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a b s t r a c t 

Human activity recognition has been actively studied in the last three decades. Compared to human ac- 

tion performed by a single person, human interaction is more complex due to the involvement of more 

subjects and the interdependence between them. Recently, motivated by the remarkable success of deep 

learning techniques, many learning-based feature representations have been developed for activity recog- 

nition. This paper provides a comprehensive review of human action and interaction recognition methods, 

covering both hand-crafted features and learning-based features, with a special focus on data captured 

by RGB-D sensors. Furthermore, this review reveals practical challenges in human activity analysis along 

with their promising solutions and potential future directions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human activity recognition has attracted increasing attentions

ue to its wide applications in video surveillance, elderly care, vir-

ual reality, and human-machine interaction. According to the com-

lexity of human activities, they can be broadly classified into the

ollowing four categories [1,2] : atomic action, human-object inter-

ction, human interaction, and group activity. This paper mainly

ocuses on atomic action performed by a single person, and inter-

ction between human and human. 

The release of cost-effective RGB-D sensors has motivated

lenty of RGB-D data based human activity recognition methods

eing proposed. Table 1 lists some specifications of the most pop-

lar RGB-D sensors. As a pioneer, the Kinect v1 sensor, which can

ointly output color, depth, and skeleton data at 30fps, has been ac-

ively explored in many areas such as human activity recognition,

acial behavior analysis, and 3D reconstruction. However, its limi-

ations such as a maximum sensing range of 4 m and unsuitable

or outdoor scenarios are also well identified. Recently, the newly

eveloped Intel Realsense sensors have overcome the outdoor lim-

tation and can sense a longer distance at 10 m, paving the way for

ts broad application. 

RGB-D sensor-based human activity recognition is a funda-

ental technique for many practical applications. For example, in

ealthcare scenarios, it could facilitate the monitoring and analysis

f patients’ motion rehabilitation process by releasing the require-

ent of wearing sensors. Similarly, by recognizing elderly people’s
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mergency, such as falling down, it can provide the necessary in-

ormation to inform an assisted robot or corresponding organiza-

ions [3] . Regarding education scenarios, this technology could be

sed to improve the autonomy of the robots, thus enables them

o teach children with autism spectrum disorder social interaction

kills [4] . In sports fields, human activity recognition can be used

o record and analyze the performance of athletes, which is ben-

ficial for their further improvement. In human-robot interaction

r collaboration scenarios, robots could perform desirable activi-

ies by interpreting human intentions. Human activity recognition

ould also be used in virtual reality related applications, which al-

ows users to have natural interactions with an augmented envi-

onment. 

The main challenges of human activity recognition are online

daption, occlusion, viewpoint variations, execution rate variations,

nd biometric changes. Online adaption is an ability to detect the

ccurrence of actions and provide an instant classification in con-

inuous video streams, which is also referred as online activity

ecognition. Compared to traditional action recognition which typ-

cally focuses on classifying the manually trimmed actions and giv-

ng the result after the event, online action recognition is more

hallenging in that the occurrence of actions needs to be auto-

atically detected and the recognition needs to be conducted in

ituations where only partial actions can be observed. Regarding

cclusion, the inter-occlusion and self-occlusion might cause diffi-

ulties in the detection of different body parts [5] . Viewpoint varia-

ions and biometric changes caused by different human body size,

ppearance, shape, and distance from the sensor to subjects will

ead to large intra-class variability and affect the performance of

https://doi.org/10.1016/j.patcog.2019.05.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Table 1 

Properties of RGB-D sensors. 

Name RGB Depth Scene Range Year 

Kinect v1 640 × 480(30 fps) 640 × 480(30 fps) Indoor 0.4–4 m 2011 

Kinect v2 1920 × 1080(30 fps) 512 × 424(30 fps) Indoor 0.4–4.5 m 2013 

Xtion PRO 1280 × 1024(30 fps) 640 × 480(30 fps) Indoor 0.8–3.5 m 2012 

Xtion 2 2592 × 1944(15 fps) 1920 × 1080(30 fps) 640 × 480(30 fps) Indoor 0.8–3.5 m 2017 

Intel RealSense D415/D435 1920 × 1080(30 fps) 1280 × 720(90 fps) Indoor Outdoor 0.16–10 m/0.11–10 m 2018 

Fig. 1. Structure of this paper. 
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algorithms. The execution rate variations may also occur due to

different performing styles and speeds. 

