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A robust computational design framework that couples themetaheuristic cuckoo search techniquewith classical
molecular dynamics simulations is employed to optimize the composition of multicomponent alloys for in-
creased tensile strength. Model binary, ternary, and quinary multi-principal element alloys are chosen as test
beds to predict the influence of atomic concentration of one constituent element (design variable) on the ulti-
mate tensile strength (objective function) of thematerial. The design solutions that correlate the elemental atom-
ic fraction to strength over a number of computational search cycles are in qualitative agreement with earlier
experiments. The predictive scheme explores a vast materials landscape and accelerates the elemental selection
for discovery of novel multicomponent alloys.
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High-entropy alloys (HEAs), a subset of multicomponent alloys, are
typically concentrated solid solutions composed of five or more princi-
pal elements, each occupying between 5 and 35 at.% [1–3]. The different
HEA compositions that have been explored over the last decade show
unique micro/nanostructures and adjustable mechanical properties
[4–7]. While the theories explaining the strengthening mechanisms
are still in the early stages of development, few design strategies have
been proposed for optimizing elemental concentrations to achieve
targeted phase and material properties [8–10]. Some of these ap-
proaches include combinatorial material synthesis, numerical schemes
using ab-initio and molecular simulations, thermodynamics based cal-
culation of phase diagrams, finite element modeling, and the Taguchi
method [11–17]. The conventional methods, which involve characteri-
zation ofmicrostructures followed by dynamicmeasurement of thema-
terial properties, for discovering novel multicomponent alloys are time
and resource intensive. The advantage of a computational framework,
on the other hand, lies in the vastness of the parameter space available
for examination, not possible otherwise using only thermodynamic
phase analyses or high throughput synthesis. Thus, to design novelmul-
ticomponent alloys with optimal material compositions for desired mi-
crostructures and properties, we present a simulation-driven paradigm
that integrates a metaheuristic optimization technique with atomistic
es, IA 50011, USA.
nian).
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computations, and offers recommendations in agreement with
established experimental results.

Metaheuristic algorithms enable a nature-inspired generalized opti-
mization scheme to rapidly derive approximate solutions for intractable
or gradient free problems [18–20]. Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are the most popular evolutionary algo-
rithms with several applications in manufacturing, quality control, pro-
duction, and design [21–29]. However, the effectiveness of a recent
technique called cuckoo search (CS) for multi-modal design applica-
tions [30–33], and its superiority in benchmark comparisons [34,35]
against PSO and GA makes it an intelligent choice for designing multi-
element HEAs. CS is a search method that imitates obligate brood para-
sitism of some female cuckoo species specializing in mimicking the
color and pattern of few chosen host birds. The parasitic cuckoo often
chooses a nest where the host has just laid its own eggs so that when
the first cuckoo chick hatches, it evicts the host eggs out of the nest to
increase its own food share. Specifically, from an optimization stand-
point, CS (i) guarantees global convergence, (ii) has local and global
search capabilities controlled via a switching parameter (pa), and (iii)
uses Levy flights rather than standard random walks to scan the design
space more efficiently than the simple Gaussian process [32,36].

We integrate the CS mathematical framework with an atomistic
simulation tool, molecular dynamics (MD) in this case, to optimize the
elemental composition for a set of model quinary alloy with targeted
properties. Since analyses using phase diagrams require extensive ther-
modynamic data and computationally expensive ab-initio calculations
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are limited to systems of a few hundred atoms only, MD simulations are
chosen as the scientific probe. We construct, verify, and implement a
CS-MD coupled computational design framework and demonstrate its
performance to tailor the quinary AlCrCoFeNi alloy composition for in-
creasing the tensile strength.

