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A B S T R A C T

This work presents direct formulas to compute the HCP elastic constants of e-martensite from the FCC ones
of austenite. The derivation is performed thanks to mechanical compatibility arguments while considering
e-martensite as a laminate structure of twinned and untwinned FCC phases. The formulas are applied to pre-
dict the elastic constants of several alloys and very good agreement with measurements is found. According
to these relations, directional Young moduli of e-martensite are most of the time stiffer than the austenite
ones and the (0001) shear modulus is always greater than the (111) one, which hardens dislocation glide
parallel to the interfaces.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

The martensitic transformation c (FCC) −→ e (HCP) may occur in
several crystalline materials during deformation or cooling. It can be
observed in low stacking fault energy austenitic steels [1-3], in Fe-
based shape memory alloys [4-7] or in Co alloys [8-10] for instance.
The part of e-martensite can be significant [1], and the size and the
distribution of martensitic constituents are primordial issues for the
material in-use properties.

Elastic constants of e-martensite are generally badly known for
most materials, in particular in high manganese austenitic steels
[3,11,12]. Due to its lower ductility, a good understanding of the elas-
tic behavior of e-martensitic phase is actually even more important.
The difficulty to measure accurately anisotropic elastic constants of
a specific phase of an alloy arises typically from the impossibility
to produce a single crystal with exactly the same composition. On
the other hand, direct measurements on multiphase alloys involve
the use of inverse methods, such as the self-consistent scheme,
and suffer from the non-uniqueness of the solutions. However,
the knowledge of elastic constants may be of prime importance
for mechanical modeling of internal stresses through mean-field
elasto-(visco)plastic approaches (e.g. [13]), full-field crystal plasticity
simulations (e.g. [14]) or investigations at the dislocation scale like
evaluation of image forces on dislocations due to elastic mismatch
between phases [15-17]. Furthermore, anisotropic elastic constants
are also needed if one wants to estimate accurately local stresses
from elastic strain measurements by diffraction (e.g. [18-20]). In
particular, the load transfers between austenite and e-martensite,
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generally stronger and harder [7,3], depend closely on the values of
the elastic stiffnesses of each phase. The correct estimation of these
load transfers is especially crucial to control damage resistance in
steels.

The martensitic transformation c (FCC) −→ e (HCP) is reported
to be due to the glide of a/6〈112̄〉 Shockley partial dislocations on
every second close-packed (111)c plane, which corresponds to the
introduction of a stacking fault in each second (111)c plane (see
Fig. 1a) [2]. As a result, the e-martensitic phase has the following
crystallographic relationship with the c-phase:

(111)c ‖ (0001)e,
〈
112̄

〉
c

‖
〈
011̄0

〉
e
,
〈
11̄0

〉
c

‖
〈
21̄1̄0

〉
e

(1)

which is known as the Shoji-Nishiyama orientation relationship [21].
This process is actually very similar to the mechanism of S3(111)
twin formation in FCC crystals which also occurs by glide of Shockley
partials but on each successive (111)c plane, resulting in the intro-
duction of a stacking fault in each (111)c plane (see Fig. 1b). In Fig. 1,
it is seen that the crossing from an untwinned to a twinned FCC crys-
tal is described by a sequence ABA which is also present in the HCP
stacking sequence. As a consequence, it may be possible to consider
the HCP e-martensitic phase as a periodic laminate structure made of
alternating twinned and untwinned FCC phases with equal volume
fractions as pictured in Fig. 2. Accordingly, the idea of the present
work is to compute the elasticity tensor of e-martensite as the effec-
tive elasticity tensor of a laminate composed of alternating twinned
and untwinned FCC phases.
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Fig. 1. (a) FCC and HCP stacking sequences. (b) FCC stacking sequences for a perfect crystal and one with a twin plane (mirror symmetry). The red lines represent stacking faults
in the FCC sequence. The common sequence ABA of the HCP and parent/twin structures is surrounded in orange.

To perform this derivation, let first consider a general infinite
periodic laminate structure composed of two alternating crystals, I
and II, in a Cartesian orthonormal frame

(
e1, e2, e3

)
(Fig. 2). The crys-

tals are assumed perfectly bonded along the interfaces oriented by
their unit normal n ≡ e3. The laminate structure is supposed to have
a pure linear elastic behavior in response to a macroscopic homo-
geneous and remotely applied stress Sij. The volume fractions of
crystals I and II are denoted fI and fII, respectively. Hereafter, the
superscript I denotes fields in crystals I and the superscript II fields
in crystals II.

