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The capillary force drives the edges of solid thinfilms to retract. The distance afilmedgehas retracted over time is
usually fitted to a power law.However, experiments and numerical simulations suggest that edge retraction does
not follow a power-law. In this work, a simple geometric model for edge retraction is presented that reproduces
the retraction distance versus time scalings of simulations for both isotropic and highly-anisotropic films, and is
consistent with experiments. The earliest time at which a power-law fit becomes a reasonable approximation is
calculated as a function of substrate–film contact angle.
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Thin films are the fundamental building blocks for manymicro- and
nano-scale devices and systems. However, they are unstable against
capillary forces due to their high surface-area-to-volume ratio. Capillar-
ity (i.e., surface tension) drives a process in thin films known as solid-
state dewetting [1], which occurs in the solid state primarily via surface
self-diffusion, though other transport mechanisms are possible [2].

The main feature of dewetting is retraction of the film's edges and
the formation of thick “rims” of material along the retracting edges.
The rim volume primarily comes from the volume of film that has
been consumed by the retraction process [1,3]. Retraction is facilitated
by a mass flux from the receding triple line (the intersection of the
film/vapor, vapor/substrate, and substrate/film interfaces) towards the
advancing side of the rim [4]. The flux from the bulk film towards the
rim is extremely small, and may usually be neglected [5].

Brandon and Bradshaw developed a simple model for edge retrac-
tion that provides two important scaling laws [3]. First, the model pre-
dicts that the radius of a growing hole in a thin film will increase with
time to the 2/5 power. Second, it predicts that the height of the rim
will increase with time to the 1/5 power.

The B&B (Brandon and Bradshaw)model has twomajor limitations:
first, it was developed for a contact angle of 90° only, and second, the
cross-section of the rim was taken to be a semi-circle. Because of the
first assumption, the effect of film–substrate contact angle on the scal-
ing is unknown. The second assumption makes the model valid only
in the limit of long retraction times, when the rim is much taller than
thefilmheight. Other phenomena such as pinch-off [6,7] orfingering in-
stabilities [8,9,10] typically occur on thin film edges, which prevent the
system from reaching the long-time limit of edge retraction in many
cases.

Experiments do not agree with the scaling predicted by B&B [1]. For
single-crystal nickel thin films, the exponent in the best power-law fit
has been reported as 0.4 and 0.56 [11], and 0.38–0.43±0.1 [12], for vary-
ing crystallographic directions. For single-crystal silicon, the exponent is
reported to be 0.42–0.58 for different film thicknesses and orientations
[13], and has been fitted by an exponent varying between 1/2 and 2/5
[14].

Numerical simulations of edge retraction also show that the re-
traction distance does not follow a power law. Both isotropic and
fully-faceted films initially retract linearly in time, then the exponent
in the power law gradually decreases, approaching 2/5 in the long-
time limit [7,4]. Kinetic Monte-Carlo simulations give an initial re-
traction rate proportional to t1/2, and approaching t2/5 in the long-
time limit [14].

In this work, we identify the underlying physics describing edge
retraction which are consistent with experiments and numerical
simulations. We present an analytical model, based on Brandon
and Bradshaw's approach, which overcomes the limitations of the
original model. Our model captures the transition from linear retrac-
tion to 2/5 power-law behavior and offers a physical explanation for
this phenomenology. The retraction rate and earliest time for t2/5 re-
traction are also provided as a function of film–substrate contact
angle.
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The velocity of an isotropic surface evolving by capillary-driven sur-
face diffusion was given by Mullins as [2]

un ¼ B
∂2K
∂σ2

1

þ ∂2K
∂σ2

2

 !
; ð1Þ

whereB ¼ DsγΩ2ν
kT ,Ds is the surface self-diffusivity,γ is the surface energy,

Ω is the volume per atom, ν is the density of mobile surface atoms, k is
Boltzmann's constant, T is temperature, and K is the mean curvature of
the surface as a function of orthogonal arc length coordinates σ1 and
σ2. This equation can be made dimensionless to have the form

vn ¼ ∂2κ
∂s21

þ ∂2κ
∂s22

 !
; ð2Þ

where vn is the dimensionless velocity and vn=unH
4/B, H is the

film thickness, s1 and s2 are the dimensionless arc length coordinates,
si=σi/H, and κ is the dimensionless mean curvature, κ=HK.

