
Pattern Recognition, Vol. 26, No. 10, pp. 1511 1519, 1993
Printed in Great Britain

0031-3203/93 $6.00+.00
Pergamon Press Ltd

© 1993 Pattern Recognition Society

PARALLEL VISION ALGORITHMS USING SPARSE ARRAY
REPRESENTATIONS

RAVI V. SHANKAR and SANJAY RANKA~"
School of Computer and Information Science, Syracuse University, Syracuse, NY 13244-4100, U.S.A.

(Received 14 July 1992; in revised form 8 February 1993; received for publication 7 April 1993)

Abstract--Sparse arrays are arrays in which the number of non-zero elements is a small fraction of the total
number of array elements. Parallel algorithms are presented using sparse representations for arrays. It is
shown that adopting such a representation not only reduces the processor/space requirement, but also
provides efficient load balancing at no increase in time complexity. New parallel primitives needed to work
with such a representation are defined. Sample algorithms from the areas of image processing and computer
vision are presented. Alternative schemes for dealing with arrays containing large contiguous blocks of
elements with identical array values are considered. The parallel architecture considered is a strict SIMD
hypercube, and the applicability of the results presented to other architectures is described.

Computer vision Sparse array representations Parallel processing Hypercube algorithms

I. INTRODUCTION

Sparse arrays are arrays in which the number of non-
zero elements is a small fraction of the total number
of array elements. A sparse image is a sparse two-
dimensional (2D) array, where the array entries de-
note image intensity values. Sparse arrays of different
dimensionalities occur in a variety of forms in different
areas. Here are some examples from the areas of image
processing and computer vision:

• Image processing. Images with a large number of
points having the same intensity (resulting, for instance,
from a smooth background) are sparse arrays in two
dimensions.

• Pose clustering. During object recognition, match-
ing image and scene feature-pairs compute a tuple
which describes the transformation that takes the scene
feature to the image feature. This tuple is used to cast
votes in a high-dimensional accumulator (number of
dimensions in three when dealing with 2D object re-
cognition, and six when dealing with 3D object recog-
nition). This high-dimensional accumulator contains a
signficant number of entries that are zero.

• Hough transform. While detecting arbitrary curves
or straight lines in an image, image points cast votes
in a high-dimensional parameter space. This high-
dimensional parameter space is likely to be sparse. The
number of dimensions is two when dealing with line
detection, since a line can be described by two par-
ameters, for instance, by its slope and its y-intercept.
Circle detection needs a 3D parameter space, two par-
ameters for position and one for radius. Detecting an
ellipse in general position and orientation needs a 5D
parameter space, two parameters for position, two for
the major and minor axes, and one for ellipse orien-
tation.

t Author to whom all correspondence should be addressed.

• Low and intermediate level vision. The inputs to
many low/intermediate level vision algorithms such as
thinning, feature-based stereo matching, surface fitting,
etc. could be sparse images.

Consider a simple operation (such as the elementwise
summation of two arrays) on two moNo x m, N t x ... ×
ink- 1Nk- t arrays. If this operation is to be carried out
in a set of No x N1 x ... × N k - , processing elements,
each processing element holds m o x m, × ... × ink- t
elements. Hence, the operation would have to go through
that many iterations. If the input arrays are sparse,
such a solution would perform very poorly. In this
paper we develop a linear representation of multi-
dimensional sparse arrays and present parallel primi-
tives and algorithms that work on this representation.
These primitives and algorithms provide efficient load
balancing. It is shown that adopting such a sparse
array representation reduces the processor/space re-
quirement while maintaining the same asymptotic time
complexity.

1.1. Parallel architecture considered

The algorithms described in this paper can be applied
to a wide variety of parallel distributed memory archi-
tectures. The algorithms assume a strict "J hypercube
architecture for illustration purposes (a strict hypercube
computer is a hypercube with weak, uniform com-
munication, i.e. each processor is limited to sending a
single data item over a single communicat ion link at
a time, and, at any given time, every processor must
send data along a communicat ion link in the same
hypercube dimension). We also assume that the archi-
tecture is SIMD, i.e. all processing elements (PEs) work
under the control of a single control unit. These restric-
tions (strict hypercube, SIMD) enable us to write algor-
ithms and present worst-case complexity results that
hold true for all other kinds of hypercubes. Further,

1511

1512 R.V. SHANKAR and S. RANKA

the shuffle-exchange architecture, (2) the cube-connected
cycles architecture, (31 the de Bruijn architecture, and
the butterfly architecture are closely related to the
strict hypercube architecture (see reference (1) for de-
tails), and hence all results presented are true for these
four architectures also. The algorithms could be modi-
fied for a mesh architecture, but the complexity results
stated (and the conclusions based on them) are not true
for the mesh.

