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Abstract--Sparse arrays are arrays in which the number of non-zero elements is a small fraction of the total 
number of array elements. Parallel algorithms are presented using sparse representations for arrays. It is 
shown that adopting such a representation not only reduces the processor/space requirement, but also 
provides efficient load balancing at no increase in time complexity. New parallel primitives needed to work 
with such a representation are defined. Sample algorithms from the areas of image processing and computer 
vision are presented. Alternative schemes for dealing with arrays containing large contiguous blocks of 
elements with identical array values are considered. The parallel architecture considered is a strict SIMD 
hypercube, and the applicability of the results presented to other architectures is described. 

Computer vision Sparse array representations Parallel processing Hypercube algorithms 

I. INTRODUCTION 

Sparse arrays are arrays in which the number  of non-  
zero elements is a small fraction of the total number  
of array elements. A sparse image is a sparse two- 
dimensional (2D) array, where the array entries de- 
note image intensity values. Sparse arrays of different 
dimensionalities occur in a variety of forms in different 
areas. Here are some examples from the areas of image 
processing and computer  vision: 

• Image processing. Images with a large number  of 
points having the same intensity (resulting, for instance, 
from a smooth background) are sparse arrays in two 
dimensions. 

• Pose clustering. During object recognition, match- 
ing image and scene feature-pairs compute a tuple 
which describes the transformation that takes the scene 
feature to the image feature. This tuple is used to cast 
votes in a high-dimensional accumulator  (number of 
dimensions in three when dealing with 2D object re- 
cognition, and six when dealing with 3D object recog- 
nition). This high-dimensional accumulator contains a 
signficant number  of entries that are zero. 

• Hough transform. While detecting arbitrary curves 
or straight lines in an image, image points cast votes 
in a high-dimensional parameter space. This high- 
dimensional parameter space is likely to be sparse. The 
number  of dimensions is two when dealing with line 
detection, since a line can be described by two par- 
ameters, for instance, by its slope and its y-intercept. 
Circle detection needs a 3D parameter space, two par- 
ameters for position and one for radius. Detecting an 
ellipse in general position and orientation needs a 5D 
parameter space, two parameters for position, two for 
the major and minor  axes, and one for ellipse orien- 
tation. 

t Author to whom all correspondence should be addressed. 

• Low and intermediate level vision. The inputs to 
many low/intermediate level vision algorithms such as 
thinning, feature-based stereo matching, surface fitting, 
etc. could be sparse images. 

Consider a simple operation (such as the elementwise 
summation of two arrays) on two moNo x m, N t x ... × 
ink- 1Nk-  t arrays. If this operation is to be carried out 
in a set of No x N1 x ... × N k - ,  processing elements, 
each processing element holds m o x m, × ... × ink- t  
elements. Hence, the operation would have to go through 
that many iterations. If the input arrays are sparse, 
such a solution would perform very poorly. In this 
paper we develop a linear representation of multi- 
dimensional sparse arrays and present parallel primi- 
tives and algorithms that work on this representation. 
These primitives and algorithms provide efficient load 
balancing. It is shown that adopting such a sparse 
array representation reduces the processor/space re- 
quirement while maintaining the same asymptotic time 
complexity. 

1.1. Parallel architecture considered 

The algorithms described in this paper can be applied 
to a wide variety of parallel distributed memory archi- 
tectures. The algorithms assume a strict "J hypercube 
architecture for illustration purposes (a strict hypercube 
computer is a hypercube with weak, uniform com- 
munication, i.e. each processor is limited to sending a 
single data item over a single communicat ion link at 
a time, and, at any given time, every processor must 
send data along a communicat ion link in the same 
hypercube dimension). We also assume that the archi- 
tecture is SIMD, i.e. all processing elements (PEs) work 
under the control of a single control unit. These restric- 
tions (strict hypercube, SIMD) enable us to write algor- 
ithms and present worst-case complexity results that 
hold true for all other kinds of hypercubes. Further, 
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the shuffle-exchange architecture, (2) the cube-connected 
cycles architecture, (31 the de Bruijn architecture, and 
the butterfly architecture are closely related to the 
strict hypercube architecture (see reference (1) for de- 
tails), and hence all results presented are true for these 
four architectures also. The algorithms could be modi- 
fied for a mesh architecture, but the complexity results 
stated (and the conclusions based on them) are not true 
for the mesh. 