The following five assumptions made in the B&B model are pre-
served in our model to simplify the rim geometry: i) The film is taken
to be isotropic. ii) The film edge profile is identical everywhere along
the triple line, so there is no dependence on the arc length coordinate
parallel to the triple line s2, and it can be ignored. iii) When the film is
cross-sectioned normal to the triple line, the rim profile is a circular
arc. iv) The film behind the rim has uniform thickness, i.e., there is no
Fig. 1. (a) The geometry assumed by Brandon and Bradshaw [3] treats the rim as a semi-
circle, with overlap between the film and rim, violating mass conservation. (b, c) The
cross-sectional profile of the edge of the film is shown at time = t (b), and at time =
t+dt (c). It is assumed that retraction proceeds at velocity v, which is a function of the
rim height h(t), for a short amount of time dt. The new film edge geometry can be found
by assuming that the new rim area (light shading in (c)) is the sum of the old rim area
plus the area df (light shading in (b)). The x-axis is drawn below the figures, and the posi-
tions used in the model are indicated. All length scales are normalized to the film thick-
ness, and the contact angle θ and arc length coordinate s are shown in (b).
valley ahead of the retracting rim. The discontinuity in slope where
the rim meets the film is artificial and is therefore ignored; and
v) There is no mass flow between the flat film and the rim.

To overcome the limitations of the original B&Bmodel, we introduce
two augmentations: we allow any contact angle, and perform a more
accurate treatment of the rim volume over time. While B&B take the
cross-section of the rim to be a semi-circle, here it is treated as a circle
that is cut along two perpendicular chords (see Fig. 1): the horizontal
cut ensures that the rim meets the substrate at the equilibrium contact
angle θ (which is no longer constrained to be 90°), and the vertical cut
ensures a flush match between the rim and bulk film, so that volume
is conserved (which was not the case in the original B&B model).

All lengths in this analysis are normalized to the film thickness H,
and time is normalized to H4B−1, so that all quantities are dimension-
less. The height of the rim, h, is related to the radius of curvature of
the rim, r, and the contact angle, θ, by

r ¼ h
1− cos θ

: ð3Þ

To compute the velocity of surface motion using Eq. (2), the second
derivative of curvature along the film profile is needed.We assume that
the curvature as a function of arc length is parabolic near the triple line,
i.e., we use a second-order accurate approximation of the curvature,
similar to B&B's and Danielson's approach [3,13]. In general, the second
derivative of a parabola, k(s), of best fit to three distinct points (si,ki) is

∂2k
∂s2

≈
2 s1k2 þ s2k3 þ s3k1−s1k3−s2k1−s3k2ð Þ

s1−s2ð Þ s2−s3ð Þ s3−s1ð Þ : ð4Þ

Three points are selected along the s coordinate, (si,ki)=(0,ks=0),
(Δs,ks=Δs), (2Δs,ks=2Δs), where Δs is taken to be the arc length from
the triple line to where the rim meets the bulk film,

Δs ¼ r θþ arcsin
xmax tð Þ−r sin θ

r

� �
; ð5Þ

and the value of xmax(t) is indicated in Fig. 1. Note thatΔs is not an infin-
itesimal quantity, and changes with time. The curvature at the triple
line, ks=0, is equal to the curvature of the rim, 1/r. At arc distance Δs
and 2Δs from the triple line, the curvature (ks=Δs and ks=2Δs) is that
of the flat film, 0. Substitution into Eq. (2) using Eqs. (3) and (5), and
projecting the normal motion into the plane of the substrate (i.e., divid-
ing by sinθ), yields

vretr ¼ cscθ cosθ−13

h3 θþ arcsin
1
h
sin

θ
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h−1ð Þð1þ hþ h−1ð Þ cosθ

q �� �� �
2
:

ð6Þ

The rim height at a future time, h(t+dt), is computed using conser-
vation of mass within the rim. The old rim, with height h(t), will incor-
porate material from the flat film with a cross-sectional area df, as
illustrated in Fig. 1. The cross-sectional area of the rim is found by inte-
grating the curve that describes it from xmin to xmax,

rim profile xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− r sin θþ xmin−xð Þ2

q
−r cos θ; ð7Þ

where xmin=0 at time t and xmin=vretrdt at time t+dt. The additional
volume in the rim where xbxmin if θN90∘ is also integrated and added.
The area of flat film that is incorporated into the rim, df, is simply
(xmax(t+dt)−xmax(t)) (the film thickness is 1).