Through consideration of strains compatibility and balance of lin-
ear momentum without body force, it can be shown that the Cauchy
stresses s I,II

i are uniform in crystals I and II and that their expressions
can be analytically derived [22,23]. Denoting sij the components of
the elastic compliance tensor and using the contracted Voigt nota-
tion [24] (11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6) along

with the notations [[sij]] = sII
ij − sI

ij and s̃ij = f IIsI
ij + f IsII

ij , they may be
written as [23,25-27]:

s I
i = Si + f IIGik[[skj]]Sj

s II
i = Si − f IGik[[skj]]Sj (2)

where the Einstein summation convention over repeated indices is
used, indices range from 1 to 6 and the non-zero components of the
symmetric tensor Gij read:

G11 = (s̃2
26 − s̃22 s̃66)/D, G12 = (s̃12 s̃66 − s̃16 s̃26)/D,

G22 = (s̃2
16 − s̃11 s̃66)/D, G16 = (s̃22 s̃16 − s̃12 s̃26)/D,

G66 = (s̃2
12 − s̃11 s̃22)/D, G26 = (s̃11 s̃26 − s̃12 s̃16)/D,

with D = s̃22 s̃2
16 + s̃11 s̃2

26 + s̃66 s̃2
12 − s̃11 s̃22 s̃66 − 2s̃12 s̃16 s̃26. (3)

Fig. 2. HCP stacking sequence seen as a periodic alternating structure of twinned and untwinned FCC phases and model of an infinite periodic laminate structure composed of
two alternating crystals with different volume fractions.
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By definition, the effective compliance tensor seff
ij of the laminate

structure satisfies 〈ei〉 = seff
ij Sj where 〈〉 denotes a volume average.

Hence, from relation (2), we have:

〈ei〉 = (〈sil〉 − f If II[[sij]]Gjk[[skl]])Sl (4)

and then by identification, the effective compliance tensor may be
expressed as:

seff
ij = 〈sij〉 − f If II[[sik]]Gkl[[slj]]. (5)

In order to retrieve the structure of e-martensite as described in
Fig. 2, it is thereafter considered that the crystals have a FCC structure
and that the interfaces correspond to S3(111) twin boundaries with I
the parent phase and II the twin phase. The Zener anisotropy ratio A is
then introduced in order to express the elastic compliance tensors of
crystals I and II, sI,II

ij , in the frame
(
e1, e2, e3

)
of Fig. 2. By definition, A =

2
(
s∗

11 − s∗
12

)
/s∗

44 where s∗
ij designate the elastic compliances in the

orthonormal axis system aligned with respect to the 〈100〉 directions
of the cubic crystal. Without loss of generalization, it is supposed that
e1 is collinear to the twinning shear direction which corresponds to
a 〈112〉 crystallographic direction, whereas e3 is taken as the normal
of (111) planes. Accordingly, sI

ij is deduced from s∗
ij by the appropriate

rotation and sII
ij by a 180◦ rotation of sI

ij around e3 [25]. As a result, the
non-zero components of the symmetric tensor sI

ij can be related to A
as follows:

sI
11 = sI

22 = s∗
11 − A − 1

4
s∗

44

sI
12 = s∗

12 +
A − 1

12
s∗

44

sI
13 = sI

23 = s∗
12 +

A − 1
6

s∗
44

sI
14 = −sI

24 =
1
2

sI
56 =

√
2

6
(A − 1)s∗

44

sI
33 = s∗

11 − A − 1
3

s∗
44

sI
44 =

2(A + 1)
3

s∗
44

sI
66 =

A + 2
3

s∗
44 (6)

whereas sII
ij is identical to sI

ij, except for the following components
which have opposite signs:

sII
14 = −sII

24 =
1
2

sII
56 = −sI

14 (7)

Hence, many components of [[sij]] and 〈sij〉 are zero, especially in
the case of equal volume fractions which corresponds to the descrip-
tion of the e-martensite structure made in Fig. 2 where twinned and
untwinned phases have same volume. In this particular case, seff

ij can
be easily derived from Eq. (5):

seff
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s∗
11− A−1

4 s∗
44 s∗

12 + A−1
12 s∗

44 s∗
12 + A−1

6 s∗
44 0 0 0

s∗
12 + A−1

12 s∗
44 s∗

11− A−1
4 s∗

44 s∗
12 + A−1

6 s∗
44 0 0 0

s∗
12 + A−1

6 s∗
44 s∗

12 + A−1
6 s∗

44 s∗
11− A−1

3 s∗
44 0 0 0

0 0 0 3A
A+2 s∗

44 0 0

0 0 0 0 3A
A+2 s∗

44 0

0 0 0 0 0 A+2
3 s∗

44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

It is observed that seff
ij is symmetric with respect to a rotation

about e3, i.e. the effective medium is transversely isotropic for equal
volume fractions. From the previous developed arguments, it seems
relevant to use this transversely isotropic tensor to obtain a good
estimation of the HCP elastic compliance tensor of e-martensite,
although such a procedure ignores of course the chemical processes
at stake during the martensitic transformation, like diffusion of
solutes or segregation of chemical elements.