1.2. Embeddin9 9rids onto hypercubes 

As an extreme case, a d-dimensional hypercube is a 
d-dimensional grid of size 2 in every dimension. A 
hypercube with N processing elements can also be 
viewed as a k-dimensional (binary-encoded) grid, for 
any k lying between 0 and logN, where the node 
(ik - 1, ik - 2,"  - ' ,  i l ,  io) on the grid corresponds to the node 
c o n c a t e n a t e  (i k _ l i k _  2"" i tio) on the hypercube. 

The neighbors of any node on a 2D grid can be 
defined as follows. The direct neighbors of the grid 
node with index (i l, i0) are the four nodes with indices 
(i x _+ 1, io) and (il, i 0 _+ 1). The indirect neighbors of the 
grid node (il, io) are the four nodes with indices (i~ + 1, 
i o + 1),(i~ + 1,i o -  1),(i~ - 1,i o + 1)and(i~ - 1,i o -  1). 
This definition can be generalized to deal with higher- 
dimensional grids. 

This paper is organized as follows. Section 2 des- 
cribes the parallel primitives needed for working with 
sparse array representations. The Content Access Read/ 
Write primitives are developed as generalizations 
of the Random Access Read/Write primitives, and 
the Old-Neighbor Read/Write primitives as general- 
izations of the Neighbor Read/Write primitives. Sec- 
tion 3 describes ways of representing sparse arrays in 
the processing elements. Section 4 discusses algorithms 
using regular local operations on sparse arrays. The 
next two sections present a histogramming algorithm 
and its application to two vision problems--pose 
clustering and feature detection. Section 7 gives the 
algorithms for the Content Access Read/Write pri- 
mitives. 

2. D E S C R I P T I O N  O F  P R I M I T I V E S  U S E D  

2.1. Random Access Read~Random Access Write 

In a Random Access Read (RAR), some processing 
elements need to read data from some of the N PEs in 
the hypercube. The data is available in register D. Each 
PE has the address from which data is needed in 
register P. That is, PE i needs D(P(i)). If PE i does not 
need data from any PE then P(i) is set to ~ (oo is 
shown as a.  in the figures). The RAR algorithm 12) has 

PE index 0 1 2 3 4 5 6 7 

Pointer P 6 2 1 3 

AfterRAR D(6) D(2) D ( I ) -  D ( 3 ) -  

Fig. 1. RAR example. 

a time complexity of O(logN(loglog N ) 2 ) .  Figure 1 
shows an example of a RAR. 

In a Random Access Write (RAW) some PEs need 
to write their data to one of the N PEs in the hypercube. 
The data is available in register D. Each PE has, in 
register P, the address to which it needs to send its data. 
If PE i does not send any data P(i) is set to oo. The 
RAW algorithm, (2~ like its RAR counterpart, has a 
time complexity of O(logN(loglogN)2). Unlike the 
RAW case, however, it is possible to have collisions. 
This happens when two PEs try to write to the same 
PE. When collisions are bound to occur, one of two 
things can be done, namely, reporting an error, or 
combining the colliding data values using a binary 
associative operator. Figure 2 shows an example of a 
RAW. Collisions are resolved using a binary associative 
operator (shown as a + in the figure). 

2.2. Content Access Read(CAR)/Content Access Write 
(CAW) 

Content Access Read and Write are basically the 
RAR and RAW operations, generalized to work with 
sparse array representations. The generalization, how- 
ever, comes at no increase in time complexity. The two 
primitives are defined here, and the algorithms for 
implementing them are presented in Section 7. 

In a CAR each PE needs some piece of data, but, 
unlike the RAR case, it does not know exactly where 
to get the data from. It does, however, know the con- 
tents of some particular register in the source PE. The 
contents of that register may not be unique in each PE. 
Figure 3 shows an example of a CAR. We use the same 
names for the registers as in the RAR case. The contents 
of the P register are no longer pointers to other PEs. 
Instead they contain values from the PA (short for 
"pointed at") register. Any binary associative operator 
can be used to combine the results when data has to 
be read from multiple PEs. 

In a CAW, each PE needs to write some piece of 
data, but, does not have an explicit pointer to the 
destination PE. It does, however, know the contents 
of some particular register in the destination PE. Figure 4 
shows an example of a CAW. Collisions can occur as 
in the RAW case. Any binary associative operator can 
be used to resolve collisions when more than one value 
is written to the same PE. 

