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ARTICLE INFO ABSTRACT

Objective: Glucocorticoid receptor gene (NR3C1) promoter methylation influences cellular expression of the
glucocorticoid receptor and is a proposed mechanism by which early life stress impacts neuroendocrine function.
Mitochondria are sensitive and responsive to neuroendocrine stress signaling through the glucocorticoid re-
ceptor, and recent evidence with this sample and others shows that mitochondrial DNA copy number (mtDNAcn)
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Adversity . . is increased in adults with a history of early stress. No prior work has examined the role of NR3C1 methylation in
Adverse childhood experiences .. . .
Trauma the association between early life stress and mtDNAcn alterations.

Methods: Adult participants (n = 290) completed diagnostic interviews and questionnaires characterizing early
stress and lifetime psychiatric symptoms. Medical conditions, active substance abuse, and prescription medi-
cations other than oral contraceptives were exclusionary. Subjects with a history of lifetime bipolar, obsessive-
compulsive, or psychotic disorders were excluded; individuals with other forms of major psychopathology were
included. Whole blood mtDNAcn was measured using qPCR; NR3CI methylation was measured via pyr-
osequencing. Multiple regression and bootstrapping procedures tested NR3C1 methylation as a mediator of
effects of early stress on mtDNAcn.

Results: The positive association between early adversity and mtDNAcn (p = .02) was mediated by negative
associations of early adversity with NR3C1 methylation (p = .02) and NR3C1 methylation with mtDNAcn
(p < .001). The indirect effect involving early adversity, NR3C1 methylation, and mtDNAcn was significant (95
% CI [.002, .030]).

Conclusions: NR3C1 methylation significantly mediates the association between early stress and mtDNAcn,
suggesting that glucocorticoid receptor signaling may be a mechanistic pathway underlying mtDNAcn altera-
tions of interest for future longitudinal work.

1. Introduction

An estimated 61 % of adults in the United States experienced some
form of early life stress defined as abuse, neglect, parental separation,
or poverty (Merrick et al., 2018). Traumatic early life exposures are
associated with an increased risk for many poor health outcomes, in-
cluding diabetes, cardiovascular disease, and psychiatric conditions,
including major depressive disorder (MDD), anxiety disorders, and
post-traumatic stress disorder (PTSD) (Vachon et al., 2015). These
conditions exact costs in excess of $124 billion through suffering,

disability, treatment, and loss of productivity over the lifespan (Fang
et al., 2012), making early stress exposures an important public health
problem. Therefore, toward the goal of disorder prevention or treat-
ment, there is great interest in understanding the molecular pathways
impacted after exposure to early life stress.

Early life stress is linked to alterations in the neuroendocrine stress
response system and changes to mitochondrial DNA and function
(Picard et al., 2014; Ridout et al., 2016) Early life stress in the form of
prolonged, repetitive, or severe adversity in the absence of a nurturing
environment can result in hypothalamic-pituitary-adrenal (HPA) axis
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dysregulation (Danese and McEwen, 2012; Tyrka et al., 2016c). HPA
hyper- or hyporeactivity after toxic stress can result in increased risk of
stress-related psychiatric disorders (Syed and Nemeroff, 2017; Tyrka
et al., 2016c¢).

Mounting evidence shows that a key mechanism linking early life
experiences to changes in neuroendocrine function is epigenetic mod-
ification of genes central to the neuroendocrine stress response (Syed
and Nemeroff, 2017; Tyrka et al., 2016c). Methylation at CpG nucleo-
tides in gene promoter regions has been of particular interest given
their important role in the dynamic regulation of gene expression
(Suzuki and Bird, 2008). Epigenetic alterations of neuroendocrine genes
have been detected after early life stress exposure (Tyrka et al., 2016c)
and are associated with risk for psychiatric disorders (Klengel and
Binder, 2015; Syed and Nemeroff, 2017; Tyrka et al., 2016c). Much of
this work has focused on promoter methylation of the glucocorticoid
receptor (GR) gene, NR3C1 (Tyrka et al., 2016c). The GR is responsible
for intracellular responses to neuroendocrine signaling, and in-
tracellular GR expression is reduced with promoter methylation of
NR3C1 (Daskalakis and Yehuda, 2014; Turner et al., 2010; Tyrka et al.,
2016¢). This in turn results in reduced GR-mediated glucocorticoid
negative feedback and increases in corticosterone responses (Francis
et al.,, 1999; Liu et al., 1997). Most work also shows this positive as-
sociation between NR3CI methylation and measures of glucocorticoid
activity (Palma-Gudiel et al., 2015; Stonawski et al., 2018; Tyrka et al.,
2016a, 2016b, 2016c).