1.2. Embeddin9 9rids onto hypercubes

As an extreme case, a d-dimensional hypercube is a
d-dimensional grid of size 2 in every dimension. A
hypercube with N processing elements can also be
viewed as a k-dimensional (binary-encoded) grid, for
any k lying between 0 and logN, where the node
(ik - 1, ik - 2," - ' , i l , io) on the grid corresponds to the node
c o n c a t e n a t e (i k _ l i k _ 2"" i tio) on the hypercube.

The neighbors of any node on a 2D grid can be
defined as follows. The direct neighbors of the grid
node with index (i l, i0) are the four nodes with indices
(i x _+ 1, io) and (il, i 0 _+ 1). The indirect neighbors of the
grid node (il, io) are the four nodes with indices (i~ + 1,
i o + 1),(i~ + 1,i o - 1),(i~ - 1,i o + 1)and(i~ - 1,i o - 1).
This definition can be generalized to deal with higher-
dimensional grids.

This paper is organized as follows. Section 2 des-
cribes the parallel primitives needed for working with
sparse array representations. The Content Access Read/
Write primitives are developed as generalizations
of the Random Access Read/Write primitives, and
the Old-Neighbor Read/Write primitives as general-
izations of the Neighbor Read/Write primitives. Sec-
tion 3 describes ways of representing sparse arrays in
the processing elements. Section 4 discusses algorithms
using regular local operations on sparse arrays. The
next two sections present a histogramming algorithm
and its application to two vision problems--pose
clustering and feature detection. Section 7 gives the
algorithms for the Content Access Read/Write pri-
mitives.

2. D E S C R I P T I O N O F P R I M I T I V E S U S E D

2.1. Random Access Read~Random Access Write

In a Random Access Read (RAR), some processing
elements need to read data from some of the N PEs in
the hypercube. The data is available in register D. Each
PE has the address from which data is needed in
register P. That is, PE i needs D(P(i)). If PE i does not
need data from any PE then P(i) is set to ~ (oo is
shown as a. in the figures). The RAR algorithm 12) has

PE index 0 1 2 3 4 5 6 7

Pointer P 6 2 1 3

AfterRAR D(6) D(2) D (I) - D (3) -

Fig. 1. RAR example.

a time complexity of O(logN(loglog N) 2) . Figure 1
shows an example of a RAR.

In a Random Access Write (RAW) some PEs need
to write their data to one of the N PEs in the hypercube.
The data is available in register D. Each PE has, in
register P, the address to which it needs to send its data.
If PE i does not send any data P(i) is set to oo. The
RAW algorithm, (2~ like its RAR counterpart, has a
time complexity of O(logN(loglogN)2). Unlike the
RAW case, however, it is possible to have collisions.
This happens when two PEs try to write to the same
PE. When collisions are bound to occur, one of two
things can be done, namely, reporting an error, or
combining the colliding data values using a binary
associative operator. Figure 2 shows an example of a
RAW. Collisions are resolved using a binary associative
operator (shown as a + in the figure).

2.2. Content Access Read(CAR)/Content Access Write
(CAW)

Content Access Read and Write are basically the
RAR and RAW operations, generalized to work with
sparse array representations. The generalization, how-
ever, comes at no increase in time complexity. The two
primitives are defined here, and the algorithms for
implementing them are presented in Section 7.

In a CAR each PE needs some piece of data, but,
unlike the RAR case, it does not know exactly where
to get the data from. It does, however, know the con-
tents of some particular register in the source PE. The
contents of that register may not be unique in each PE.
Figure 3 shows an example of a CAR. We use the same
names for the registers as in the RAR case. The contents
of the P register are no longer pointers to other PEs.
Instead they contain values from the PA (short for
"pointed at") register. Any binary associative operator
can be used to combine the results when data has to
be read from multiple PEs.

In a CAW, each PE needs to write some piece of
data, but, does not have an explicit pointer to the
destination PE. It does, however, know the contents
of some particular register in the destination PE. Figure 4
shows an example of a CAW. Collisions can occur as
in the RAW case. Any binary associative operator can
be used to resolve collisions when more than one value
is written to the same PE.