The stiffness tensor is simply the inverse of seff
ij . As a result, very

simple and direct formulas that allow to get from the FCC elastic con-
stants of austenite to the five independent HCP elastic constants of
e-martensite are obtained:

cHCP
11 = c∗

11 + A2+7A−8
3A(A+2) c∗

44 cHCP
12 = c∗

12 + A2−5A+4
3A(A+2) c∗

44

cHCP
13 = c∗

12 − 2(A−1)
3A c∗

44 cHCP
33 = c∗

11 + 4(A−1)
3A c∗

44 cHCP
44 = A+2

3A c∗
44

(9)

where c∗
11, c∗

12 and c∗
44 are taken in the orthonormal axis system

aligned with respect to the 〈100〉 directions of the cubic crystal.
It is noteworthy that a previous procedure relating the elasticity

tensors of HCP and FCC structures already existed. It was developed
by Martin [28] for wurtzite (HCP) and zinc-blende (FCC) structure
materials and then applied by Fuller and Weston to metallic struc-
tures [29]. The starting point of their method is the construction
of wurtzite and zinc-blende structures from tetrahedral building
blocks whose corners lie along 〈111〉 directions [30]: for zinc-blende
structure, tetrahedra are aligned in equivalent orientations and for
wurtzite structure, tetrahedra are alternatively aligned in two mirror
orientations [28,29] which can be related to the frame

(
e1, e2, e3

)
and

the associated twinned phase previously defined. Then, according to
the procedure of Martin [28], the elastic constants of the wurtzite
structure are deduced from the minimization of its elastic strain
energy density U (computed as the average density of the two trigo-
nal orientations) with respect to the difference of strains in the two
trigonal orientations [[ei]]:

∂U
∂[[ei]]

= 0 (10)

As a result of this minimization, the following transformation
formulas are obtained [28,29]:

cHCP
ij = 〈cij〉 − [[cik]]〈ckl〉−1[[clj]] (11)

The first term of the sum in Eq. (11) is a simple average of elastic
stiffnesses whereas the last term is called an internal strain contri-
bution [28,29]. This expression shares some similarities with the one
of the effective compliance tensor (Eq. (5)), which is also composed
of a first average term and a second one that depends on differ-
ences. It is nevertheless not strictly equivalent. It must be underlined
for instance that in general 〈sij〉−1 
= 〈cij〉. Actually, among the five
independent elastic constants, the internal strain contribution of Eq.
(11) is non-zero for cHCP

11 , cHCP
12 and cHCP

44 whereas the right hand-side
member of Eq. (5) is non-zero only for sHCP

44 .
It can be easily checked that the results provided by Eq. (11)

are the same as the ones given by Eq. (9), with the notable excep-
tion of cHCP

44 for which Eq. (9) actually translates into cHCP
44 = 〈c44〉.

Precisely about cHCP
44 , Fuller and Weston [29] noticed that the com-

puted elastic constants are in better agreement with experimental
measurements without considering the internal strain contribution
and wrote “there is no basis for this except that it gives the correct
pattern for the internal strain contributions”. It is therefore worth
underlying that the present work offers a rigorous mechanical justi-
fication and presents the formulas in a very simple form that allows
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Table 1
Comparisons between experimental HCP elastic constants of different alloys and the ones computed from Eq. (9) considering the following FCC elastic constants: for ZnS, c∗

11 =
103.87, c∗

12 = 65.07 and c∗
44 = 46.20 (average of Refs. [33] and [34]), for Co-32wt%Ni, c∗

11 = 238.7, c∗
12 = 155.3 and c∗

44 = 131.5 [9], for Co, c∗
11 = 239.8, c∗

12 = 163.4 and
c∗

44 = 133.4 [35], for Tl, c∗
11 = 40.8, c∗

12 = 34.0 and c∗
44 = 11.0 [36]. All data are taken at room temperature. Constant are in GPa and errors in %.