A central target of intracellular glucocorticoid signaling critical to
responding and adapting to stress is the mitochondrion (Picard et al.,
2014; Ridout et al., 2016). Mitochondria are intracellular organelles
that generate ATP, the main energy source in the cell, through the
process of oxidative phosphorylation. Mitochondria, which supply the
large energy requirements needed to mount the stress response, are
particularly vital for highly metabolically active organs such as the
brain (Manoli et al., 2007). Mitochondrial oxidative phosphorylation is
controlled by a complex cascade of enzymes that is tightly regulated
through nuclear and mitochondrial gene expression pathways (Lee
et al.,, 2013; Manoli et al., 2007). In addition to providing the main
source of cellular energy, mitochondria are integral to cellular sig-
naling, differentiation, replication, inflammation, and apoptosis (Streck
et al., 2014). Glucocorticoid signaling through the GR can modify mi-
tochondrial activity by binding to and regulating mitochondrial and
nuclear gene expression (Lee et al., 2013; Psarra and Sekeris, 2009,
2011), in addition to altering cellular processes that regulate mi-
tochondrial genome replication leading to changes in mitochondrial
DNA copy number (mtDNAcn) (Lee et al., 2013; Psarra and Sekeris,
2008, 2009) (Fig. 1).

Recent evidence suggests that mitochondrial dysfunction may be
involved in the development of depressive and anxiety disorders. In
rodent models, pharmacological inhibition of mitochondrial function
induces anxiety phenotypes (Hollis et al., 2015) and mitochondrial
dysfunction is observed in rodent models of MDD (Rezin et al., 2008;
Seibenhener et al., 2013; Yang et al., 2016) and PTSD (Garabadu et al.,
2015; Zhang et al., 2015). In humans, preliminary evidence shows
mitochondrial involvement in PTSD (Bersani et al., 2016; Su et al.,
2008; Zhang et al., 2015), and MDD (Karabatsiakis et al., 2014; Moreno
etal., 2013; Nicod et al., 2015) as well as transdiagnostic behaviors and
symptoms, including anergia, psychomotor retardation, memory im-
pairment, and fatigue (Karabatsiakis et al., 2014), as well as somati-
zation (Gardner and Boles, 2008). Alterations in neuroendocrine sig-
naling have been implicated in the link between psychiatric disorders
and mitochondrial function (Cai et al., 2015; Liu and Zhou, 2012; Yang
et al., 2016). In rodents, chronic stress or corticosterone exposure in-
creases mitochondrial DNA replication (Cai et al., 2015), and repeated
injection of corticosterone reduces brain mitochondrial activity while
inducing depressive (Liu and Zhou, 2012; Yang et al., 2016) and anxiety
phenotypes (Yang et al., 2016). Further, in adult mice with mitochon-
drial gene deletions, neuroendocrine function after restraint stress is
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altered and induces depressive phenotypes (Picard et al., 2015). Thus,
changes in mitochondrial biogenesis may be an important downstream
molecular target of NR3C1 gene expression changes after methylation
and may impact risk for the development of psychiatric disorders.

We recently reported that adults with a history of early life stress or
psychiatric disorders had increases in mtDNAcn (Tyrka et al., 2015,
2016a) and reduced methylation of NR3C1 (Tyrka et al., 2016a, 2016b,
2016¢). Given the evidence of neuroendocrine dysfunction after early
life stress, these findings may be due to an impact on mtDNAcn through
a neuroendocrine pathway. Since GR is an important regulator of mi-
tochondria and mtDNAcn, in the present study we hypothesized that
NR3C1 methylation may be a mechanism by which early life stress
alters mtDNAcn.