Several survey papers have summarized the research on hu-

man activity recognition using RGB-D sensors [6–12] . Zhang et al.

[6] provided an overview of existing RGB-D action datasets. Chen

et al. [9] reviewed depth-based human action recognition ap-

proaches. Lu et al. [13] presented a review for Kinect sensor based

motion recognition applications. Skeleton-based action recognition

methods with different anatomy are reviewed in [7] and [11] .

There are also several reviews of activity recognition for both

skeleton and depth images such as [10] and [8] . However, at the

time of writing, there is no survey specifically focused on RGB-D

based human interaction recognition, which is popular in daily life

and has received increasing attention. To fill this gap, this paper

presents a comprehensive overview of RGB-D sensing based hu-

man action and interaction recognition, covering both hand-crafted

methods and learning-based methods. Although Zhu et al. [12] also

reviewed both types of methods, they focused on RGB data-based

human activity recognition. Moreover, this paper presents a dis-

cussion for practical challenges in human activity recognition and

their promising solutions in order to inspire future research. 

The main contributions of this survey are summarized as fol-

lows: 

(1) A thorough overview of human action and interaction recog-

nition using RGB-D sensors is presented. 

(2) A comprehensive analysis of both hand-crafted and deep

learning based methods is conducted. 

(3) The challenges of human activity recognition using RGB-D

data and existing solutions are discussed. 

Fig. 1 shows the structure of this paper which is organized as

follows: Section 2 reviews the hand-crafted human action recog-

nition algorithms. Hand-crafted features based human interaction

recognition methods are introduced in Section 3 . Section 4 re-

views deep learning based human activity recognition methods.

Section 5 demonstrates the challenges and relative solutions for

human activity recognition. Section 6 provides a comparison be-
ween hand-crafted and deep leaning-based representations along

ith a discussion of their performance on the most commonly

sed datasets. Finally, Section 7 concludes this paper and discusses

he future directions. 

. Hand-crafted features based human action recognition 

The existing RGB-D based human action recognition methods

an be classified into three categories depending on the used data

odality: depth-based methods, skeleton-based methods, and hy-

rid feature-based methods. 

.1. Depth-based methods 

The depth images, which store the Euclidean distance between

he sensor and points in the scene, make it easy to extract hu-

an bodies from the cluttered background. Some researchers [14–

8] proposed to project the 3D depth information onto three 2D

rthogonal planes corresponding to the front, side, and top view

or feature extraction. Li et al. [15] extracted 3D representative

oints of the body silhouette from these planes to model pos-

ures for recognition. However, as pointed out in [19] , dealing

ith the large amount of extracted 3D points requires significant

ime and memory consumption. In [19] , Depth Motion Maps, i.e.,

MMs, were generated by stacking depth maps with a thresh-

ld between two consecutive frames and then HOGs were com-

uted from these DMMs to characterize human motions over the

hole sequence. Later, Chen et al. [14] argued that replacing the

nal HOGs representation with a concatenation of DMMs can not

nly reduce the computational cost but also achieve better recog-

ition performance. To address the speed variations in actions, a

ulti-temporal DMM representation [17] was proposed to extract

he shape and motion cues from different lengths of depth seg-

ents. The temporal information among frames was restored in

his representation by introducing a weighting function into depth

equences. Bulbul et al. [16] improved DMMs by implementing the
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ontourlet transform with a multi-scale and multi-directional anal-

sis to enhance the shape characteristic of DMMs. One limitation

f these methods is that they do not take the neighborhood of 3D

oints into account and thus might discard useful information. 