PE index 0 1 2 3 4 

Pointer P 7 2 7 1 

AfterRAW - D(4) D(1) D(6) 

Fig. 2. RAW example. 

5 6 7 

3 

D(0) + D(3) 
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PE index 0 1 2 3 4 5 6 7 

Pointer P 6 2 2 3 

Pointed-at PA 7 6 6 1 1 2 3 8 

AfterCAR D(I )+D(2)  D(5) D(5) - D(6) - 

Fig. 3. CAR example. 

PE index 0 1 2 3 4 5 6 7 

Pointer P 6 2 2 3 

Pointed-at PA 7 6 6 1 1 2 3 8 

AfterCAW - D(0) D(0) D(1)+D(4) D(6) 

Fig. 4. CAW example. 

2.3. Neighbor Read~Neighbor Write 

In a Neighbor Read (NR), every PE needs to read a 
value from a particular neighbor. Many PEs would 
qualify as neighbors to a given PE, depending on how 
the hypercube is being viewed. All PEs are restricted 
to read from the same neighbor. Under these conditions, 
the NR algorithm turns out to be a restricted case of 
the RAR. Since the addresses of the source PEs are not 
random, sorting is not required. As a result the time 
complexity of the NR algorithm is only O(log N). 

In a Neighbor Write (NW), each PE writes to a 
particular neighbor. All PEs are restricted to write to 
the same neighbor. Since the destination PE addresses 
are not random, this is a restricted ease of the RAW 
algorithm. The time complexity of the NW algorithm 
is O(log N). Unlike the RAW, the NW cannot have 
collisions. 

2.4. Old-Neighbor Read~Old-Neighbor Write 

The Old-Neighbor Read (ONR) algorithm is similar 
to the NR, with the exception that the original neighbor 
of a pixel might have migrated to a different location 
carrying its index along with itself. The ONR algorithm 
is a restricted case of the CAR. Sorting of destination 
addresses is not required, and there cannot be any 
collisions. The time complexity of the ONR algorithm 
is O(log N). 

In an Old-Neighbor Write (ONW), each PE writes 
to a previous neighbor. This is a restricted CAW, and 
the complexity is O(log N). 

3. REPRESENTATION OF SPARSE ARRAYS 

3.1. The Concentrate primitive 

In the Concentrate algorithm we start with a subset 
of the processing elements, each containing data in 

register D, and the PE's rank (that is, the number of 
selected PEs with lower index than self) in register R. 
The objective is to move the data in register D such 
that D(i) goes to the PE with index R(i). 

The Concentrate algorithm is described in refer- 
ence (4). Figure 5 illustrates the concentrate operation. 
The time complexity of the algorithm is O(log N) where 
N is the size of the given input and is equal to the num- 
ber of PEs. If instead only P PEs are available (P < N) 
then the concentrate algorithm takes O((N/P)log P) 
time. However, in the case of special hypercube arch- 
itectures like the pipelined hypercube Is) the complexity 
of concentrate improves to O((N/P) + log P). 

3.2. Concentrated representation of sparse arrays 

The Concentrated representation is the simplest rep- 
resentation for a sparse array. In this representation, 
each processing element holds two pieces of information 
about a non-zero array element-- i ts  value and its ad- 
dress (a concatenation of the k indices of that element). 
Memory requirement per processor is therefore log M + 
log N, where M is the range of values the array elements 
can take, and N the total number of array elements. 

Row-major indexing and shuffled row-major index- 
ing are two ways of indexing pixels in a 2D grid. These 
two indexing schemes are shown in Fig. 6. Figure 7(a) 
shows an 8 × 8 32-gray level image. Figures 7(b) and 
(c) show the concentrated representation of the same 
using row-major/shuffled row-major indexing for the 
image pixels. 