2. Methods and materials
2.1. Subjects

Adults aged 18-65 (n = 290) were recruited using newspaper and
internet advertisements directed toward healthy adults and individuals
with psychiatric disorders and/or a history of early life stress. These
participants were studied in our prior publication on associations of
early stress and psychopathology with mtDNAcn (Tyrka et al., 2016a).
Participants self-identified as white (n = 241), black (n = 26), Asian (n
= 9), Hispanic (n = 4), and other (n = 10). Subjects free of current
substance-use disorders (defined as meeting DSM-IV criteria in the past
month) and without current or lifetime bipolar, obsessive-compulsive,
or psychotic disorders were included. Medical conditions and pre-
scription medications other than oral contraceptives were exclusionary.
Prior to study enrollment, participants were informed about the study
and voluntary written informed consent was obtained. The study was
approved by the Butler Hospital Institutional Review Board.

2.2. Measures

2.2.1. Demographics

Age, sex, race, and highest educational level were obtained by
subject self-report. Height and weight were measured, and body mass
index (BMI) was calculated using the formula (weight [kgl/height
[m?D.

2.2.2. Early life stress assessment

Subjects were asked whether they experienced parental loss prior to
age 18, defined as parental death and/or parental separation for at least
6 months with no attempts by the parent to contact or respond to the
child. Maltreatment was assessed using the Childhood Trauma
Questionnaire (CTQ) 28-item version, which evaluates physical, sexual,
and emotional abuse and physical and emotional neglect (Bernstein
et al., 2003). Participants were considered to have experienced early
life adversity if they endorsed parental loss or had at least moderate
levels of one or more of the five maltreatment types on the CTQ.

2.2.3. Psychiatric disorders
Psychiatric diagnoses were assessed using the Structured Clinical
Interview for DSM-IV (First et al., 1997).

2.3. DNA isolation and measurement of mtDNAcn and NR3C1 methylation

2.3.1. DNA isolation

Whole blood was drawn from participants and then stored at —80
°C until processing. DNA was isolated from whole blood using standard
techniques.

2.3.2. mtDNAcn quantification
Three parallel qPCRs reactions were performed to quantitate copy
numbers for the mitochondrial genome and the beta-hemoglobin gene
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Fig. 1. Mechanisms by which the glucocorticoid receptor (GR)

contributes to mitochondrial DNA copy number (mtDNAcn)
regulation.

After intracellular cortisol binds the GR, the activated GR can

, impact mitochondrial DNA copy number via a variety of me-

\ chanisms: 1) GR can enter the mitochondrion, bind to gluco-

corticoid response elements (GREs) in the mtDNA and directly

activate its replication; 2) GR can directly bind to GREs in the

matochongna mtDNA GREs nuclear genome and increase transcription of genes that reg-
l e 2) Increased ulate mtDNAcn; and 3) GR-mediated increases in mtDNAcn or
Intracellutar . expression of modification of intracellular oxidative stress and inflamma-
space nuclear genes tion pathways can lead to further activation of nuclear genes
regulating mtDNA  that enhance mtDNA replication.
3) Mitochondrial
regulation of
p— nuclear genes

as a single-copy standard as previously described (O’Callaghan and
Fenech, 2011). Data acquisition was performed using the ABI Prism
HT79000 DNA Sequence Detection System (Applied Biosystems, Grand
Island, New York). qPCR was performed in 384-well plates with a re-
action volume of 10 mL containing 25 ng of genomic DNA, 300 nmol/L
of each primer, and Sybr Select Master Mix (Life Technologies Cor-
poration, Grand Island, New York). Each reaction plate contained wells
with serial dilutions of a cloned amplicon (containing a mtDNA and
beta-hemoglobin amplicon) to generate standard curves and permit
absolute quantitation of mitochondrial DNA and beta-hemoglobin copy
number. Mitochondrial forward and reverse primer sequences were
directed toward the p-loop region: CAT CTG GTT CCT ACT TCA GGG
and TGA GTG GTT AAT AGG GTG ATA GA. Forward and reverse pri-
mers for the beta-hemoglobin gene were: GCT TCT GAC ACA ACT GTG
TTC ACT AGC and CAC CAA CTTCAT CCA CGT (Bai and Wong, 2005).
As previously described (Tyrka et al., 2015, 2016a), the initial heating
step of 95 °C for 10 min was followed by 40 cycles of 95 °C for 15 s and
60 °C for 1 min. PCR efficiency criteria were 99-104 % for both mea-
sures. Coefficients of variation (CVs) were calculated within each tri-
plicate and samples with CVs > 5% were repeated. MtDNA copy
number was divided by the beta-hemoglobin gene copy number to
obtain the final value of mtDNAcn per cell.