The surface normal vectors calculated using a group of 3D

oints can be used to describe the shape and motion informa-

ion [20–22] . Oreifej et al. [20] proposed to divide the depth se-

uences into many spatiotemporal cells to compute the Histogram

f Oriented 4D, i.e., HON4D, which depicts the distribution of the

urface normal orientation, for action recognition. In [23] , HON4D

xtracted from each action video was used to build tensor repre-

entations in a tensor subspace [24] to preserve discriminant and

ocal information. Similarly, super normal vector [21] was calcu-

ated by grouping local hypersurface normals to create the low-

evel polynormal, which further preserves the correlation among

ocal normals in the polynormal and achieved a better recognition

ate. Slama et al. [22] modeled the normal vector orientation se-

uence feature as subspaces lying on Grassmannian manifold and

mployed a probability density function for classification. 

Alternatively, some researchers proposed to segment the depth

ata to interest areas, from which compact features were ex-

racted for action recognition. For example, Wang et al. [25] con-

tructed random occupancy patterns feature from 4D subvolumes

andomly sampled in depth map sequences to gain the robust-

ess towards occulsions. Xia et al. [26] utilized the depth cuboid

imilarity to depict the local feature around the spatio-temporal

nterest points extracted from depth videos. In [27] , the spatial

elationship among selected joints with discriminative shape and

ovement was used to build the depth context descriptor for fi-

al action recognition. Liu et al. [28] generated motion-based and

hape-based spatial-temporal interest points (STIPs) using the mo-

ion and shape information from depth data respectively. Then, a

wo-layer bag-of-visual-words model was introduced to describe

he local appearances and the distribution of STIPs. One limitation

f these approaches is that detecting interest regions through the

hole depth sequence requires extra computational cost. 

.2. Skeleton-based methods 

The release of RGB-D sensors such as Kinect and Xtion enables

s to obtain 3D positions of body joints from depth images [29] in

eal time performance, encouraging many skeleton-based methods

eing proposed. They can be further divided into trajectory-based

nd pose-based algorithms. 

.2.1. Trajectory-based algorithms 

Trajectory-based algorithms explore characteristics of the spa-

iotemporal trajectory of skeleton joints to identify a set of dis-

inctive features [30–34] . Gowayyed et al. [30] proposed a 3D tra-

ectory descriptor, which concatenates three 2D projections of the

hole skeleton sequences, to represent the movement of each

oint. In [31] , actions were modeled by computing the similarity

nd dynamics information of joint angles. Qiao et al. [33] applied

 trajectorylet based on local feature representations, which con-

trained the dynamic characteristic of actions from the entire se-

uence to a short temporal range, to capture ample static and dy-

amic information of actions. Devanne et al. [34] modeled motion

rajectories of actions as points in the open curve shape space by

ransferring the 3-D coordinates of skeleton joints to a Riemannian

anifold. Then, the action classification was achieved by comput-

ng the similarity between the shape of trajectories in the man-

fold. Guo et al. [35] decomposed the human body skeleton into

ve parts and proposed a gradient variation based feature to repre-

ent the 6D rigid body motion trajectories. After coding the skele-

on representations into a sparse histogram, a SVM with chi-square

ernel was used for action recognition. 
.2.2. Pose-based algorithms 

Compared to the trajectory-based approaches, pose-based ap-

roaches focus more on key poses characterized by the skeleton

oint distribution or its surrounding body parts. Features such as

oint locations, joint angles, 3D geometric relationships between

ody parts are often directly employed as advantageous repre-

entations of activities [36–39] . In [36] , a histogram of 3D joint

ocations in a spherical coordinate system was proposed to de-

cribe key human postures. Then, a discrete hidden markov model

as utilized to explain the temporal evolution. Pazhoumand et al.

37] used joint angles and the relative motions between joints

o depict body poses and the relationships between joints in the

ime domain. Instead of using the movement of all skeleton joints,

weiwi et al. [40] focused on mining discriminative joints with ap-

arent motion property. Several discriminative joints were deter-

ined by partial least squares, whose location information, veloc-

ty and the movement normals were encoded as poses during a

hort video period. Chaaraoui et al. [41] used a matching between

ction sequences by Dynamic Time Warping, i.e., DTW, for action

ecognition, where an evolutionary algorithm was proposed to se-

ect the optimal set of skeleton joints to form sequences of key

oses for each action. Vemulapalli et al. [42] made use of the ro-

ations and translations among five body parts to model their rela-

ive 3D geometry relation, with which human motion was encoded

s curves in the Lie group. This method can reveal the concurrence

f body parts, whereas the isolation of body parts may be difficult

hen there is overlapped areas among body parts. 