ZnS Co-32wt%Ni Co Tl

Exp. Comp. Err. Exp. Comp. Err. Exp. Comp. Err. Exp. Comp. Err.

c11 124.2 125.0 0.6 326.0 303.5 6.9 306.3 306.2 0.0 40.8 46.2 13.2
c33 140.0 139.6 0.3 358.4 358.4 0.0 357.4 366.7 2.6 52.8 50.9 3.6
c12 60.2 61.8 2.7 160.6 150.4 6.4 165.1 160.5 2.8 35.4 33.6 5.1
c13 45.5 47.2 3.7 – 95.4 – 101.9 99.9 2.0 29.0 28.9 0.3
c44 28.6 28.3 1.0 74.0 71.6 3.2 75.3 69.9 7.1 7.3 5.9 19.2

straightforward applications. Furthermore, it is interesting to resume
the different comparisons with measured constants performed by
Martin [28] and Fuller and Weston [9] using Eq. (9). Four materials,
ZnS, Co-32 wt%Ni, Co and Tl, exhibiting the e-martensitic transfor-
mation are thus considered in Table 1. HCP elastic constants are
computed from Eq. (9) considering experimentally measured values
for the FCC constants and are compared with experimental val-
ues. It must be noticed however that the presented HCP and FCC
experimental values refer to the exact same compound only for ZnS
and Co-32 wt%Ni alloys. For pure cobalt and pure thallium, the HCP
values are extrapolations derived from measurements of alloys of
different compositions.

It can be observed that the agreement between the computed and
the experimental values is pretty good. In all the cases, the differ-
ences between constants are always smaller than 10 GPa. For the two
most reliable cases, ZnS and Co-32wt%Ni, the relative errors are less
than 7%, which can be considered within experimental errors.

From Eq. (9), the elastic heterogeneity of a multiphase alloy com-
posed of both c-austenite and e-martensite can be evaluated. Con-
sidering for instance typical values of elastic constants for austenitic
steels, Fig. 3 displays the magnitude of the directional Young modu-
lus of both phases in all the space directions. In Fig. 3, the anisotropy
of the FCC phase is significant with A = 3.36 but it is seen that
it is much less pronounced in the HCP phase. Along the normal to
the c/e phase boundary which is parallel to 〈111〉c and 〈0001〉e ,

the value of the Young modulus is actually maximal and equal with
Emax

FCC = Emax
HCP = 288 GPa. However, strong differences of Young

modulus can be observed along other directions and it was checked
that e-martensite is much stiffer along a set of crystallographic
directions representing a predominant part of the orientation space.
In particular, the minimal value is much higher in e-martensite,
Emin

HCP = 172 GPa, than in austenite, Emin
FCC = 101 GPa. The fact that the

Young modulus should be for most directions higher in e-martensite
is consistent with some local nanoindentation measurements in
a Fe-based shape memory alloy which showed greater values of
Young modulus and hardness in e-martensitic grains compared to
austenitic ones [7].

Besides, it is noteworthy that e-martensite variants can form
lamellar structures within grains where c/e phase boundaries may
act as obstacles to dislocation motion [5,1,3]. In such confined envi-
ronment, dislocation glide parallel to interfaces is promoted due to
less slip resistance (e.g. [31]). As dislocation glide is also controlled by
the value of the shear modulus of the slip plane, it is therefore worth
comparing the values of the shear modulus in the (111)c and (0001)e
planes. From Eqs. (6) and (9), it is deduced that these shear moduli
are isotropic within their planes and that they can be expressed as:

l(111)c =
3

2A + 1
c∗

44 l(0001)e =
A + 2

3A
c∗

44 (12)

Fig. 3. On the left, magnitude of the directional Young modulus of the FCC phase of an austenitic steel in all the space directions considering c∗
11 = 197.5 GPa, c∗

12 = 125 GPa and
c∗

44 = 122 GPa [32]. On the right, magnitude of the directional Young modulus of the corresponding HCP phase computed from Eq. (9). The vertical axis is aligned with the 〈111〉c
and 〈0001〉e crystallographic directions, respectively.
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Fig. 4. Variation of the shear modulus ratio
l(0001)e
l(111)c

(Eq. (13)) with the Zener

anisotropy ratio A in log-log scale.

Accordingly, their ratio can be written in an original manner only
with respect to A:

l(0001)e

l(111)c
=

2
9

(
A +

5
2

+
1
A

)
(13)

Fig. 4 shows then that the variation of this ratio with A is symmet-
ric around 1 in a log-log scale. From Eq. (13) and Fig. 4, it is noticed
that both shear moduli are equal for A = 1 but that l(0001)e is always
greater than l(111)c otherwise. The increase of the shear modulus
becomes significant as soon as A departs from unity. For instance, an
increase of 37% is obtained for A = 3.36. Apart from other consider-
ations, this finding indicates that it should be much more difficult to
make dislocations glide along (0001)e planes than along (111)c ones,
which is consistent with the observed pronounced hardening in
presence of e-martensite variants [7,3]. Finally, and as already sated
in the introduction, it is worth underlying that the elastic mismatch
between austenite and e-martensite could generate non-negligible
incompatibility stresses and image forces on dislocations.
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