2.3.3. NR3C1 promoter methylation

In this study, the NR3C1 exon 1 F promoter region containing 13
CpGs, the human homologue of the rat exon 1,, was examined. Using
500 ng of DNA and the EZ DNA Methylation Kit (Zymo Research,
Orange, CA), sodium bisulfite modification was performed. NR3CI
promoter methylation was determined using the EpiTect methylation-
specific PCR (Qiagen, Valencia CA) and quantitative pyrosequencing
methods previously described (Oberlander et al., 2008); samples were
run in triplicate. Sodium bisulfate-modified, fully methylated referent
positive control and fully unmethylated whole genome amplified ne-
gative control DNA (Qiagen, Valencia CA) was examined with each
batch. Peripheral blood derived DNA that was not sodium bisulfite-
modified was included in each pyrosequencing run to control for non-
specific amplification. PCR products were visualized and sized on an
agarose gel after the run for quality control (FlashGel — Lonza). Pyro-
mark Software (Qiagen) was used to quantify methylation. Our prior
work showed high levels of intercorrelation across CpG sites in this
region (Tyrka et al., 2016a, 2016b, 2016¢; Tyrka et al., 2012); for the
current paper, we examined mean methylation across the entire region

in statistical analyses.

2.4. Statistical analysis

Analyses were conducted with SPSS version 25 (IBM, Armonk, NY,
USA) and Mplus Version 7.4 (Muthen & Muthen, 1998-2012). To nor-
malize the distribution of skewed or kurtotic variables, mtDNAcn and
mean NR3CI1 methylation were loglO-transformed. Individuals were
categorized according to presence or absence of early adversity (N¢ase =
138; Neontrol = 152). In order to maximize the size of the sample, full-
information maximum likelihood estimation (FIML; (Enders, 2001))
was used to accommodate missing NR3C1 methylation data for two
participants. Little’s Missing Completely at Random test (Little, 1988)
demonstrated that these data were missing completely at random, y*(6)
= 11.06, p = .09.

Primary hypotheses were tested using regression and path analysis.
In our prior work with this sample, early adversity was independently
related to higher mtDNAcn (Tyrka et al., 2016a) and lower NR3CI
methylation (Tyrka et al., 2016a, 2016b, 2016¢). In the present study
we therefore tested a mediation model in which the presence or absence
of early adversity, predicted mean NR3CI methylation, which in turn
predicted mtDNAcn. Age, sex, and BMI were included as covariates
based on prior literature showing effects with adversity, DNA methy-
lation and/or mtDNAcn (Horvath and Raj, 2018; Inoshita et al., 2015;
Mendelson et al., 2017). Because study aims were tested using fully
saturated models (i.e., O degrees of freedom), models provided perfect
fit to the data, so fit indices were not examined. To test for hypothesized
mediation, we assessed all models using 10,000 bootstrap replicates to
obtain bias-corrected bootstrap confidence intervals for the indirect
effects (Mackinnon et al., 2004; Preacher and Hayes, 2008; Shrout and
Bolger, 2002).

3. Results
Subject characteristics are described in Table 1. Demographic
characteristics were found to be largely unrelated to mtDNAcn and

mean NR3C1 methylation, with the exception that BMI was related to
mean NR3C1 methylation (r = —.13, p = .02).

3.1. Associations of early life stress, NR3C1 methylation, and mtDNAcn

As expected based on our prior report (Tyrka et al., 2016a),
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Table 1