.3. Hybrid feature-based methods 

The association of multi-modal data such as skeleton data,

olor, and depth images might improve the recognition perfor-

ance. Many hybrid features tend to extract the corresponding

epth information around skeleton joints [43–46] , or combine the

eatures from joints and depth images directly [47–51] . Wang et al.

43,45] proposed the local occupancy pattern (LOP) feature to de-

cribe the appearance around each joint by recording the depth

nformation in its neighborhood. Ji et al. [51] partitioned the hu-

an body to several motion parts by embedding the skeleton data

nto depth sequences. Local features extracted from these motion

arts were aggregated into a discriminative descriptor. The depth

nformation of objects around joints was also associated in [44] as

he low-level layer of a hierarchical HMM. Zhu et al. [49] coupled

he motion depending on points of interest and spatial information

sing a random forests-based fusion strategy. Yang et al. [47] pro-

osed a depth map based accumulated motion energy function to

elect the discriminative skeleton frames to remove noisy frames

nd reduce computational cost. After the calculation of eigenjoints,

hey used non-parametric Nave-Bayes-Nearest-Neighbor to classify 

ultiple actions. 

Apart from the combination of skeleton joints and depth im-

ges, some researchers also consider RGB information [52–57] .

ung et al. [52] employed skeleton joints to model motion fea-

ures and extracted HOG features from regions of interest in both

GB and depth images to characterize the appearance cues. A cou-

led hidden conditional random fields model [53] was proposed

o learn the latent correlation between visual features from both

GB and depth source. In this model, the temporal conext within

ndividual modality is preserved while learning the correlation be-

ween two modalities. Kong et al. [54,56] projected features from

GB and depth images into a shaped space and independent pri-

ate spaces for action recognition, which indicates that knowl-

dge and correlation from different sources could be shared with

ach other to reduce noise and improve the action recognition

erformance. 
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3. Hand-crafted features based human interaction recognition 

The majority of existing RGB-D data based human interaction

recognition use features from skeleton data or combine features

from different channels, while few approaches are only based on

depth images. Therefore, we classify them into two categories:

skeleton-based methods and hybrid feature-based methods. 

3.1. Skeleton-based methods 

Many human interaction recognition algorithms extract features

from each individual’s joints and their interactive joints to repre-

sent the motion relation over time. Yun et al. [58] used the joint

distance and movement between all pairs of joints of two-person,

the geometric relationship between joints and planes, and veloc-

ity features to represent the motion. Then, a Multiple Instance

Learning classifier was proposed to handle irrelevant frames in the

trained data. In [59] , interactions were disjointed into topics and a

hierarchical model was employed to exhibit the correlation among

low-level features, topics, and activities. Mining the essential inter-

active pairs helps to remove redundant information from the in-

active body parts and improve the computational performance. For

example, Ji et al. [60,61] applied the contrast mining method to ex-

tract the most active body part pairs for each interaction class. Wu

et al. [62] proposed a human interaction feature descriptor by uti-

lizing the static, dynamic, and direction properties of the skeleton

data. They addressed the interaction recognition problem by using

a Sparse group Lasso penalty enhanced linear Model (SLM). 

Some scholars transformed the interaction problem to the sin-

gle person action recognition problem [63,64] . The interaction be-

tween players was decomposed into two single individual actions

in a computer gaming environment in [63] , where each player’s

action was trained and classified separately. Hu et al. [64] firstly

identified the most active person according to the following two

rules: the person acts firstly or the person with greater motion

at the beginning short frames. Then, the action of the active per-

son was used for human interaction recognition. Unlike the meth-

ods mentioned above, Coppola et al. [65] utilized features from

two individuals and the relationship between each other for dif-

ferent purposes. They treated physical proximity features learned

from social interaction as prior knowledge and built a multivariate

Gaussian distribution to estimate the distribution of each interac-

tion category. 