PE index 0 1 2 3 4

Pointer P 7 2 7 1

AfterRAW - D(4) D(1) D(6)

Fig. 2. RAW example.

5 6 7

3

D(0) + D(3)

Parallel vision algorithms using sparse array representations 1513

PE index 0 1 2 3 4 5 6 7

Pointer P 6 2 2 3

Pointed-at PA 7 6 6 1 1 2 3 8

AfterCAR D(I)+D(2) D(5) D(5) - D(6) -

Fig. 3. CAR example.

PE index 0 1 2 3 4 5 6 7

Pointer P 6 2 2 3

Pointed-at PA 7 6 6 1 1 2 3 8

AfterCAW - D(0) D(0) D(1)+D(4) D(6)

Fig. 4. CAW example.

2.3. Neighbor Read~Neighbor Write

In a Neighbor Read (NR), every PE needs to read a
value from a particular neighbor. Many PEs would
qualify as neighbors to a given PE, depending on how
the hypercube is being viewed. All PEs are restricted
to read from the same neighbor. Under these conditions,
the NR algorithm turns out to be a restricted case of
the RAR. Since the addresses of the source PEs are not
random, sorting is not required. As a result the time
complexity of the NR algorithm is only O(log N).

In a Neighbor Write (NW), each PE writes to a
particular neighbor. All PEs are restricted to write to
the same neighbor. Since the destination PE addresses
are not random, this is a restricted ease of the RAW
algorithm. The time complexity of the NW algorithm
is O(log N). Unlike the RAW, the NW cannot have
collisions.

2.4. Old-Neighbor Read~Old-Neighbor Write

The Old-Neighbor Read (ONR) algorithm is similar
to the NR, with the exception that the original neighbor
of a pixel might have migrated to a different location
carrying its index along with itself. The ONR algorithm
is a restricted case of the CAR. Sorting of destination
addresses is not required, and there cannot be any
collisions. The time complexity of the ONR algorithm
is O(log N).

In an Old-Neighbor Write (ONW), each PE writes
to a previous neighbor. This is a restricted CAW, and
the complexity is O(log N).

3. REPRESENTATION OF SPARSE ARRAYS

3.1. The Concentrate primitive

In the Concentrate algorithm we start with a subset
of the processing elements, each containing data in

register D, and the PE's rank (that is, the number of
selected PEs with lower index than self) in register R.
The objective is to move the data in register D such
that D(i) goes to the PE with index R(i).

The Concentrate algorithm is described in refer-
ence (4). Figure 5 illustrates the concentrate operation.
The time complexity of the algorithm is O(log N) where
N is the size of the given input and is equal to the num-
ber of PEs. If instead only P PEs are available (P < N)
then the concentrate algorithm takes O((N/P)log P)
time. However, in the case of special hypercube arch-
itectures like the pipelined hypercube Is) the complexity
of concentrate improves to O((N/P) + log P).

3.2. Concentrated representation of sparse arrays

The Concentrated representation is the simplest rep-
resentation for a sparse array. In this representation,
each processing element holds two pieces of information
about a non-zero array element-- i ts value and its ad-
dress (a concatenation of the k indices of that element).
Memory requirement per processor is therefore log M +
log N, where M is the range of values the array elements
can take, and N the total number of array elements.

Row-major indexing and shuffled row-major index-
ing are two ways of indexing pixels in a 2D grid. These
two indexing schemes are shown in Fig. 6. Figure 7(a)
shows an 8 × 8 32-gray level image. Figures 7(b) and
(c) show the concentrated representation of the same
using row-major/shuffled row-major indexing for the
image pixels.

3.3. Quadtree based representations

A quadtree is a tree representation of a sparse image
(in general, any 2D array). The root of the quadtree
represents the entire image. If the portion of the image
represented by any node does not have the same gray
value, the node is assigned four children. Each child

D - D(1) - - D(4) D(5) D(6)

R 0 1 2 3

D (after Concentrate) D(I) D(4) D(5) D(6) -

Fig. 5. The Concentrate primitive.

1514 R.V. SHANKARand S. RANKA

0 1 2 3 4 5 6 7 0 1 4 5 16 17 20 21

8 9 10 11 12 13 14 15 2 3 6 7 18 19 22 23

16 17 18 19 20 21 22 23 8 9 12 13 24 25 28 29

24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31

32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53

40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55

48 49 50 51 52 53 54 55 40 41 44 45 56 57 60 61

56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63

(a) (b)

Fig. 6. (a) Row-Major and (b) Shuffled Row-Major Indexing for an 8 x 8 image.

represents one of the four quadrants of the image
portion represented by its parent. This continues re-
cursively until all the leaf nodes represent portions of
the image with the same gray value.