Participant Characteristics.
Demographics
Age, M (SD) 31.01 (10.75)
Sex, N (%) female 177 (61.0)
Race, N (%) white 241 (83.1)
BMI, M (SD) 26.17 (5.01)
College degree, N (%) 161 (55.5)
Oral contraceptive use, N (%) 39 (13.4)
Smokers, N (%) 29 (10.0)
Adversity
Emotional abuse, N (%) 51 (17.6)
Physical abuse, N (%) 37 (12.8)
Sexual abuse, N (%) 45 (15.5)
Emotional neglect, N (%) 52 (17.9)
Physical neglect, N (%) 32 (11.0)
Parental death, N (%) 36 (12.4)
Parental desertion, N (%) 43 (14.8)
Sum adversities, M (SD) 1.03 (1.43)
Psychiatric Disorders
Current Disorders
MDD, N (%) 13 (4.5)
Depressive, N (%) 25 (8.6)
PTSD, N (%) 3@1.0)
Anxiety, N (%) 13 (4.5)
Past Disorders
MDD, N (%) 45 (15.5)
Depressive, N (%) 50 (17.2)
PTSD, N (%) 10 (3.9
Anxiety, N (%) 21 (7.2)
Alcohol/Substance, N (%) 55 (19.0)

Total N = 290. Depressive disorders include MDD, dysthymia, and
depression not otherwise specified. Anxiety disorders include PTSD,
generalized anxiety disorder, social phobia, panic disorder, and an-
xiety disorder not otherwise specified.

regression analyses revealed that early life stress was positively asso-
ciated with mtDNAcn (B = .06, SE = .03, p = .02). Fig. 2 provides the
results of the mediation model testing associations of early life stress,
NR3C1 methylation, and mtDNAcn, controlling for age, sex, and BMI.
Early stress was negatively associated with mean NR3C1 methylation (B
.04, p =

= -.08, SE = .02), and mean NR3CI1 methylation was
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negatively associated with mtDNAcn (B = -.18, SE = .04, p < .001).
Supporting mediation, the indirect path involving early stress, mean
NR3C1 methylation, and mtDNAcn was significantly different from zero
(95 % CI [.002, .030]). In addition to the primary analyses with a priori
control for age, sex, and BMI, we also conducted sensitivity analyses to
determine whether the inclusion of any of the other demographic
characteristics (Table 1) altered the pattern of results, and findings
were virtually identical with and without inclusion of additional cov-
ariates.

3.2. Exploratory follow-up analyses: potential implications for psychiatric
disorders

Although the cross-sectional design precludes reliable testing of a
four-step indirect effects model including prediction of psychiatric
disorder outcomes (Cole and Maxwell, 2003), bivariate associations
confirm significant relationships between these variables. History of
early life stress was significantly associated with the lifetime presence
of a psychiatric disorder (r = .27, p < .001), and in line with our prior
work with this sample (Tyrka et al., 2015, 2016a; Tyrka et al., 2016b,
2012), both NR3C1 methylation and mtDNAcn were significantly as-
sociated with lifetime psychiatric disorders (r = —.22, p <.001;r =
.17, p = .003, respectively).

4. Discussion

To our knowledge this study is the first to examine the pathways
between early stress, NR3C1 methylation, and mtDNAcn. The results
indicate that NR3C1 promoter methylation mediates the effect of early
adversity on mtDNAcn. These results are consistent with data from
basic and cellular models showing dynamic regulation of mitochondrial
function by the glucocorticoid receptor. In addition, these findings ex-
tend previous results by suggesting these mechanisms are relevant to
allostatic changes in mtDNAcn observed after early adversity. Exposure
to prolonged, severe, or multiple stressors early in life can result in
alterations of HPA axis functioning (Bunea et al., 2017; Burke et al.,
2005), and epigenetic modification of genes important to HPA axis
regulation may be a critical mechanism by which these early exposures

Mean NR3C1

-1
Methylation (0q)

e

Early Adversity

Age

3%

Sex

BMI

mtDNAcn

Fig. 2. Path model in which mean NR3C1 methylation is specified as a mediator of the association between early adversity and mtDNAcn.
Note ‘p < .10, * p < .05, ** p < .01, *** p < .001. Path coefficients are presented in B (SE) format. Dashed line indicates a non-significant association. The indirect
effect involving early adversity, mean NR3C1 methylation, and mtDNAcn was statistically significant.
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can impart physiologic changes (Argentieri et al., 2017; Tyrka et al.,
2016c¢). NR3C1 methylation has been positively correlated with cortisol
concentrations (Tyrka et al., 2016b; Yehuda et al., 2015), suggesting an
important role of NR3C1 gene methylation in HPA axis regulation.