The CS optimization procedure is based on the algorithm proposed
by Yang and Deb [34]. The CS implementation considers that each egg
in a nest represents a solution governed by the following three idealized
rules:

1. At a time, each cuckoo lays one egg and dumps it in a randomly-cho-
sen nest.

2. Only the best nest with highest quality eggs is carried over to the
next generation.

3. The probability that the host bird discovers the cuckoo egg is pa Ԑ (0,
1) for a fixed number of available host nests. If/When discovered, the
host bird can either get rid of the cuckoo egg or build a completely
new nest.
Cuckoo search possesses the advantage of a balanced combination

of both the local-random walk and the global-explorative random
walk. The switching parameter, pa, controls the selection between
these two walks. A local random walk is represented as xi

t+1=
xi
t+αs⊗H(pa− ε)⊗ (xjt−xk

t )=0 where, ε = random number,
H(u) = Heaviside function, s = step-size, xit&xk

t = two different solu-
tions selected randomly by random permutation,⊗=entry wise prod-
uct. A global random walk or Levy Flights is represented as

xi
t+1=xi

t+αL(s,λ), where Lðs;λÞ ¼ λΓðλÞ sinðπλ2 Þ
π

1
s1þλ ; ðs≫s0≫0Þ and αN0

is the step size scaling factor related to the scale of the problem. We
verify the CS optimization code by analyzing its performance by two
standard tests, the 6-hump Camel back and the Ackley function, similar
to the original algorithm [34].

The convergence rate in CS optimization has been often found to be
least dependent on the choice of key parameters like number of nests
(n) and switching parameter (pa) [32,36]. Our initial trials on test
Fig. 1. Cuckoo search (CS) and the implemented CS-MD algorithm: (a) Flowchart describing the
design of multicomponent alloys.
function like Ackley and 6-hump Camel back, revealed 0.2 to be an ap-
propriate choice for most scenarios at different values of n (5 to 100).
This approach ensured local search to consume around 1/5th of the
total time,meriting suitable exploration of the global design spacewith-
in reasonable computing times. Thus, for all simulations of the multi-
component alloys under CS-MD framework, we use a value of pa equal
0.2. An efficient heuristic optimization framework ensures that the sys-
tem is not trapped within any local optimum in the design/objective
function landscape. CS optimization includes both the local-random
walk and the global-explorative random walk with Lévy flights. Thus,
a guaranteed global convergence is an intrinsic feature and a unique ad-
vantage of the CS framework [30–33]. We believe that a comparison of
computational times between CS and just the local search would sug-
gest that since the local search explorations could be stuck in local opti-
mum, theywill consumemore computational resources/time (although
we did not run independent simulations to verify this). In relation to
this, CS would certainly be more efficient in exploring desired maxi-
ma/minima at both local and global search gradients [34,35].

The modified CS algorithm implemented here is shown in Fig. 1a,
which is adapted from a generalized description of the standard CS
technique [34]. The CS-MD framework, illustrated in Fig. 1b, involves
optimizing user-declared design variables, such as the elemental con-
centration in the alloy for the desired property, the ultimate tensile
strength in this case. Each cycle (generation) of CS involves comparing
different solutions (nests) to retain the best candidate while replacing
all unfavorable solutionswith newer alternatives predicted via the glob-
al and local exploratory walks in the design space. This strategy ensures
that all possible solutions are explored, and we overcome the barriers
imposed by the local maxima/minima to arrive at globally-optimum re-
sults. For every cycle, only the alloy with the elemental concentration
that yields the maximum ultimate tensile strength is retained amongst
all the available solutions, referred as the best nest/solution (g⁎).

The CS-MD framework is tested for robustness by varying input
concentrations from 2.5% to 97.5%, in increments of 2.5%. A single
steps in a standard CS optimization algorithm; (b) The proposed CS-MD framework for the
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MD-output file was used as the ‘output’ for all concentrations. The
code provided the correct elemental concentrations (input) and cal-
culated the maximum strength as equivalent for all cases tested.
The implementation of multiple input parameters in this framework
is a natural extension of this predictive scheme.

All the atomistic simulations of the binary, ternary subsets, and the
quinary alloy are performed with LAMMPS [37]. In a 2.0 × 2.0 ×
2.0 nm FCC lattice, elements (Al-Cr-Co-Fe-Ni) were randomly arranged
to form the alloy system of 32,000 atoms, having periodic boundary
conditions imposed in all directions. Energy minimization is carried
out, using the conjugate gradient algorithm with energy and force
tolerance set to 10−15 units. First initialization at 2200 K under an iso-
thermal-isobaric (NPT) ensemble at a pressure of 0 MPa for 90 picosec-
onds (ps) to melt the alloy using equilibriumMD simulations. This step
is followed by rapid quenching of the alloy under the NPT ensemble at
0 MPa with a cooling rate of 3.8 K/ps to reach 300 K. We employ the
Nosé-Hoover thermostat and barostat, each with a coupling time of
1 ps. Next, the structure is allowed to equilibrate for another 90 ps. A
time step of 0.001 ps is maintained throughout all our MD simulations.