I fa binary image contains large blocks of Is and 0s,
a quadtree representation of the image would be pre-
ferable to the concentrated representation since the
processing can be done using blocks of pixels, rather
than single pixels, as units. A binary image and its
quadtree representation are shown in Fig. 8. Hypercube
algorithms for operations on quadtrees are presented
in reference (6).

Extending the quadtree representation to gray level
images can be done in one of two ways. If the number
of non-zero pixels in the image is very small compared
to the total number of image pixeis, the technique
described for binary images can be used. An extra
register would be needed to store the pixel value at all
points associated with each block. If, instead, the image
has regions with almost the same value, a region grow-
ing technique can be used to split the image into homo-
geneous regions, and the processing can be done using
regions as units.

The notion of quadtree-based representations des-
cribed above is relevant only to images or 2D arrays.
In the general case, when dealing with d-dimensional
arrays, we can extend the idea to 2 a trees (trees in which
every node has either zero or 2 a children). For instance,
when d = 3, we talk about 8-trees or octrees.

Fig. 7(a). An 8 x 8 gray level image.

4. REGULAR LOCAL OPERATIONS

Regular local operations are characteristic of many
image-processing and vision algorithms. Some of these
involve the computation of the result of applying a bi-
nary associative operator like + , max, min, or boolean
OR/AND to neighboring elements. Other operations
such as convolving, template matching, smoothing,
and sobel edge detection involve the computation of a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0

1 1 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 16 7 0 0 0 0 0
23 0 2 29 0 0 0 0 Fig. 8(a). An 8 x 8 binary image.

0 5 19 0 17 0 0 0 SRMindex 8 12 28 36 48

0 0 0 0 0 0 0 0 Level 2 3 3 2 1

0 0 0 0 0 0 0 0 value 1 1 1 1 1

0 0 0 0 0 0 0 0 Fig. 8(b). A quadtree-based representation of the image in
Fig. 8(a).

RM address 17 18 24 26 27 33 34 36

value 16 7 23 2 29 5 19 17

Fig. 7(b). Concentratedrepresentation ofimagein Fig. 7(a)using Row-M~orlndexing.

SRM address 9 10 12 14 15 33 36 48

value 16 23 7 2 29 5 19 17

Fig. 7(c). Concentrated representation ofimagein Fig. 7(a) usingShumed Row-M~orlndexing.

Parallel vision algorithms using sparse array representations 1515

sum of products using a weighted window. These al-
gorithms can be written as repeated calls to the Neighbor
Read/Write primitives when using the original (non-
sparse) array representations, or to the Old-Neighbor
Read/Write primitives when using sparse array rep-
resentations.

For instance, the NeighborSum algorithm is needed
to collect data values from neighboring array elements
and sum them up. Procedure NeighborSum in Fig. 9
gives details. The procedure makes use of the ONR
algorithm. An outer for loop iterates once for each
dimension in the original array. Row-major indexing
is used to index elements in the original array. Therefore,
the addresses of a particular element's neighbors in
dimension p are obtained by adding/subtracting mo x
max ... x m r_ 1 to the address of that element. The
complexity of the ONR algorithm is O(logN) and
hence the complexity of NeighborSum is O(log N) when
the dimensionality d of the data array is a constant. It
should be observed that the operation described here
is restricted since the sum is calculated only by the
non-zero elements of the array.

5. H 1 S T O G R A M M I N G BASED A L G O R I T H M S

5.1. Histogramming usin 9 sort and count

Consider an array A whose elements have values in
the range [0, M). The histogram of A is another array
H such that H[i] equals the number of elements in A
that have the value i. We will visualize histogramming
as a voting process in which A represents the array of
voters and H represents the array of candidates. Histo-
gramming can be done by first sorting the contents of
array A and then counting the number of elements

with the same values using a segmented prefix scan. (v)
The time taken by the sorting dominates the time com-
plexity of this algorithm which is O(log N(log log N)2).
An alternate way of implementing histogramming is
by using a radix sort. This has a complexity of O(log M*
log N) on an N PE hypercube where M is the number
of gray levels.