The cross-sectional area of the film is conserved, giving the equation

rim area t þ dtð Þ−rimarea tð Þ−df ¼ 0: ð8Þ
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Upon substitution, this equation becomes transcendental, and can-
not be used directly to solve for h(t+dt). Therefore, the assumption is
made that.

h t þ dtð Þ ¼ h tð Þ þ αvretrdt; ð9Þ

whereα is anunknownquantity. The left-hand side of Eq. (8) can be lin-
earized by expanding to first order in dt. The linearized equation is then
solved for α, which describes the rim height as a function of time. The
expression forα is lengthy, so it is presented as Supplementarymaterial.
While α does depend on dt, the dependence is so weak that dtmust be
greater than about 107 to affect α by a percent. Therefore, removing the
dt-dependence in α(dt) by setting dt=1 (a value of 1 is chosen because
dt appears in the denominator of several terms) within the expression
for α is a reasonable numerical approximation.

The change in rim height with respect to time is given by

h0 tð Þ ¼ αvretr; ð10Þ

with the initial condition h(0)=1. The solution to this equation does
not have a closed form, but it can be integrated numerically without
specialized algorithms. The numerical solution to h(t) is substituted
into Eq. (6) and numerically integrated to yield the retraction distance
of thefilm edge as a function of time. Using the built-in numerical differ-
ential equation solver and numerical integration function in Wolfram
Mathematica 10 [15] on a ca. 2011 laptop, the total time for the calcula-
tion is a few seconds.

A log–log plot of the edge retraction distance versus time is shown in
Fig. 2. The dashed guide lines show that initially the slope of the curves
is 1, and at late times, the slope is 2/5. Considering the short and long
time limits of these curves allows quantification of the constant of pro-
portionality and the time it takes to transition from t1 to t2/5 retraction
behavior.

The growth rate of the rim height is given by Eq. (10).When the rim
height is equal to the film height (time→0), the retraction velocity
Fig. 2. The retraction distance as a function of time is shown for various contact angles. The
dashed gray lines are visual guides with slope= 2/5 and slope= 1. The dashed black line
shows the points at which the slope of the retraction curves is equal to 0.46, given by
Eq. (15). The distance and time are normalized using the film thickness H and material
constant B.
simplifies to

vretr;t→0 ¼ −
cos θ−1ð Þ3

θ2 sin θ
� � : ð11Þ

In this same limit, the rate of rim height increase, α, goes to zero.
Therefore, the rim initially does not grow in height, and the driving
force for retraction is unchanged. However, the rim is incorporating
mass, so it is growing only in width (along the x-axis in Fig. 1). With
constant driving force, the retraction distance is proportional to the
total retraction time,

x t→0ð Þ ¼ −
cos θ−1ð Þ3
θ2 sin θ

t: ð12Þ

In the long-time limit, the rim is very large, so hN N1. The rim
becomes a circular segment with cross-sectional area (h/(1−
cosθ))2(θ− (1/2) sin2θ). Setting the rim cross-sectional area equal
to the swept-up film area, 1×x, gives an expression for the rim
height h as a function of retraction distance x. The retraction velocity
becomes vretr= −(cosθ−1)3cscθ/(4h3θ2). Replacing h with the ex-
pression for h(x) yields

vretr;t→∞ ¼ csc θ 2θ− sin 2θð Þ3=2

8
ffiffiffi
2

p
θ2x3=2

� � : ð13Þ

Integration results in the retraction distance in the long-time limit
going as t2/5:

x t→∞ð Þ ¼ 52=5

29=5 t
2θ− sin 2θð Þ3=2

θ2 sin θ

 !2=5

: ð14Þ

This expression is analogous to Brandon&Bradshaw's result, but gen-
eralized for any contact angle, and non-dimensionalized. When θ=90∘,
this expression is identical to Brandon & Bradshaw's method applied to
a straight film edge (the derivation of the straight edge case is provided
in the Supplementary material, which differs slightly from their original
result for a growing hole and from the derivation in Ref. [13]).

