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The relationship between the shear modulus and the flexibility volume has been examined using molecular dy-
namics simulations infifteen cubicmetallic elements over a range of temperatures.Wehave observed a universal
correlation, and identified the applicability range in which this correlation is quantitatively consistent with the
prediction based on the Debye model. Deviation is observed for high modulus metals, and its origin is discussed
in terms of the Debye assumptions regarding the vibrationalmean squareddisplacement and the phonon density
of states.
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The elastic constants (or the bond force constants) of materials are
expected to be reflected by the phonon properties. A recent perspective
[1] is that the shear modulus (G) can be regarded as a mechanical man-
ifestation of restrictedmotion, and the atomic vibrationalmean squared
displacement (MSD), 〈r2〉, can serve as a measure of the configurational
constraint. Similarly, the elastic shoving models of liquids purport that
the (instantaneous) G can be directly linked with the MSD, based on
the harmonic approximation of solids [2–6]. In particular, quantitative
correlation between G and 〈r2〉 has been derived from the isotropic
Debye model [7]. This asserted validity of the Debye model for liquids,
however, has not been verified with systematic data. For amorphous
solids, recent molecular dynamics (MD) simulations for model glasses
[8,9] suggest that the Debye model is applicable: combining both the
MSD and atomic volume aspects, the newly-defined flexibility volume
(vflex) [8,9] parameter has been shown to quantitatively predict the G
of all metallic glasses (MGs) as well as covalently bonded amorphous
solids.

These correlations for liquids and glasses, either consideringMSD or
vflex, are derived within the quasi-harmonic scheme based on the fol-
lowing Debyemodel approximation [10,11]. In the longwavelength ap-
proximation (LWA), i.e., when thewavelengthof the soundwave is very
long compared to the nearest atomic distance in a classical elastic con-
tinuum, the Debye temperature at the Debye cutoff wave number
[10,11] is related to G (incorporating the transverse sound velocity
ier Ltd. All rights reserved.
and bulk modulus instead of using the approximation below would
not cause a difference of more than 3%) [8,9,12],

ΘLWA∝ Ωað Þ−1=3

ffiffiffiffi
G
ρ

s
ð1Þ

where ρ ¼ M
Ωa

is the mass density and M is average atomic weight, and
the average atomic volumeΩa= a3, where a is the average atomic spac-
ing. Meanwhile, in the “high-temperature approximation”, i.e., when
the applied temperature is well above the Debye temperature, Debye
temperature scales with the vibrational MSD following [8,9,11]

Θ2
HTA∝

kBT
Mr2

ð2Þ

where kB is Boltzmann constant. If we assume that the two Debye tem-
peratures are equal, then

G ¼ C
kBT
r2∙a

¼ C
kBT
vflex

; ð3Þ

where C is a universal constant [8,9]. Because the average atomic spac-
ing a increases with temperature T, i.e., there is a temperature-
dependent atomic volume at finite temperature, Eq. (3) is in effect the
quasi-harmonic approximation replacing the harmonic approximation.
By combining awithMSDwe can define a flexibility volume, vflex= ⟨r2⟩ ∙
a, which includes both volumetric and dynamics information. In the
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following we correlate G with either the MSD or the vflex. One merit of
vflex is that this single new parameter determines the shearmodulus ac-
cording to Eq. (3) for all glasses (e.g., at room temperature) [8].

Although the correlation in Eq. (3) was previously assumed for liq-
uids in terms of the instantaneous shear modulus (G∞) and vibrational
MSD (see Eqs. (11) and (12) in [13]), and has been demonstrated
with simulation data for amorphous solids [8,9], it remains unclear
why the Debye approximation, upon which the derivation is based,
would be quantitatively valid (or at least give a good representation of
the data), considering that the normalized phonon density of states
(PDOS, g(ω), whereω is the frequency) of amorphous matter obviously
differs from the Debye model [14]. It is not even clear under what con-
ditions the simple Debye model G~〈r2〉 correlation would quantitatively
hold for crystals. Therefore, before one tackles the issue of general valid-
ity, the first step is to examine crystals with cubic structures, in a base-
line case study to benchmark the applicability range of theDebyemodel
correlation. This is the purpose of this paper.