3.3. Quadtree based representations 

A quadtree is a tree representation of a sparse image 
(in general, any 2D array). The root of the quadtree 
represents the entire image. If the portion of the image 
represented by any node does not have the same gray 
value, the node is assigned four children. Each child 

D - D(1) - - D(4) D(5) D(6) 

R 0 1 2 3 

D (after Concentrate) D(I) D(4) D(5) D(6) - 

Fig. 5. The Concentrate primitive. 
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0 1 2 3 4 5 6 7 0 1 4 5 16 17 20 21 

8 9 10 11 12 13 14 15 2 3 6 7 18 19 22 23 

16 17 18 19 20 21 22 23 8 9 12 13 24 25 28 29 

24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31 

32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53 

40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55 

48 49 50 51 52 53 54 55 40 41 44 45 56 57 60 61 

56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63 

(a) (b) 

Fig. 6. (a) Row-Major and (b) Shuffled Row-Major Indexing for an 8 x 8 image. 

represents one of the four quadrants of the image 
portion represented by its parent. This continues re- 
cursively until all the leaf nodes represent portions of 
the image with the same gray value. 

I fa  binary image contains large blocks of Is and 0s, 
a quadtree representation of the image would be pre- 
ferable to the concentrated representation since the 
processing can be done using blocks of pixels, rather 
than single pixels, as units. A binary image and its 
quadtree representation are shown in Fig. 8. Hypercube 
algorithms for operations on quadtrees are presented 
in reference (6). 

Extending the quadtree representation to gray level 
images can be done in one of two ways. If the number 
of non-zero pixels in the image is very small compared 
to the total number of image pixeis, the technique 
described for binary images can be used. An extra 
register would be needed to store the pixel value at all 
points associated with each block. If, instead, the image 
has regions with almost the same value, a region grow- 
ing technique can be used to split the image into homo- 
geneous regions, and the processing can be done using 
regions as units. 

The notion of quadtree-based representations des- 
cribed above is relevant only to images or 2D arrays. 
In the general case, when dealing with d-dimensional 
arrays, we can extend the idea to 2 a trees (trees in which 
every node has either zero or 2 a children). For  instance, 
when d = 3, we talk about 8-trees or octrees. 

Fig. 7(a). An 8 x 8 gray level image. 

4. REGULAR LOCAL OPERATIONS 

Regular local operations are characteristic of many 
image-processing and vision algorithms. Some of these 
involve the computation of the result of applying a bi- 
nary associative operator like + ,  max, min, or boolean 
OR/AND to neighboring elements. Other operations 
such as convolving, template matching, smoothing, 
and sobel edge detection involve the computation of a 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

1 1 1 0 0 0 1 0  

1 1 0 0 0 0 0 0  

0 0 1 1 1 1 1 1  

0 0 1 1 1 1 1 1  

0 0 0 0 1 1 1 1  

0 0 0 0 1 1 1 1  

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 16 7 0 0 0 0 0 
23 0 2 29 0 0 0 0 Fig. 8(a). An 8 x 8 binary image. 

0 5 19 0 17 0 0 0 SRMindex 8 12 28 36 48 

0 0 0 0 0 0 0 0 Level 2 3 3 2 1 

0 0 0 0 0 0 0 0 value 1 1 1 1 1 

0 0 0 0 0 0 0 0 Fig. 8(b). A quadtree-based representation of the image in 
Fig. 8(a). 

RM address 17 18 24 26 27 33 34 36 

value 16 7 23 2 29 5 19 17 

Fig. 7(b). Concentratedrepresentation ofimagein Fig. 7(a)using Row-M~orlndexing. 

SRM address 9 10 12 14 15 33 36 48 

value 16 23 7 2 29 5 19 17 

Fig. 7(c). Concentrated representation ofimagein Fig. 7(a) usingShumed Row-M~orlndexing. 
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sum of products using a weighted window. These al- 
gorithms can be written as repeated calls to the Neighbor 
Read/Write primitives when using the original (non- 
sparse) array representations, or to the Old-Neighbor 
Read/Write primitives when using sparse array rep- 
resentations. 

For  instance, the NeighborSum algorithm is needed 
to collect data values from neighboring array elements 
and sum them up. Procedure NeighborSum in Fig. 9 
gives details. The procedure makes use of the ONR 
algorithm. An outer for loop iterates once for each 
dimension in the original array. Row-major indexing 
is used to index elements in the original array. Therefore, 
the addresses of a particular element's neighbors in 
dimension p are obtained by adding/subtracting mo x 
max  ... x m r_ 1 to the address of that element. The 
complexity of the ONR algorithm is O(logN) and 
hence the complexity of NeighborSum is O(log N) when 
the dimensionality d of the data array is a constant. It 
should be observed that the operation described here 
is restricted since the sum is calculated only by the 
non-zero elements of the array. 