It is generally assumed that the number of candidates
M is much smaller than the number of voters N. We
will assume, to the contrary, that M could be much
larger than N, i.e. the number of candidates could be
higher than the number of voters. Although the last
assumption sounds ridiculous in real-life situations,
it is not unusual in problems where the elements of A
are obtained as high precision numbers (or floating-
point numbers) following a mathematical computation.
A sample situation where this could occur is in Pose
clustering in intermediate-level vision. Pose clustering
is described later in this section. When the number of
possible values that the elements of array A can take
is very high, memory limitations dictate that the array
H be stored as a sparse array. Histogramming can still
be implemented as a sort and count algorithm.

5.2. Pose clustering

The histogramming problem occurs in intermediate-
level computer vision as the Pose clustering problem.
The scenario is the following: a large set of scene features
is available one per processor, and a small set of model
features is available in the control unit. Each processor,
when given a model and scene feature pair, can compute
the transformation between them in constant time.
This transform is in general a k-tuple (k = t + r where
t = 2, r = 1 for 2D object recognition, and, r = 3, t = 3

Procedure NeighborSum(A, S, d);
{A accumulates the sum of the data in the S registers of the neighboring PEs}
{S is the sparse representation of the given data array of size mo x m~ x ... x m d_ 1}
(Register Pos contains the original index of the pixel held by each PE}
{ONR(D, P, PA) performs an Old-Neighbor Read. D, P, PA are the data, the neighbor address, and the old
address registers}
l begin
2 A:= O;
3 for p:= 0 to d - l do
4 begin

p - I

5 N:= Pos + l-] mi;
i=O

6 X:= ONR(S, N, Pos);
7 A:= A + X;

p - I

8 N:= P o s - VI mi;
i - I

9 X:= ONR(S, N, Pos);
10 A:= A + X;
11 end;
12 end; {ofNeighborSum}

Fig. 9. Computation of the sum of neighboring values.

1516 R.V. SHANKAR and S. RANKA

Do steps 1-5 for each model feature

• Step 1. Broadcast model feature to all PEs.
• Step 2. Compute in each PE the transform between the model and scene feature to the desired precision,

after discarding model and scene feature pairs which do not match.
• Step 3. Perform histogramming to get the sparse transform array H.
• Step. 4. Concentrate the transform array H.
• Step 5. Merge H with the transform arrays obtained in earlier iterations and concentrate the resulting array

if necessary.

Fig. 10. Steps in the Pose Clustering Algorithm.

for 3D object recognition). These k-tuples form the
new set of voters. The voting space is a k-dimensional
array called the transform-space.

A sample transform-space for 3D object recognition
(k = 6)would need 100 x 100 x 100 × 180 × 180 x 180
= 5832 billion elements, when a moderately fine resol-
ution of 1 unit and a degree is used for translations
and rotations, respectively. The high dimensionality of
the transform-space array and the limitation on the
memory of processors available forces us to adopt a
sparse array representation for the same.

Figure 10 shows how the Histogramming algorithm
can be used for Pose clustering. The broadcast in step
1 takes O(log N) time on a hypercube. The computation
in step 2 is independent of the number of PEs and
hence its time complexity is O(1). Step 3 takes O(log N ×
(log log N) 2) time. The concentrate in step 4 takes O(log N)
time and so does the merge in step 5. Thus the Pose clus-
tering algorithm has a complexity of O(m.log N x
(log log N)2), where m is the number of model features.

As mentioned earlier the advantage of this algorithm
is that the precision with which the computed transform
is represented is no longer governed by the resolution
with which the transform-space can be represented. It
is even possible to have floating-point computed trans-
forms, if the transform computations are sufficiently
accurate.

Continuing our analogy with the voting procedure,
Pose clustering merely allows each voter to cast mul-
tiple votes, unlike the earlier histogramming case in
which each voter had just one vote. This complicated

the problem since it is not possible to decide on a
winner until the entire voting is over. However, by
establishing criteria that a voter has a satisfy to cast
each vote, ineligible voters can be barred from casting
some votes.

6. FEATURE DETECTION USING THE HOUGH TRANSFORM

The Hough transform is a robust technique that is
used to detect analytic curves in an image. We consider
the detection of lines here. The idea can be extended
to circle/ellipse detection.

In the line detection case, we deal with two spaces--
the 2D image-space and the 2D parameter-space. To
detect lines in an image, an edge detector is first used
to find edge points. Each edge point (x, y) in the image-
space votes for all points (p, 0) in the parameter-space
that represent the parameters of lines passing through
the edge point (x, y). These are precisely the parameter-
space points that satisfy the equation p = x cos 0 +
y sin 0. Local maxima in the parameter-space, which
accumulates the votes, indicate lines in the image. These
local maxima can be detected using a simple modifi-
cation of the neighbor sum algorithm.