3.2. Hybrid feature-based methods 

Features from different modalities can provide extra informa-

tion for activity recognition. Gori et al. [66] built a bounding box

around the human body to remove most of the redundant informa-

tion of the different modalities. Then, a matrix called relation his-

tory image was proposed to depict the local relations, which con-

tains Euclidean distances of joint pairs and comparison of depth

value between pixels. Similarly, Van et al. [67] explored shape

and movement features for each interactive person from bounding

boxes where the interaction happens, and they merged the infor-

mation of joints with poselets to select key frames in the train-

ing stage. Xia et al. [68] combined skeleton joints-based postures,

motion information described by 3D optical flow, and local appear-

ance feature around spatiotemporal interesting points in both RGB

and depth data for interaction recognition. Alazrai et al. [69] used

the motion direction and distance between two persons to de-

scribe the relationship of body-parts and further extracted local

shape information from the bounding box around body parts. The

final feature descriptor was formed by concatenating all these fea-

tures. Trabelsi et al. [70] proposed to jointly use the distance prop-
rty of the 3D skeleton and the dense optical feature extracted

rom the color and depth images for interaction recognition. 

. Deep learning based human activity recognition 

Unlike the hand-crafted methods where specific types of fea-

ures need to be designed to distinguish human action and inter-

ction recognition, most of the deep learning based methods code

uman action or interaction information directly into a map and

hen resize the map to a fixed size or directly concatenate the

epresentation of each person as an input of networks for recog-

ition. Therefore, to outline the key difference between different

eep learning based methods, this paper doesn’t specifically sepa-

ate existing deep learning based human activity recognition meth-

ds into single human action and human interaction at this stage.

ollowing the same taxonomy with the hand-crafted methods, the

esearch reviewed in this section can be grouped into three cate-

ories: skeleton-based, depth-based, and hybrid-feature based. 

.1. Skeleton-based methods 

The skeleton-based methods can be further separated into CNN

ased methods and RNN based methods according to the adopted

eep learning structure. 

.1.1. CNN 

Most of the CNN based action recognition methods focus on

ransforming the positions or trajectories of skeleton joints into

mages and then adapting CNN for classification. In [71] , a linear

nterpolation function is utilized to construct four joint distance

aps from the 3D distance information and three orthogonal 2D

lanes projected by 3D skeleton joints. The action was classified

y using the constructed distance maps together with AlexNet. Ke

t al. [72] constructed three clips of gray images using the relative

ositions between the skeleton joints and four manually defined

eference joints. By feeding the gray images into a pre-trained VG-

Net and developing a multi-task learning network, the spatial

tructural information was incorporated for action recognition. Ob-

erving that the image resizing operation might introduce extra

oise for the network, Liu et al. [73] proposed to directly input

 skeleton image to a modified Inception-ResNet CNN architecture

or action recognition. The drawback of this method is that the as-

umption of each action has a fixed number of frames as input. The

patiotemporal information of 3D skeleton sequences was encoded

nto three joint trajectory maps according to three different views

i.e., front, top, and side) in [74,75] . The action was classified via a

ate fusion of three ConvNet trained from trajectory maps. To ease

he variations of skeleton sequences in the spatial and temporal

omain, Xie et al. [76] recalibrated action sequences temporally in

 residual learning module and then modeled spatial and temporal

nformation using CNNs for action recognition. 

Different with previous methods, Yan et al. [77] proposed a

ulti-layer graph neural networks, where the graph nodes con-

ist of joint coordinates and estimation confidences, to automati-

ally learn the spatial-temporal pattern of the skeleton data. Huang

t al. [78] employed a neural network architecture to learn a tem-

orally aligned Lie group representations [79] for action recogni-

ion, which demonstrated that the non-Euclidean Lie group struc-

ure can also be incorporated by the deep learning structure.

bserving that skeleton joints might be unreliable due to the oc-

lusions and noisy backgrounds, Liu et al. [80] proposed to con-

atenate the 2D coordinates to a pose estimation map frame by

rame, from which a body shape evolution image and a body pose

volution image were constructed to interpret action segments. 
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.1.2. RNN 

Compared to CNN, RNN could effectively model the temporal

nformation. Most of the existing RNN based methods employ Long

hort-Term Memory (LSTM), which solves the gradient vanishing

roblem by utilizing a gating mechanism to determine the mem-

ry length of the input sequence, to process long action sequences.

hus, instead of converting motion information to images, RNN

ased methods tend to directly use joints or the connection of

oints as input. 