The quenched alloy is, then, further equilibrated under the NPT and
NVT (canonical) ensembles successively. The pressure and temperature
constraints each with the coupling time of 1 ps are imposed by the
Nosé-Hoover thermostat and barostat, for a total time of 90 ps, followed
by the NVT ensemble, for further 90 ps. Finally, the entire system is sim-
ulated in the absence of thermodynamic constraints for further 90 ps
under the NVE (microcanonical) ensemble to ensure that we obtain
an equilibrated structure. Next, tensile loading of the alloy is performed
independently at 300 K. The simulation cell is deformed in the x-direc-
tion of〈100〉with a strain-rate of 1010 s−1, for the engineering strain
of 0.9%, while lateral boundaries are controlled using the NPT equations
of motion to zero pressure. We employ the 12–6 Lennard-Jones poten-
tial with the functional details described in our earlier work [38]. The
different parameters for the force field, as employed in previous MD
simulations, are also available as the supplementary information [39,
40]. Each alloy examined under the CS framework underwent the struc-
ture preparation (melting, quick quenching and equilibration), followed
by high strain deformation, as described elsewhere in details [38].

The predictive capability of the CS-MD optimization framework for
multicomponent alloys is first verified for a binary Al-Fe alloy, followed
by ternary and quinary combinations. The selected optimization param-
eters for the binary, ternary, and quinary alloys are listed in Table 1 to-
gether with the upper and lower limits of the design variable for each
material. For the binary case, the Al elemental % (atomic) is chosen to
be the design variable, while the objective function is to increase the ul-
timate tensile strength (UTS) for the alloy. UTS is the maximum stress
that a material can sustain within specific strain limits, which in this in-
vestigation is 0 to 90% strain at a specified strain rate of 1010 s−1. The
choice of the extremely-high strain rate, which is difficult to realize in
typical experiments, is required to derive demonstrative predictions
from MD simulations within reasonable wall times. The design space
shown in Fig. 2a, c, and e has the elemental % (atomic) of the design var-
iable in the z-axis varying with the number of iterations and number of
nests presented along the y and the x directions, respectively. The num-
bers of nests denote the number of solutions considered. The total num-
ber of evaluations of the objective function is the product of the number
of nests and number of iterations. The predictive landscape in Fig. 2a, c
and e represent the exploratory walks performed by the different
nest/solutions (= 10 for binary, 20 for ternary and quinary) of the CS
Table 1
Optimization parameters used for the different alloys.

Alloy composition Design variable Upper bound (at.%) Lower bo

Binary: AlFe Al 99 1
Ternary: FeNiCr Fe 90 10
Quinary: AlCrCoFeNi Al 99 1
algorithm. Here, the same colored histograms represent the variation
in the design parameter (atomic concentration) values with each itera-
tion of the CS cycle. The fluctuations in the histograms during the differ-
ent iterations indicate that the algorithm is employing different design
values to arrive at a global optimum and achieve the desired objective
function of the increased strength in the alloy. While the local search
consumes about 1/5th of the total search time, the rest is required for
the global search when using a switching parameter of pa = 0.2. In
each iteration, the complete exploration of the design variable by the
different cuckoo nests analyzes the favorable Al elemental % (atomic)
that increases the strength of the binary AlxFe alloy.