An iteration over one of the two parameters (say 0)
is necessary during voting. We can no longer assume
that the parameter-space is sparse, since each image
point can vote for many parameter-space points. In
each iteration, only parameter-space points with a cer-
tain value of 0 can receive votes. The feature detection
case differs from the simple histogramming seen earlier

Do steps 1-5 for each value of 0

Step 1. Broadcast 0 to all PEs.
Step 2. Compute, in each PE representing an edge point (x,y), the value of p that satisfies the equation

p = xcos0 + y sin 0.
Step 3. Perform histogramming using a sort and count algorithm to get the parameter-space array V showing

the number of votes received.
Step 4. Concentrate the parameter-space array V after removing parameter-space points that received too few

votes.
Step 5. Merge V with the parameter-space arrays obtained in earlier iterations, and concentrate the resulting

array if necessary.
Step 6. Perform local maxima detection in the parameter-space array V to detect lines in the image.

Fig. 11. Steps in the Line Detection Algorithm.

Parallel vision algorithms using sparse array representations 1517

in that each voter can now cast more than one vote. It
also differs from the Pose clustering algorithm because
no candidate can receive votes in more than one iter-
ation. By fixing the minimum number of votes a candidate
needs, many of the candidates can be eliminated even
before the voting process gets completed.

The line detection algorithm is outlined in Fig. 11.
The broadcast in step 1 takes O(logN) time on a
hypercube. The computat ion in step 2 is independent
of the number of PEs and hence its time complexity is
O(1). Step 3 takes O(log N(log log N) 2) time. The con-
centrate in step 4 takes O(logN) time and so does
the merge in step 5 and the local maxima detection in
step 6. Thus the line detection algorithm has a complex-
ity of O(m*log N(log log N)2), where m is the number
of values 0 was quantized into.

The number of dimensions in the parameter-space
increases with the complexity of the feature we are
trying to detect. The number of dimensions is three
and five when dealing with circle detection and ellipse
detection, respectively. When the parameter-space is
p-dimensional, the algorithm is forced to iterate over

p - 1 parameters (the last parameter can be determined
by substitution).

7. ALGORITHMS FOR CAR/CAW

The CAR algorithm is described through an example
(Fig. 12). Here the number ofPEs N = 8 (the PE index
i runs from 0 to 7), while P(0 :7)= (62oo oo2~3oo) ,
PA(0 :7)=(7 6 6 1 1 2 3 8). As mentioned earlier
PE i needs to fetch data from all PEs in which register
PA has the same value as P(i). P(i)= oo iff PE i is to
receive no data. The data to be read is available in
register D. We begin by sorting the contents of the P
and i registers using P as the key and i to resolve ties.
The sorted contents are shown in the rows marked P1
and il. Next we sort the contents of the PA and data
registers using PA as the key and i to resolve ties. The
sorted contents are shown in the rows marked PAl
and data. After tagging the P and PA registers (a tag of
1 indicates a P value while a tag of 0 indicates a PA
value), the contents of the P and PA registers are
merged together in register M. The row labeled i2

i 0 1 2 3 4 5 6 7

P 6 2 x x 2 x 3 x

PA 7 6 6 1 1 2 3 8

P1 2 2 3 6 • • x x

i l 1 4 6 0 2 3 5 7
t a g 1 1 1 1 1 1 1 1

PAl 1 I 2 3 6 6 7 8

data D(3) D(4) D(5) D(6) D(1) D(2) D(O) D(7)

t a 8 0 0 0 0 0 0 0 0

A f t e r - , e rgo :

R 1 1 2 2 2 3 3 6 6 6 7 8 x x x x

t a g 0 0 0 1 J. 0 1 0 0 1 0 0 1 1 1 1

d a t a a (3) D (4) D (5) - D (6) - D (1) D (2) D(O) D (7) - -

i2 - - - 1 4 - 6 - - 0 - - 2 3 s 7

After

R

tag

s c l n l

i 2

s e g m e n t e d + - s c a n i n PE$ w i t h t a g 0 (+ c o u l d be any b i n a r y a s s o c i a t i v e o p e r a t o r) :

1 1 2 2 2 3 3 6 6 6 7 8 x x x x

0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1

D(3) D(3)+D(4) D(5) - - D(6) - D(1) D(1)+D(2) D(O) D(7) - - -

- - 1 4 - 6 - - 0 - 2 3 5 7

After

!!