In this work, we carry out molecular dynamics (MD) simulations on
cubic metallic elements to explore the quantitative correlations be-
tween shear modulus and various vibrational properties including
MSD, vflex and PDOS. Specifically, we use 15 cubic metals with either
the face-centered-cubic (FCC) structure or body-centered-cubic (BCC)
structure to build a picture/trend of statistical significance. Our results
suggest that a strong correlation between shear modulus and vibra-
tional properties does hold for cubic metals, but those having large
shear modulus, beyond 65 GPa, clearly deviate from the Debye predic-
tion. This result helps to establish the validity range of a quantitative
prediction of G from vflex and vice versa. The deviation seen for high-G
elements is rationalized based on their PDOS and its effect on the
Debye temperature relations used in the Debye model.

Our simulations use a system size of 4000 atoms for FCC metals and
4394 atoms for BCCmetals under periodic boundary conditions. The in-
teratomic interactions are described by the well-developed embedded
atom method (EAM) potentials [15–22]. All samples are equilibrated
at desired temperatures for 0.2 ns under NPT conditions (i.e., constant
atom number, pressure and temperature). During the equilibration,
Nose-Hoover thermostat [23–25] and Parrinello-Rahman method [26]
are used to control temperature and pressure (zero pressure in our
case), respectively. After initial equilibration, shear modulus and MSD
are calculated. The shear moduli of single-crystalline cubic metals are
largely anistropic, i.e., different values of C44 are expected after coordi-
nate transformations of C44 in the simple [100]-[010]-[001] coordinate
system. Thus we adopt the Voigt-Ruess-Hill average as an approxima-
tion to the shear modulus of a polycrystalline sample. Specifically, the
stiffness tensor C for a given sample is calculated using the finite defor-
mation method: we apply a strain tensor (with a small value for the
component of interest and zero otherwise) each time and record the
change of the corresponding stress component (the average Virial
stresses are used at a specific temperature). Note that while virial stress
has been widely used in atomistic simulations, a direct comparison to
experimental measured stress (also experimental elastic constants)
may not be straightforward, due to the differences in both stress defini-
tions and specific calculation/measure methods. The sample is relaxed
for additional 2 ns before and after applying the strain tensor using a
Langevin thermostat and the stress component is averaged over the
last 6 ps. For each applied strain tensor, both positive and negative di-
rections are considered. Afterwards the Voigt average and Ruess aver-
age shear modulus are obtained from the calculated stiffness tensor
and compliance tensor. We consider the Hill average G = 1/2(Gvoigt +
Gruess) in this work. It should be noted that for cubic metals, the Hill av-
erage has been shown to be a good estimate for a non-textured poly-
crystal and the results are very close to the self-consistent averaging
schemes [27]; this is one reason why we limit our current study to
cubic elements. The vibrational properties we calculated include MSD,
flexibility volume vflex and PDOS. TheMSD of ith atomwas calculated ac-
cording to hðxiðtÞ−xiÞi, where xi(t) is the atomic position at time t, xi is
the time averaged position and the angular bracket denotes the time av-
erage. Then theflexibility volume can be obtained via vflex= 〈r2〉/a2 ∙Ωa.
All these parameters were obtained in the microcanonical (NVE) en-
semble on the timescale of several picoseconds, so as to exclude diffu-
sive contributions to the vibrational MSD. PDOS was calculated from
the dynamical matrix at finite temperatures [28] and is normalized
such that ∫0ωmaxg(ω) = 1. In all simulations, a time step of 1 fs is used
for the integrator as implemented in LAMMPS [29].