Veeriah et al. [81] proposed a differential RNN by adding a gat-

ng into LSTM to model the dynamics of salient motions. Various

and-crafted features concatenated from successive frames were

ed to the proposed LSTM structure. Du et al. [82,83] proposed

n end-to-end hierarchical RNN which fuses the feature extracted

rom five human body parts for action recognition. However, as

ointed out in [84] , the relationship between non-adjacent parts

as ignored in this method. Shahroudy et al. [85] utilized the hu-

an body structure to build a part-aware LSTM. By concatenat-

ng part-based memory cells, the non-adjacent parts relations were

earned from the 3d skeleton sequence. Mahasseni et al. [86] em-

loyed the regularized LSTM on top of a deep convolutional neu-

al network for RGB video based action recognition. Assuming ex-

ra 3D skeleton data can complement the lost information in the

ideo, they proposed to regularize the network by using the 3D

keleton sequence from a few actions. Zhu et al. [87] fed the skele-

on joints to a deep LSTM network with mixed-norm regularization

erm to learn co-occurrence features for action recognition. They

urther applied an internal dropout method to the LSTM neurons

n the last LSTM layer to learn complex motion dynamics. Zhang

t al. [84] explored various geometric relational features among all

oints and used a stacked three layers LSTM for action recognition.

bserving the lost information in the transforming of 3D skele-

on joints to the person-centric coordinate system, Zhang et al.

88] proposed a view adaptive RNN with LSTM structure to deal

ith the viewpoint variations. Liu et al. [89] developed a global

ontext-aware attention LSTM to selectively pay attention to infor-

ative joints in each frame with the help of the global memory

ell. The attention ability was further improved by using a recur-

ent attention mechanism, which improved the recognition perfor-

ance by reducing the noise of the irrelevant joints. 

Unlike the previous RNN based methods where only the tempo-

al domain of the skeletons are modeled, Liu et al. [90] proposed

 tree-structure based traversal method to handle the spatial adja-

ency graph of the body joints. A trust gate was also proposed to

emove noisy joints and deal with the occlusion in the 3D skele-

on data. Similarly, Song et al. [91] proposed to add joint-selection

ates in the spatial attention model and frame-selection gates in

he temporal model for action recognition. Wang et al. [92] pro-

osed a two-stream RNN architecture which jointly models the

patial articulated property and the temporal dynamic of skele-

ons. The additional spatial RNN modeled the spatial dependency

f joints by considering human body kinematics. Si et al. [93] rep-

esented each body part as nodes in a residual graph neural net-

ork to capture the structural relationship between body parts at

ach frame. Then, a temporal stack learning network with three

kip-clip LSTMs was introduced to model the temporal evolution

f joint sequences. 

.2. Depth-based methods 

Depth image sequences might not be suitable to be the direct

nput of the most existing CNN models which are specifically de-

igned for color images. Therefore, Some researchers proposed to

xtract hand-crafted features from depth sequences by stacking

hape and motion features over the whole video and then con-

ert them to texture images by encoding depth information. The
enerated texture images enable the use of existing models pre-

rained on large scale image recognition or segmentation datasets

ith the finetuning operation to achieve satisfactory results. Wang

t al. [74] encoded the DMMs feature [19] into Pseudo-RGB images

y converting the spatial and temporal movement information into

extures and edges. Three independent ConvNets corresponding to

hree viewpoints were trained and the final recognition result was

ssigned by fusing the three generated class scores. Rahmani et al.

94] proposed to learn a view-invariant human pose model from

epth sequences. Each frame of real depth videos was input to the

NN model to learn a view-invariant and high-level feature space,

nd then new human poses captured from unknown views were

ransferred to this space to achieve a cross-view action recognition.

.3. Hybrid feature-based methods 

Some researchers proposed to learn multi-modal features via

eparate networks for action recognition [95–99] . Zhang et al.

96] proposed to use 3D convolutional neural networks (3DCNN)

100,101] and bidirectional convolutional long-short-term memory 

etworks to learn spatial-temporal information from multi-modal

ata. The final gesture recognition was achieved by throwing the

ointed multi-modal features to a linear SVM classifier. Kamel et al.