5. H 1 S T O G R A M M I N G  BASED A L G O R I T H M S  

5.1. Histogramming usin 9 sort and count 

Consider an array A whose elements have values in 
the range [0, M). The histogram of A is another array 
H such that H[i ]  equals the number of elements in A 
that have the value i. We will visualize histogramming 
as a voting process in which A represents the array of 
voters and H represents the array of candidates. Histo- 
gramming can be done by first sorting the contents of 
array A and then counting the number of elements 

with the same values using a segmented prefix scan. (v) 
The time taken by the sorting dominates the time com- 
plexity of this algorithm which is O(log N(log log N)2). 
An alternate way of implementing histogramming is 
by using a radix sort. This has a complexity of O(log M* 
log N) on an N PE hypercube where M is the number 
of gray levels. 

It is generally assumed that the number of candidates 
M is much smaller than the number of voters N. We 
will assume, to the contrary, that M could be much 
larger than N, i.e. the number of candidates could be 
higher than the number of voters. Although the last 
assumption sounds ridiculous in real-life situations, 
it is not unusual in problems where the elements of A 
are obtained as high precision numbers (or floating- 
point numbers) following a mathematical computation. 
A sample situation where this could occur is in Pose 
clustering in intermediate-level vision. Pose clustering 
is described later in this section. When the number of 
possible values that the elements of array A can take 
is very high, memory limitations dictate that the array 
H be stored as a sparse array. Histogramming can still 
be implemented as a sort and count algorithm. 

5.2. Pose clustering 

The histogramming problem occurs in intermediate- 
level computer vision as the Pose clustering problem. 
The scenario is the following: a large set of scene features 
is available one per processor, and a small set of model 
features is available in the control unit. Each processor, 
when given a model and scene feature pair, can compute 
the transformation between them in constant time. 
This transform is in general a k-tuple (k = t + r where 
t = 2, r = 1 for 2D object recognition, and, r = 3, t = 3 

Procedure NeighborSum(A, S, d); 
{A accumulates the sum of the data in the S registers of the neighboring PEs} 
{S is the sparse representation of the given data array of size mo x m~ x ... x m d_ 1} 
(Register Pos contains the original index of the pixel held by each PE} 
{ONR(D, P, PA) performs an Old-Neighbor Read. D, P, PA are the data, the neighbor address, and the old 
address registers} 
l begin 
2 A:= O; 
3 for p:= 0 to d -  l do 
4 begin 

p - I  

5 N:= Pos + l-] mi; 
i=O 

6 X:= ONR(S, N, Pos); 
7 A:= A + X; 

p - I  

8 N:= P o s -  VI mi; 
i - I  

9 X:= ONR(S, N, Pos); 
10 A:= A + X; 
11 end; 
12 end; {ofNeighborSum} 

Fig. 9. Computation of the sum of neighboring values. 
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Do steps 1-5 for each model feature 

• Step 1. Broadcast model feature to all PEs. 
• Step 2. Compute in each PE the transform between the model and scene feature to the desired precision, 

after discarding model and scene feature pairs which do not match. 
• Step 3. Perform histogramming to get the sparse transform array H. 
• Step. 4. Concentrate the transform array H. 
• Step 5. Merge H with the transform arrays obtained in earlier iterations and concentrate the resulting array 

if necessary. 

Fig. 10. Steps in the Pose Clustering Algorithm. 

for 3D object recognition). These k-tuples form the 
new set of voters. The voting space is a k-dimensional 
array called the transform-space. 

A sample transform-space for 3D object recognition 
(k = 6)would need 100 x 100 x 100 × 180 × 180 x 180 
= 5832 billion elements, when a moderately fine resol- 
ution of 1 unit and a degree is used for translations 
and rotations, respectively. The high dimensionality of 
the transform-space array and the limitation on the 
memory of processors available forces us to adopt a 
sparse array representation for the same. 

Figure 10 shows how the Histogramming algorithm 
can be used for Pose clustering. The broadcast in step 
1 takes O(log N) time on a hypercube. The computation 
in step 2 is independent of the number of PEs and 
hence its time complexity is O(1). Step 3 takes O(log N × 
(log log N) 2) time. The concentrate in step 4 takes O(log N) 
time and so does the merge in step 5. Thus the Pose clus- 
tering algorithm has a complexity of O(m.log N x 
(log log N)2), where m is the number of model features. 