For the purposes of fitting experimental data, it is useful to know
when the 2/5 power-law model is applicable to within 10% error for
the exponent value, tpower− law (in other words, when the transition
from linear to 2/5 power-law behavior is mostly complete). This must
be done numerically. Values for tpower− law obtained from this model
and from numerical simulations of edge retraction for isotropic and
strongly anisotropic materials (Refs. [7,4]) are shown in Table 1. For
contact angles between approximately 30∘ and 170∘, a simple fit can
be obtained: the exponent of retraction is less than 0.46 when the
Table 1
The time at which the power-law model becomes reasonable, tpower−law, is tabulated for
various contact angles. The values for tpower−law,thismodel were obtained numerically from
the curves shown in Fig. 2. The values for tpower−law,simulations were obtained from Ref. [7]
(simulations of edge retraction for an isotropic material) and Ref. [4] (simulations of edge
retraction for a fully-faceted material). The values of tpower−law are identical in Refs. [7,4],
so they appear as a single column here. The times are in units of H4B−1.

θ tpower−law,thismodel tpower−law,simulations

30° 86,000 68,000
60° 7100 4700
90° 1000 830
120° 200 190
150° 49 88



Fig. 3. The retraction distance as a function of time for 30°, 60°, 90°, 120°, and 150° contact
angles are shown for the model developed in this work (red), and for simulations of
materials with isotropic and fully-faceted surfaces (blue), taken from Refs. [7,4],
respectively. The dashed gray lines are visual guides with slope = 2/5 and slope = 1.
The isotropic and fully-faceted simulation results are identical, so they appear as a single
curve for each contact angle. The model and simulation curves have the same shape, but
they are offset. Initially, edge retraction is linear in time, and follows a 2/5 power-law at
late times in all three cases.
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dimensionless time is greater than or equal to

tpower−law ≈ 105:575−0:0267θ: ð15Þ

Eq. (15) is plotted parametrically as a function of contact angle θ in
Fig. 2 (the black dashed line). The retraction distance when tpower−law

is reached is 3.3H for θ=170∘, and increases with decreasing contact
angle, exceeding 30H for θ=45∘.

Edge retraction curves for various contact angles are shown in Fig. 3,
alongwith results fromRefs. [7,4]. These references report on numerical
studies of edge retraction for materials with isotropic [7] and fully-
faceted [4] surfaces. After non-dimensionalizing, the isotropic and
fully-faceted simulations give identical retraction curves for a given
contact angle, so a single curve represents both data sets. Anisotropy
plays no role in determining the edge retraction distance versus time.

Qualitatively, the model (this work) and simulation (Refs. [7,4])
curves have the same shape, although themodel underestimates the re-
traction rate. This is likely due to the real rim shape having a higher cur-
vature near the triple line than the circular arc approximation. However,
tpower−law from themodel and simulation curves agree reasonablywell,
as shown in Table 1.

It is worth noting that pinch-off [6,7] (thinning of the film ahead of
the retracting rim) occurs in some material systems, and may lead to
film break-up before reaching 2/5 power-law behavior. However, the
times to pinch-off for isotropic films presented in Ref. [7] are two orders
of magnitude larger than tpower− law for a given contact angle, so the
power-law regime should be reached before pinch-off.

The model presented here is simple, but it reproduces the main fea-
tures of dewetting, and gives insight into the underlying cause of the
characteristic scalings. Initially, the rim is shaped like a quarter of a cir-
cle. As mass is added to the rim, it initially grows rapidly in width, but
not height, so the curvature of the rim initially does not change. The
driving force for retraction does not change, and retraction proceeds lin-
earlywith time. At very late times, Brandon andBradshaw's [3] assump-
tions become valid, and themass swept up is distributed evenly across a
rim which is much taller than the film. This geometry leads to the 2/5
power-law scaling.

The linear edge retraction regime is short-lived for contact angles
larger than about 90° This explains why experiments often fail to detect
the linear regime. For a typical metal thin film heated sufficiently to un-
dergo dewetting at significant rates (H4B−1≈10 s, θ≈90∘), the linear
regime lasts only a few seconds. However, it takes 3 1/2 h before the ex-
ponent in the power-law model is within 10% of 2/5. Experiments rou-
tinely give an exponentfit that is between 0.4 and roughly 0.6 [13,11,14,
12]. Our model suggests that measuring an exponent larger than 0.4 in-
dicates that the transition to 2/5 power-law time regime is not yet com-
plete. Our prediction that edge retraction is not governed by a power
law can explain at least some of the discrepancies between experimen-
tal best fits and the Brandon and Bradshaw model.
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