We first attempt in Fig. 1A to observe if there is a correlation be-
tween G and MSD for the 15 cubic metals over a wide range of temper-
atures, to examineG as amanifestation of configurational constraint [1].
As can be seen, at a specific temperature (along a given dashed line), el-
ements showing larger 〈r2〉 have lower G, which can be fitted linearly
with a negative slope in the double-logarithmic plot, suggesting a
power-law relation such asG~G0(T)〈r2〉n, where the exponentn is a neg-
ative constant with a magnitude close to unity and G0 enters the inter-
cept. This linear relation holds for all temperatures considered here,
but the intercept is a function of temperature, i.e., G0(T) increases with
rising temperature. When we scale 〈r2〉 by the corresponding tempera-
ture T, all data points collapse onto a single line (Fig. 1B), indicating a
universal power law scaling between G and 〈r2〉/T, G � ½hr2iT �m; wherem
is a negative exponent. Meanwhile, due to thermal expansion and
anharmonic effects, G is lowered with increasing temperature for each
of the metals studied (see data for a given shaped symbol in Fig. 1). In-
terestingly, for almost all the elements studied, the G of each element
can also be fitted to decrease linearly in a logarithmic plot (not shown
in Fig. 1) with its own increasingMSD, except at high homologous tem-
peratures. The slopemay slightly vary from element to element and also
differ from that at a fixed temperature for all the elements. Overall, both
temperature-specific and element-specific measurements demonstrate
softening with increasing MSD. Such MSD-induced softening can be in-
tuitively interpreted as an inverse scaling between flexibility and con-
figurational constraint/rigidity: the less constraint applied or the less
rigid the material, the larger sampled configurational space. We also
mention in passing that the interplay between flexibility and constraint
can be tuned by external conditions such as temperature and pressure
[30–32].

The above results lend support to the configurational constraint ar-
gument on G and could be useful in predicting the shear modulus of
cubic metals based on a simple power law correlation, i.e., G ¼ C0

ð T
hr2iÞ

−m, where C0 is a constant independent of temperature and the ex-
ponent -m is found to be 1.28 from the fitting in Fig. 1B. However, a
major shortcoming of this correlation is that the interpretation is not
based on derivation and thus physically less transparent. So next we
look into the more physically interpretable correlation of Eq. (3)
which is based on the Debye model with quasi-harmonic
approximation.

Before testing theG~vflex relationship it is necessary to verify that the
“high-temperature limit” assumption used in Eq. (2) is satisfied, mean-
ing the applied temperature T iswell aboveΘHTA to ensure that all vibra-
tional modes are activated. To test this assumption we calculated the
ΘHTA for each metal studied, as summarized in Fig. 2. Most data points
are on the right-hand side of the line T = ΘHTA, in accord with the
high temperature approximation. Because the relationship between
ΘHTA and MSD is derived using a first-order series expansion of the
Debye integral function at high temperature (see ref. [11] Eqs. (7.42)–
(7.44)), we would expect smaller error in Eq. (3) at temperatures fur-
ther above the Debye temperature. Calculations verified that inclusion
of the second order term of this expansion had a negligable effect on
the relationship between ΘHTA and MSD in Eq. (2).

Fig. 3 shows the plot of G vs. T/vflex for all 15 elements at tempera-
tures that are greater than ΘHTA. We observe that for elements with G
b ~65 GPa, the calculated data is quantitatively consistent with the
Debye model prediction of Eq. (3) with the expected slope
(i.e., constant C in Eq. (3)). However, data points with G N ~65 GPa obvi-
ously deviate from the prediction. Such a significant deviation has not
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Fig. 1. (A) Correlation between the shear modulus G and the mean squared displacement (〈r2〉), and (B) Correlation between G and 〈r2〉/T, in a log-log plot. Points are calculated values
whereas dashed lines are linear fitting in the double-logarithmic plot.
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been observed in glasses [8,9], but there the Gs were below ~65 GPa,
well within the working range (b~65 GPa) demonstrated here. It is
not uncommon that G b ~65 GPa in amorphous materials, as it has
been shown that in MGs G is up to ~30% lower than that in the crystal-
line counterpart, without significant change in the average interatomic
spacing [33]. These results suggest that Eq. (3) based on the Debye
model and quasi-harmonic approximationmight fall short formaterials
with high G.