t a 8

scan1

s c a n 2

i 2

seSmonted c o p y - s c a n i n PEs w i t h t a K 1:

1 1 2 2 2 3 3 6 6 6 7 8 x x x x

0 0 o 1 1 o 1 o o 1 o o 1 1 1 1

D(3) D(a)+D(4) a(5) - - D(6) - D(1) D(1)+D(2) D(O) D(7) - - -

- - D(5) D(5) - D(6) - D(1)+D(2)

- - 1 4 - 6 - 0 - 2 3 5 7

A f t e r s o r t :

i3 O 1 2 3

c a r D(1)+D(2) D(5) -

4 S 6 7

D (5) D (6)

Fig. 12. CAR (Content Access Read) example.

PR 26:10-D

1518 R.V. SHANKAR and S. RANKA

t 0 I 2 3 4 5 6 7

P 6 2 • • 2 x 3 •

PA 7 6 6 1 1 2 3 8

P l 2 2 3 6 x • • •
d a t a 9 (1) 9 (4) 9 (6) D (O) • • • •

t ag 0 0 0 0 0 0 0 0

P A l 1 1 2 3 6 6 7 8

i l 3 4 5 6 1 2 0 7
t a g 1 1 1 1 1 1 1 1

A f t e r m e r g e :

M 1 1 2 2 2 3 3 6 6 6 7 8 • • • •

t a 8 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0

d a t a - 9 (1) D (4) - 9 (6) D(O) - - • • • •

12 3 4 - - 5 6 1 2 0 7 - -

A f t e r

H

t a $

s c a n 1

t 2

s e ~ a e n t e d + - s c a n i n P E s e i t h t a g 0 (+ c o u l d b e a n y b i n a r y a s s o c i a t i v e o p e r a t o r) :

1 I 2 2 2 3 3 6 6 6 7 8 x x x x

1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0

- - 9 (1) D (1) + D (4) - 9 (6) D (O) - x x x •

3 4 - 5 - 6 1 2 0 7 -

A~'t e r

H

t a $

s e p a l

s c a n 2

i 2

s e ~ l e n t e d c o p y - s c a n i n PEs w i t h t a$ 1:

1 1 2 2 2 3 3

1 1 0 0 1 0 1

- D (1) D (1) + D (4) - V (6)

- - - 9 (1) + 9 (4) D (6)

3 4 - - 5 - 6

6 6 6 7 8 • x x x

0 1 1 1 1 0 0 0 0

D (O) - - - • • x x

D (O) D(O)

1 2 0 7 - -

A ~ t e r s o r t :

i 3 0 1 2

c a w - 9 (0) 9 (0)

3 4 5 6 7

- - D (1) + 9 (4) D (6) -

Fig. 13. CAW (Content Access Write) example.

shows the original PE indices after the merge. This
results in alternate segments of values from P and PA
registers, which we will refer to as P segments and PA
segments. These segments are further divided such that
the M values are identical throughout each segment.
A segmented scan on the data values is now done in
the PA segments alone. The binary associative operator
specified for collisions is used as the scan operator. The
M value in the last PE in each PA segment is compared
with the M value in the first PE in the P segment
adjacent to it. If the values are identical, the result of
the scan in the last PE in the PA segment is copied to
the first PE in the adjacent P segment. A segmented
copy scan in the P segments makes the result available
to the rest of the PEs in the P segments. A sort (with
the index i2 as the key) in all registers with a tag of 1
gives the required result.

The C A W algorithm is illustrated in Fig. 13. The
algorithm is similar to the previous one. The P registers
are now tagged 0 and the PA registers 1. The data and
P registers are now sorted together with P as the key,
while the i and PA registers are sorted with PA as the
key. In both cases i is used to resolve collisions. The

merge, segment creation, binary associative operator
scan, and copy scan proceed exactly as before. A final
sort gives the required result.

8. CONCLUSION

This paper described the use of sparse array rep-
resentations in parallel computations. Sample compu-
tations from the areas of vision and image processing
were presented. The resulting reduction in the number
of processing elements and space required came at no
increase in time complexity. This was shown by the
development of the Content Access Read/Write prim-
itives which are generalized forms of the Random Ac-
cess Read/Write primitives that work with sparse array
representations. Two other primitives, Old-Neighbor
Read/Write, were also presented to simplify neighbor
communicat ion when using sparse array represen-
tations.