102] proposed to encode the consecutive depth maps and skele-

on points into two separate images and further used three dif-

erent combination settings to train three separate CNNs for ac-

ion recognition. Wu et al. [97] developed a Deep Dynamic Neural

etworks (DDNN) for gesture recognition with multi-modal inputs.

he DDNN includes a Gaussian–Bernoulli Deep Belief Network to

xplore dynamic features from skeleton sequences, and a 3DCNN

o extract spatial-temporal features from RGB and depth images.

nstead of fusing results from each separate ConvNets, Wang et al.

103] proposed scene flow to action map to combine features from

GB and depth channels as the input to ConvNets. In [104] , a priv-

leged information-based RNN framework was investigated for ac-

ion recognition by using depth sequences and skeleton joints. Liu

t al. [105] proposed to learn high-level features from raw depth

mages and low-level features such as the position and angle infor-

ation from skeleton joints. The two types of features were fused

nd inputted to SVM for action recognition. 

. Challenges 

Human activity recognition involves addressing many chal-

enges such as viewpoint and biometric variation, occlusion, vari-

us execution rates, and online adaption. This section will describe

he challenges and review the effort s done to address these chal-

enges. 

.1. Viewpoint variation and biometric variation 

The appearance of an action might change dramatically in

ifferent viewing angels and positions. The 3D skeleton data

as an intrinsic property against the change of viewpoints [36–

8,42,43,106] . Most of the skeleton-based methods transform 3D

oint coordinates from the world coordinate to a person-centric

oordinate to achieve view-independent action recognition [36,42] .

n orientation alignment strategy was used to eliminate the influ-

nce of human body orientation by rotating joints plane to a cer-

ain plane [43] . On the other hand, most of the depth-based meth-

ds suffer from the dramatic shape and appearance change in dif-

erent views. To learn view-invariant features through CNN models

or captured depth maps, multi-view data is synthesized by rotat-

ng virtual cameras around the subject [74] or augmented by syn-

hetically fitting 3D human models to real motion data and then

roducing poses from different viewpoints [94] . Similarly, Wang
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et al. [107] rotated the depth data in 3D point clouds in different

angles to deal with viewpoint invariance. 

Biometric variation is caused by many factors such as various

body size, distance of the sensor related to the object, etc., which

can result in different body shape or appearance. This might affect

the performance of feature descriptors, especially for those based

on shape or appearance characteristics. Various body size was typ-

ically tackled by normalizing the human body with one particular

part of each human [32,46,108] . 

5.2. Occlusion 

The cluttered surrounding or overlapped body parts might re-

sult in occlusions which make it a great challenge for human ac-

tion recognition. This phenomenon becomes more serious when

it comes to human interaction, where people can be occluded by

each other and oneself. The occlusion in human interaction also

makes it difficult to isolate individuals and extract features from

each unique person. 

Most methods estimated the invisible parts according to previ-

ous frames information or the visible parts. Hsieh et al. [109] sep-

arated the occluded body parts by particle filter and triangulated

them to triangular meshes, which then were re-labeled to repair

the incomplete shape using a template re-projection technique.

Probabilistic graphical model in a markov random field was uti-

lized to measure the occluded state of body parts under self-

occlusion in [110] . To address the frequent occlusion and feature-

to-object mismatching occurring in close human interaction, Kong

et al. [5,111] proposed a patch-aware model, where supporting re-

gions of each interacting subject were learned at patch level. 

5.3. Action duration variation 

The different action duration caused by various performing

speed and habit of subjects might result in different dimensions

of features, which cannot be the direct input of typical classifiers,

such as SVM and kNN. A common solution is to use interpolation

operation to unify the length of activity videos. Apart from this,

DTW [42] and temporal pyramid models [30,43] were popularly

applied to make sure the same length of each sequence. The proba-

bilistic graphical models such as HMM [44,64] , Bayesian networks,

conditional random fields [112] , and hidden conditional random

fields [113] , can be used to represent actions by the probability re-

lation between states. 