The CS-MD results (Fig. 2a and b) suggest that as Al % reduces the
strength of the binary (Al-Fe) alloy increases from 4000 MPa for 20%
Al to a final value of 5000 MPa for 9% Al in 100 objective function eval-
uations. Each objective function evaluation involves a complete MD
computational analysis, where for a particular composition, a
nanoscopic structure of the alloy is simulated by quenching from
2200 K to 300 K, followed by the uniform tensile deformation in the
〈100〉 direction. The low Fe solubility in Al promotes several stable
and metastable phases that often lead to the formation of a hard and
brittle intermetallic with the reduced formability in rapidly-quenched
Al alloys [41–43]. The predictions of the CS-MD approach for the high
strain deformation of AlxFe alloys shows reasonable agreement with
the literature, where an increase in Fe % promotes higher tensile
strength in quenched alloys [44–48].

The ternary Fe-Ni-Cr alloywith the design variable as the atomic % of
Fe is next employed as a test bed for thematerial-optimizationmethod.
Fig. 2c shows the design-space extent when the different cuckoos ex-
plore possible nests/solutions over the different cycles. The variations
of the design parameter and objective function with each cycle of CS
are shown in Fig. 2d that shows an increase in the strength of the Fe-
Ni-Cr alloy with the increase in the Fe content. Within 200 objective
function evaluations, the algorithm is able to predict the Fe content
(at.%) that effectively raises the strength in the ternary alloy by ~4%.
An increase in Fe content in alloys (binary and ternary) promotes the
formation of intermetallic phases that enhance strength (tensile) in
the modified alloy [42,44,45,49–51].

We extend our optimization analysis to quinary alloy compositions
constituted of the Al-Cr-Co-Fe-Ni elements. The Al content is the design
variable, and the objective is to examine trends for the design variable
that could result in a higher strength of the quinary alloy. Predictions
from the design framework in 120 objective function evaluations across
6 cycles of CS runs suggest that the strength (UTS) of the quinary alloy
can increase by ~35%. Fig. 2f illustrates the evolution of UTS as a function
of Al at.% over the computed cycles.We find that reducing Al concentra-
tion from 10% to 1% at the expense of increasing Fe fraction in our
quinary alloy, contributes to increasing the strength of themulticompo-
nent alloy system. The trends observed from our design framework are
in good agreementwith experimentalmeasurements [52], that show an
increase in UTS from 620MPa to 635MPa at 298 K for a decrease in Al %
from 6.4 to 2.2 at.% for the AlxCrCoFeNi HEA. We conjecture that Al pro-
motes the clustering transition [38], and as its concentration reduces
while that of Fe increases, the strength of the multicomponent alloy in-
creases. Our predictions, which contradict the increase of strength and
hardness with increasing Al content in single phase solid solutions
(near equiatomic HEAs) [5], suggest that for the optimized composi-
tions intermetallic, multi-phase or possibly amorphous structures are
promoted in multicomponent alloys. It is also important to clarify that
und (at.%) Switching parameter (pa) No. of nests No. of cycles

0.2 10 10
0.2 20 10
0.2 20 6



Fig. 2.Design-space-explorationmap [panels - (a), (c), and (e)], and design variable (concentration) and objective function (UTS) variationwith each cycle of CS [panels – (b), (d), and (e)],
for different multicomponent alloys — binary Al-Fe, ternary Fe-Ni-Cr, and quinary Al-Cr-Co-Fe-Ni — examined in the CS-MD optimization framework.
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the different multi-component alloy systems considered in the study
are defect-free [53,54], and we report values (UTS) that are in the
realm of ideal-strength [53,55–57]. However, in actual materials dislo-
cations, twinning, stacking faults, and microstructural defects, to name
a few, significantly contribute to strength characteristics.

In summary, we develop and implement a combined cuckoo
search and molecular dynamics based design framework to optimize
the composition of multicomponent alloys for the desired structural
property, such as high tensile strength. The metaheuristic simulation
algorithm is sufficiently robust to be not confined by local optimum
solutions and predict the global maxima/minima. We employ the
technique to examine the variation of mechanical strength under
high strain-rate deformation in binary, ternary, and quinary multi-
component alloys. The results of the computational scheme reveal
the correlation between the concentration of a single element (design
variable) and ultimate tensile strength (objective function) that are
qualitatively in agreement with earlier experimental measurements.
The proposed technique accelerates the selection and composition of
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elements for a multicomponent alloy system with desired structures
and properties, overcoming the limitations of trial-and-error strate-
gies for exploring the vast materials landscape for such complex
structures.
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