simulation approaches, the
enhanced Yeff in the linear elastic continuum model that underlies
the FEM simulation can only be understood as the consequence of
a softer elastic response at the nano- or atomic-scale in the MD
simulation. The marginally lesser density of the FEM sample (due to
meshing, see above) does not affect this conclusion. In fact, if the
density in FEM is to be corrected to match the greater value in MD,
the modulus in FEM will increase, implying an even more significant
discrepancy.

4. Discussion and conclusions

The key finding of our study is that the same network geome-
try yields relatively higher stiffness when linear elastic behavior is
assumed in the FEM and (substantially) lower stiffness when the full
nonlinear elastic behavior of the more realistic (EAM-) interatomic
potential of the MD is admitted. We also find that both models
yield stiffnesses considerably below the prediction of the Gibson-
Ashby scaling law that has been found applicable in part of the
experimental studies.

We focus first on the last observation, which is also compati-
ble with the low stiffness reported by some experimental studies.
Consistent with other simulation studies of NPG, our microstructure
was generated by mimicking spinodal decomposition. The geometry
appears similar to experimental NPG, yet the notion of similarity is
hard to quantify as there is no established link between the mechani-
cal behavior and quantifiable measures for the microstructural topol-
ogy [14]. It is conceivable that apparently similar microstructures
– such as the various spinodal structures in the simulations, the
periodic structures that underlie the Gibson-Ashby scaling equation,
and experimental NPG made with different dealloying or coarsen-
ing parameters – in fact exhibit substantial differences in topology
that strongly impact their mechanical behavior [20]. This notion is
consistent with our results.

Let us now return to deviations of the local elastic response at the
ligament level from the bulk-like linear elastic behavior. The obvi-
ous conclusion from our study is that the suggestion of an enhanced
compliance at that level is confirmed for the small-scale (∼ 4 nm)
structures of the MD study. Ngô et al. [18] motivated this sugges-
tion by the deviatoric component of the surface-induced stresses in
high aspect ratio nanostructures and by the classic instability of crys-
tals at high shear stress. The contribution of bulk nonlinear elastic
response to the stiffness of nanowires has indeed been confirmed by
experiment [36] and density functional theory calculation [37].

It must be emphasized that the nonlinear elastic response is
expected only at very small size where the surface-induced stress
and the ensuing shear strain are high. The prohibitive computational
effort that would be involved in atomistic simulations of realis-
tic volume elements of nanoporous gold with substantially larger

ligament size prevents us from studying the size dependence of the
elastic behavior by MD. Yet, it appears likely that the high compli-
ance in experimental studies with ligament sizes � 20 nm results
exclusively from network geometry effects, for instance differences
in the scaled connectivity and/or scaled genus density as suggested
in Refs. [14,20] and not from bulk nonlinear behavior.
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