Acknowledgements--The authors would like to thank the re-
ferees for their comments on this paper. The work of Sanjay
Ranka was supported in part by NSF under CCR-9110812.

Parallel vision algorithms using sparse array representations 1519

REFERENCES

1. R. Cypher, Efficient communication in massively parallel
computers, Ph.D. Thesis, Department of Computer Science,
University of Washington (1989).

2. D. Nassimi and S. Sahni, Data broadcasting in SIMD
computers, IEEE Trans. Comput. C-30(2), 101-107 (1981).

3. F. P. Preparata and J. Vuillemin, The cube-connected cy-
cles: a versatile network for parallel computation, CACM
24(5), 300 309 (1981).

4. S. Ranka and S. Sahni, Hypercube Algorithms for Image
Processing and Pattern Recognition. Springer, Berlin (1990).

5. J. Jaja and K. W. Ryu, Load balancing and routing on the
hypercube and related networks, J. Parallel Distributed
Computing 14(4), 431-435 (1992).

6. R. Shankar and S. Ranka, Hypercube algorithms for oper-
ations on quadtrees, 6th Distributed Memory Computing
Conference, April May (1991).

7. J. J. Little, G. Blelloch and T. A. Cass, Algorithmic tech-
niques for computer vision on a fine-grained parallel machine,
IEEE Trans. Pattern Analysis Mach. lntell. 11(3), 244-257
(1989).

8. G. Plaxton and R. Cypher, Deterministic sorting in nearly
logarithmic time, Proc. ACM Symp. on Theory of Compu-
ting, pp. 193-203 (1990).

APPENDIX

A.1. Other hypercube primitives

This section describes three basic primitives used by the
CAR/CAW algorithms. Algorithms for these primitives can
be found in reference (4).

A.I.1. Merge. Merging of two sorted arrays can be done
on the hypereube using the bitonic merge algorithm. The
merge algorithm takes time O(log N) where N is the number
of PEs.

A.1.2. Segmented scans. In the segmented prefix scan
algorithm a l-bit register S is used to indicate the start of a
new segment when set to 1. Data is available in register D. A
binary associative operator + is specified. The objective is to
obtain in PE i the quantity D(j) + D(j + 1) + --. + D(i) where
j satisfies the following properties (i)j < i, (ii) S(j) = 1 and Off)
for all k satisfying j < k < i and S(k) = 0.

The segmented prefix scan algorithm is a modified form of
the prefix scan algorithm. Figure A1 illustrates the scan pri-
mitive. The time complexity of the algorithm is O(log N).

A.1.3. Sort. Bitonic sort can be used to sort an array on the
hypercube. The bitonic sort algorithm takes time O(log 2 N).
A recent result ~8~ gives a deterministic hypercube sorting
algorithm that has a complexity of O(log N(log log N)2).

PE index 0 1 2 3 4 5 6 7

Da ta 7 3 4 2 0 1 5 1

After prefix + -scan 7 10 14 16 16 17 22 23

Segment register S 1 1 0 1 0 0 0 1

After segmented + -scan 7 3 7 2 2 3 8 1

Fig. AI. Prefix/Segmented prefix scan example.

About the Autbor--RAVl V. SHANKAR is a doctoral candidate in computer science at Syracuse University.
He received his B.E. in computer science and engineering from Anna University, Madras, India, in 1987.
He was nominated Syracuse University Fellow for the academic years 1987-90. He was a Visiting Scientist
at the Siemens Center for Research and Development in Munich, Germany, from July 1991 to December
1991. His research interests include computer vision, image processing, and parallel computing.

About the Author--SAN JAY RANKA received his B.Tech. in computer science and engineering from the Indian
Institute of Technology, Kanpur, in 1985 and Ph.D. in computer and information science from the University
of Minnesota, Minneapolis, in 1988. Currently, he is an Assistant Professor in the School of Computer
Science at Syracuse University. He spent the summer of 1991 as an Academic Visitor at IBM T. J. Watson
Research Center. His current areas of interest are parallel algorithms, models of parallel computation,
compilers and software environments for parallel machines, and neural networks. Professor Ranka has
co-authored over 70 journal and conference papers, three book chapters and a book on Hypercube
Algorithms for Pattern Recognition and Image Processing. He is currently a subject area editor (Algorithms
and Scientific Computing) for Journal of Parallel and Distributed Computing. He was also a co-guest editor
of a special issue (February 1992) of IEEE Computer on parallel processing for computer vision and image
understanding.