As mentioned earlier the advantage of this algorithm 
is that the precision with which the computed transform 
is represented is no longer governed by the resolution 
with which the transform-space can be represented. It 
is even possible to have floating-point computed trans- 
forms, if the transform computations are sufficiently 
accurate. 

Continuing our analogy with the voting procedure, 
Pose clustering merely allows each voter to cast mul- 
tiple votes, unlike the earlier histogramming case in 
which each voter had just one vote. This complicated 

the problem since it is not possible to decide on a 
winner until the entire voting is over. However, by 
establishing criteria that a voter has a satisfy to cast 
each vote, ineligible voters can be barred from casting 
some votes. 

6. FEATURE DETECTION USING THE HOUGH TRANSFORM 

The Hough transform is a robust technique that is 
used to detect analytic curves in an image. We consider 
the detection of lines here. The idea can be extended 
to circle/ellipse detection. 

In the line detection case, we deal with two spaces--  
the 2D image-space and the 2D parameter-space. To 
detect lines in an image, an edge detector is first used 
to find edge points. Each edge point (x, y) in the image- 
space votes for all points (p, 0) in the parameter-space 
that represent the parameters of lines passing through 
the edge point (x, y). These are precisely the parameter- 
space points that satisfy the equation p = x cos 0 + 
y sin 0. Local maxima in the parameter-space, which 
accumulates the votes, indicate lines in the image. These 
local maxima can be detected using a simple modifi- 
cation of the neighbor sum algorithm. 

An iteration over one of the two parameters (say 0) 
is necessary during voting. We can no longer assume 
that the parameter-space is sparse, since each image 
point can vote for many parameter-space points. In 
each iteration, only parameter-space points with a cer- 
tain value of 0 can receive votes. The feature detection 
case differs from the simple histogramming seen earlier 

Do steps 1-5 for each value of 0 

Step 1. Broadcast 0 to all PEs. 
Step 2. Compute, in each PE representing an edge point (x,y), the value of p that satisfies the equation 

p = xcos0  + y sin 0. 
Step 3. Perform histogramming using a sort and count algorithm to get the parameter-space array V showing 

the number of votes received. 
Step 4. Concentrate the parameter-space array V after removing parameter-space points that received too few 

votes. 
Step 5. Merge V with the parameter-space arrays obtained in earlier iterations, and concentrate the resulting 

array if necessary. 
Step 6. Perform local maxima detection in the parameter-space array V to detect lines in the image. 

Fig. 11. Steps in the Line Detection Algorithm. 
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in that each voter can now cast more than one vote. It 
also differs from the Pose clustering algorithm because 
no candidate can receive votes in more than one iter- 
ation. By fixing the minimum number of votes a candidate 
needs, many of the candidates can be eliminated even 
before the voting process gets completed. 

The line detection algorithm is outlined in Fig. 11. 
The broadcast in step 1 takes O(logN) time on a 
hypercube. The computat ion in step 2 is independent 
of the number  of PEs and hence its time complexity is 
O(1). Step 3 takes O(log N(log log N) 2) time. The con- 
centrate in step 4 takes O(logN) time and so does 
the merge in step 5 and the local maxima detection in 
step 6. Thus the line detection algorithm has a complex- 
ity of O(m*log N(log log N)2), where m is the number  
of values 0 was quantized into. 

The number  of dimensions in the parameter-space 
increases with the complexity of the feature we are 
trying to detect. The number  of dimensions is three 
and five when dealing with circle detection and ellipse 
detection, respectively. When the parameter-space is 
p-dimensional, the algorithm is forced to iterate over 

p - 1 parameters (the last parameter can be determined 
by substitution). 