In this study, we found that lower levels of NR3CI methylation were
associated with higher mtDNAcn. Lower NR3C1 methylation of the 1 F
promoter region has been associated with increased GR gene expres-
sion. The GR can bind to mitochondrial DNA and promote mtDNA re-
plication, increasing mtDNAcn (Clay Montier et al., 2009). The results
presented here suggest that increased GR expression after early adver-
sity might be a mechanism by which mtDNAcn increases (Clay Montier
et al., 2009; Psarra and Sekeris, 2009); however, further research would
be needed to confirm this model. Additionally, activated GR may also
increase mtDNAcn by enhancing expression of nuclear genes that reg-
ulate mtDNAcn directly or indirectly by modifying oxidative stress
pathways (Clay Montier et al., 2009; Lee et al., 2013; Psarra and
Sekeris, 2009).

These data build on early evidence supporting relationships be-
tween early life stress, psychiatric disorders, the neuroendocrine stress
response, and mtDNAcn. Previously, we reported greater mtDNAcn in
adults with a history of either early stress or psychiatric disorders
(Tyrka et al., 2015, 2016a). Individuals with a history of both early
stress and psychiatric disorders were observed to have the highest
mtDNAcn (Tyrka et al., 2016a). Changes in NR3C1 methylation have
been reported after early life stress and with psychiatric disorders as
well (Tyrka, 2016; Tyrka et al., 2012, 2016¢), and the results of the
present study implicate NR3C1 methylation as a potential mechanism
of mtDNAcn increases which may be involved in the development of
psychiatric conditions. Our cross-sectional design limits the reliable
testing of multiple-effects mediation models; future longitudinal re-
search is needed to test causal models regarding these mechanisms of
risk for psychiatric outcomes.

These data are consistent with emerging evidence of mitochondrial
dysfunction as a potential biomarker of early stress exposure (Picard
et al., 2018; Ridout et al., 2018). Increases in mtDNAcn have been re-
ported after early stress exposure (Cai et al., 2015; Ridout et al., 2018;
Tyrka et al.,, 2016a). Intracellular mtDNAcn is a proxy indicator of
mitochondrial biogenesis and a measure of mitochondrial content
(Picard et al., 2014) that is dynamically regulated based on the energy
demands on the cell (Sun et al., 2016). Consistent with evidence that
mtDNAcn is regulated by the inflammatory and oxidative state of the
cell to meet energy requirements (Clay Montier et al., 2009), it may be
that mtDNAcn dynamically changes depending on stress chronicity and
severity. The results of our study add to the evidence that changes in
mtDNAcn may reflect allostatic adaptations to stress and be a good
marker of allostatic load (Picard et al., 2014; Ridout et al., 2016, 2018).
Such adaptations could impart greater energetic flexibility after stress
exposure, but it is unclear if such adaptations are markers of resilience
or psychiatric disorder risk; further research in this area is required to
clarify this distinction.

While these results suggest a shared mechanistic relationship be-
tween early life stress, neuroendocrine function, and mtDNAcn, there
are limitations to our study. We do not have measures of GR cellular
expression and are using NR3C1 methylation as a proxy for GR protein
expression. There are many steps regulating gene expression to protein
content, and intracellular regulation of GR availability for cortisol
binding is tightly controlled by a number of proteins, including HSP90
and FKBP5 (Binder, 2009); it is possible that the relationships detected
here reflect other intracellular processes for which NR3C1 methylation
is a proxy. We examined mtDNAcn in this study, which is positively
associated with mitochondrial mass and respiratory capacity in healthy
tissues (D’Erchia et al., 2015), but it is unclear how variation in
mtDNAcn relates to mitochondrial function in our sample. These results
were obtained from whole blood, which is a heterogeneous sample,
limiting our ability to determine the exact cellular determinants of the
changes detected. These limitations provide suggestions for future work
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to confirm these results.

These data provide preliminary evidence of a mechanistic re-
lationship between NR3C1 methylation, the exposure of early adversity,
and mtDNAcn. Future studies focusing on these complex and dynamic
processes in regulating the relationship between mtDNAcn, mitochon-
drial function, and GR are needed to elucidate the role of this pathway
in psychiatric disorder risk and development. Such studies may identify
new treatment targets for stress-related psychiatric disorders or provide
insight to facilitate the development of interventions to prevent the
onset of psychiatric disorders after adverse exposures.
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