As expected, the further above ΘHTA the temperature is, the smaller
error margin we observe away from the prediction (Eq. (3), solid line
in Fig. 3). However, in Fig. 3 deviations from Eq. (3) become obvious
when G is greater than ~65 GPa even for cases when T is far above
ΘHTA. This suggests that the high-temperature approximation itself is
not the major contribution to the observed deviation from the Debye
model prediction. On the other hand, in Eq. (1) we also used the
Debye temperature from the long wavelength approximation, ΘLWA. In
using the Debye model to derive Eq. (3), it is assumed that ΘLWA =
ΘHTA. As seen in Fig. 4a, when G is less than ~65 GPa, the ratio ΘLWA/
ΘHTA is reasonably close to 1. However, for the range of G N ~65 GPa,
ΘLWA/ΘHTA increases to ~1.2, suggesting the breakdown of the equality
ΘLWA = ΘHTA. In other words, when G is large the Debye temperature
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to the web version of this article.)
approximated in the long wavelength limit is no longer equal to the
Debye temperature approximated in the high temperature limit.

The equivalence of the two Debye temperatures should holdwhen a
material has a Debye PDOS [11]. However, in realistic metals, the pho-
non modes and density distributions may be much more complex
than the Debye model. Peaks in the PDOS, above what the Debye
model would predict, are expected at low frequencies due to non-
linear dispersion of acoustic modes and structure-dependent van
Hove singularities. These peaks in the PDOS would result in a misesti-
mation ofΘHTA from ⟨r2⟩, and cause the actual MSD to differ significantly
from that expected from theDebyemodel. For example, while the PDOS
of Ag (with relatively lowG and agreementwith Eq. (3)) at 300K is sim-
ilar to the Debye model (Fig. 4b), the PDOS of Ir (with high G and devi-
ation from Eq. (3)) at 1000 K is poorly approximated by the Debye
model (Fig. 4c). Note that in Fig. 4b and Fig. 4c, we compare the calcu-
lated PDOS to estimates from the Debye model (a quadratic function
of ω, cut off at the Debye frequency) using both ΘLWA and ΘHTA. The
Debye frequencies from LWA and HTA show significant differences for
high-G metals, reminiscent of the deviation from equality seen in

Fig. 4a. As MSD can be obtained through the integration of gðωÞ
ω2 , such
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distinctly different PDOS of a high G metal is expected to lead to ele-
vated ratio of ΘLWA to ΘHTA, hence the observed deviation from the
Debye model in Fig. 3. At higher temperatures, many of the high-G
metals begin to show agreement with Eq. (3), correspondingly we in-
deed see a softening in the PDOS where the Debye regime becomes
more dominant. It is not fully understood why these high-G metals
have a significantly less dominant Debye regime in their PDOS com-
pared to the low-G metals. To investigate this, a detailed analysis of
their full phonon bandstructures will be considered in further work.

The simple argument above that the presence of a strong Debye re-
gime allows Eq. (3) to hold, seems reasonable for crystalline metals.
However, this does not seem to explainwhy Eq. (3) is found to be appli-
cable tometallic glasses [8], which show considerable boson peaks well
above the Debye level in the low frequency region of the vibrational
density of states (see ref. [14] by Albe et al.). This calls for deeper under-
standing on the fundamental vibrational properties in amorphous ma-
terials, which is beyond the scope of this paper.

In summary, we have calculated the shear modulus and vibrational
properties of 15 cubic metals, and related G to parameters based on
the vibrational mean squared displacement. At a given temperature, a
strong correlation is observed betweenG andMSD. However, this corre-
lation shifts when temperature changes. For the whole set of data at all
temperatures, the correlation G~(〈r2〉/T)−m has an exponent that differs
from the Debyemodel prediction. In contrast, when correlating G to the
recently defined vflex, most data points (different metals at different
temperatures) can be represented quantitatively by a universal line pre-
dicted by the Debye model, except those elements with large G
(N~65 GPa). Such a deviation arises from the breakdown of the equality
of the approximation of twoDebye temperatures,ΘLWA andΘHTA, which
appear to be different in high-Gmetals. This is reflected by a PDOS that
is vastly differentwhen compared to the Debyemodel, moving the ratio
ofΘLWA toΘHTA away from unity. Based on these results, we identify G b

~65 GPa as the applicability range for the Debye-approximation-based
Eq. (3) to quantitatively correlate G and vflex.
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