7. ALGORITHMS FOR CAR/CAW 

The CAR algorithm is described through an example 
(Fig. 12). Here the number  ofPEs  N = 8 (the PE index 
i runs from 0 to 7), while P(0 :7 )=  (62oo oo2~3oo) ,  
PA(0 :7 )=(7  6 6 1 1 2 3 8). As mentioned earlier 
PE i needs to fetch data from all PEs in which register 
PA has the same value as P(i). P(i)= oo iff PE i is to 
receive no data. The data to be read is available in 
register D. We begin by sorting the contents of the P 
and i registers using P as the key and i to resolve ties. 
The sorted contents are shown in the rows marked P1 
and il. Next we sort the contents of the PA and data 
registers using PA as the key and i to resolve ties. The 
sorted contents are shown in the rows marked PAl 
and data. After tagging the P and PA registers (a tag of 
1 indicates a P value while a tag of 0 indicates a PA 
value), the contents of the P and PA registers are 
merged together in register M. The row labeled i2 

i 0 1 2 3 4 5 6 7 

P 6 2 x x 2 x 3 x 

PA 7 6 6 1 1 2 3 8 

P1 2 2 3 6 • • x x 

i l  1 4 6 0 2 3 5 7 
t a g  1 1 1 1 1 1 1 1 

PAl 1 I 2 3 6 6 7 8 

data D(3) D(4) D(5) D(6) D(1) D(2) D(O) D(7) 

t a  8 0 0 0 0 0 0 0 0 

A f t e r  - , e rgo  : 

R 1 1 2 2 2 3 3 6 6 6 7 8 x x x x 

t a g  0 0 0 1 J. 0 1 0 0 1 0 0 1 1 1 1 

d a t a  a ( 3 )  D ( 4 )  D ( 5 )  - D ( 6 )  - D ( 1 )  D ( 2 )  D(O) D ( 7 )  - - 

i2 - - - 1 4 - 6 - - 0 - - 2 3 s 7 

After 

R 

tag 

s c l n l  

i 2  

s e g m e n t e d  + - s c a n  i n  PE$ w i t h  t a g  0 (+  c o u l d  be  any  b i n a r y  a s s o c i a t i v e  o p e r a t o r ) :  

1 1 2 2 2 3 3 6 6 6 7 8 x x x x 

0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 

D(3) D(3)+D(4) D(5) - - D(6) - D(1) D(1)+D(2) D(O) D(7) - - - 

- - 1 4 - 6 - - 0 - 2 3 5 7 

After 

!! 

t a  8 

scan1  

s c a n 2  

i 2  

seSmonted c o p y - s c a n  i n  PEs w i t h  t a  K 1: 

1 1 2 2 2 3 3 6 6 6 7 8 x x x x 

0 0 o 1 1 o 1 o o 1 o o 1 1 1 1 

D(3) D(a)+D(4) a(5) - - D(6) - D(1) D(1)+D(2) D(O) D(7) - - - 

- - D(5) D(5) - D(6) - D(1)+D(2) . . . .  

- - 1 4 - 6 - 0 - 2 3 5 7 

A f t e r  s o r t :  

i3 O 1 2 3 

c a r  D(1)+D(2 )  D(5)  - 

4 S 6 7 

D ( 5 )  D ( 6 )  

Fig. 12. CAR (Content Access Read) example. 

PR 26:10-D 
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t 0 I 2 3 4 5 6 7 

P 6 2 • • 2 x 3 • 

PA 7 6 6 1 1 2 3 8 

P l  2 2 3 6 x • • • 
d a t a  9 ( 1 )  9 ( 4 )  9 ( 6 )  D ( O )  • • • • 

t ag  0 0 0 0 0 0 0 0 

P A l  1 1 2 3 6 6 7 8 

i l  3 4 5 6 1 2 0 7 
t a g  1 1 1 1 1 1 1 1 

A f t e r  m e r g e :  

M 1 1 2 2 2 3 3 6 6 6 7 8 • • • • 

t a  8 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 

d a t a  - 9 ( 1 )  D ( 4 )  - 9 ( 6 )  D(O)  - - • • • • 

12 3 4 - - 5 6 1 2 0 7 - - 

A f t e r  

H 

t a $  

s c a n 1  

t 2  

s e ~ a e n t e d  + - s c a n  i n  P E s  e i t h  t a g  0 ( +  c o u l d  b e  a n y  b i n a r y  a s s o c i a t i v e  o p e r a t o r ) :  

1 I 2 2 2 3 3 6 6 6 7 8 x x x x 

1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 

- - 9 ( 1 )  D ( 1 ) + D ( 4 )  - 9 ( 6 )  D ( O )  - x x x • 

3 4 - 5 - 6 1 2 0 7 - 

A~'t e r  

H 

t a $  

s e p a l  

s c a n 2  

i 2  

s e ~ l e n t e d  c o p y - s c a n  i n  PEs w i t h  t a$  1:  

1 1 2 2 2 3 3 

1 1 0 0 1 0 1 

- D ( 1 )  D ( 1 ) + D ( 4 )  - V ( 6 )  

- - - 9 ( 1 ) + 9 ( 4 )  D ( 6 )  

3 4 - - 5 - 6 

6 6 6 7 8 • x x x 

0 1 1 1 1 0 0 0 0 

D ( O )  - - - • • x x 

D ( O )  D(O) . . . .  

1 2 0 7 - - 

A ~ t e r  s o r t :  

i 3  0 1 2 

c a w  - 9 ( 0 )  9 ( 0 )  

3 4 5 6 7 

- - D ( 1 ) + 9 ( 4 )  D ( 6 )  - 

Fig.  13. CAW (Content Access Write) example. 

shows the original PE indices after the merge. This 
results in alternate segments of values from P and PA 
registers, which we will refer to as P segments and PA 
segments. These segments are further divided such that 
the M values are identical throughout  each segment. 
A segmented scan on the data values is now done in 
the PA segments alone. The binary associative operator 
specified for collisions is used as the scan operator. The 
M value in the last PE in each PA segment is compared 
with the M value in the first PE in the P segment 
adjacent to it. If the values are identical, the result of 
the scan in the last PE in the PA segment is copied to 
the first PE in the adjacent P segment. A segmented 
copy scan in the P segments makes the result available 
to the rest of the PEs in the P segments. A sort (with 
the index i2 as the key) in all registers with a tag of 1 
gives the required result. 

The C A W  algorithm is illustrated in Fig. 13. The 
algorithm is similar to the previous one. The P registers 
are now tagged 0 and the PA registers 1. The data and 
P registers are now sorted together with P as the key, 
while the i and PA registers are sorted with PA as the 
key. In both cases i is used to resolve collisions. The 

merge, segment creation, binary associative operator  
scan, and copy scan proceed exactly as before. A final 
sort gives the required result. 

8. CONCLUSION 

This paper described the use of sparse array rep- 
resentations in parallel computations.  Sample compu- 
tations from the areas of vision and image processing 
were presented. The resulting reduction in the number 
of processing elements and space required came at no 
increase in time complexity. This was shown by the 
development of the Content  Access Read/Write  prim- 
itives which are generalized forms of the Random Ac- 
cess Read/Write primitives that work with sparse array 
representations. Two other primitives, Old-Neighbor  
Read/Write,  were also presented to simplify neighbor 
communicat ion when using sparse array represen- 
tations. 
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APPENDIX 

A.1. Other hypercube primitives 

This section describes three basic primitives used by the 
CAR/CAW algorithms. Algorithms for these primitives can 
be found in reference (4). 

A.I.1. Merge. Merging of two sorted arrays can be done 
on the hypereube using the bitonic merge algorithm. The 
merge algorithm takes time O(log N) where N is the number 
of PEs. 

A.1.2. Segmented scans. In the segmented prefix scan 
algorithm a l-bit register S is used to indicate the start of a 
new segment when set to 1. Data is available in register D. A 
binary associative operator + is specified. The objective is to 
obtain in PE i the quantity D(j) + D(j  + 1) + --. + D(i) where 
j satisfies the following properties (i)j < i, (ii) S(j) = 1 and Off) 
for all k satisfying j < k < i and S(k) = 0. 

The segmented prefix scan algorithm is a modified form of 
the prefix scan algorithm. Figure A1 illustrates the scan pri- 
mitive. The time complexity of the algorithm is O(log N). 

A.1.3. Sort. Bitonic sort can be used to sort an array on the 
hypercube. The bitonic sort algorithm takes time O(log 2 N). 
A recent result ~8~ gives a deterministic hypercube sorting 
algorithm that has a complexity of O(log N(log log N)2). 

PE  index 0 1 2 3 4 5 6 7 

Da ta  7 3 4 2 0 1 5 1 

After prefix + -scan 7 10 14 16 16 17 22 23 

Segment  register S 1 1 0 1 0 0 0 1 

After segmented + -scan 7 3 7 2 2 3 8 1 

Fig. AI. Prefix/Segmented prefix scan example. 
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