In CNN-based methods, a single color image is produced by en-

coding the depth or skeleton sequence frame by frame and further

resized to a fixed size [71,72] . Although this image resizing opera-

tion can tackle the temporal duration problem, it might introduce

extra noise for the network. On the other hand, RNN or its variants

can also be used to effectively model data sequences by exploring

the temporal dependencies among frames [81–83] . 
Table 2 

RGB-D sensor based human activity datasets. Notation for activity types: HHI: human

Dataset Interactions Subjects Samples 

MSR-Action3D (2010) 20 SPA 10 567 

UTKinect-Action3D(2012) 10 SPA 10 200 

MSRDailyActivity3D (2012) 16 HOI 10 320 

UTD-MHAD (2015) 27 SPA 8 861 

SBU Kinect Interaction (2012) 8 HHI 7 300 

NTU RGB + D (2016) 11 HHI 40 HOI 9 SPA 40 56880 

PKU-MMD (2017) 10 HHI 41 SPA 66 21545 (10

continuou

videos) 
.4. Online activity recognition 

Online activity recognition is quite challenging in that action

etection and recognition need to be conducted simultaneously

ith a low latency so that the system can provide an instant re-

ponse. For example, the assisted robot should be able to provide

mmediate help for the elderly people if they are going to fall

own. 

To localize the action, most of the early works use a

robability/energy-based threshold to detect the boundary or key

oses of each action. For example, Zhu et al. [114] identified transit

otion features between two continuous poses in training phase,

nd the online classification was achieved by comparing likeli-

ood probabilities in the MEMM model. There are some methods

xecuting segmentation according to the clip-level or frame-level

abeling approach [115–117] . Wu et al. [116] clustered daily life

lips to several action-words, with which an action-topics model

as learned to reflect the co-occurrence and temporal relations.

he action segmentation was realized according to the change of

ction topics between consecutive clips. Sliding window is also

 popular and compact technique for online action recognition

62,118] , by which a video stream is usually divided into a set of

verlapped segments and then classification is conducted in each

egment. 

Apart from the classic sliding window strategy, some deep

earning based methods address this problem by developing dif-

erent architectures. Molchanov et al. [119] proposed a recurrent

DCNN to simultaneously perform classification and localization of

and gestures from continuous depth, color, and stereo-IR data se-

uences. Shou et al. [120] present to address action temporal local-

zation via multi-stage CNNs, which includes identifying candidate

egments that may contain actions, action recognition, and tem-

oral boundary localization. Recently, RNN and its variants (e.g.,

STM) have been drawing attention for online action recognition

121,122] , owing to its appealing capacity of modeling temporal dy-

amics of sequences. 

. Discussion 

This section provides a discussion for both hand-crafted meth-

ds and deep learning methods in terms of adopted classifiers,

ccuracies, and solutions to each challenge. Seven commonly

sed activity recognition datasets (MSR-Action3D [15] , UTKincet-

ction3D [36] , MSRDailyActivity3D [45] , UTD-MHAD [132] , SBU

inect Interaction [58] , NTU RGB+D [85] , PKU-MMD [133] ) are se-

ected for the comparision of different algorithms. Table 2 lists the

etailed information of these RGB-D sensing based human activity

atasets. Among them, NTU RGB+D and PKU-MMD are significantly

arger than other datasets in terms of activity categories and sam-

les, which makes them suitable for the evaluation of deep learn-

ng based methods. Apart from these commonly used datasets,
-human interaction, HOI: human-object interaction, SPA: single person action. 

Data types Views 

depth(640 × 480) skeleton(20 joints) 1 

RGB(640 × 480) depth(320 × 240) skeleton(20 joints) varied 

RGB(640 × 480) depth(640 × 480) skeleton(20 joints) 1 

RGB(640 × 480) depth(320 × 240) skeleton(20 joints) 

inertial sensor signals 

1 

RGB(640 × 480) depth(640 × 480) skeleton(15 joints) 1 

RGB(1920 × 1080) depth(512 × 424) skeleton (25 joints) 

IR sequence 

3 

76 

s 

RGB(1920 × 1080) depth(512 × 424) skeleton(25 joints) 

infrared sequences RGB videos 

3 
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Table 3 

Recognition performance of the state-of-the-art methods on commonly used RGB-D based human action datasets. Notation: Ref.: Reference; PDF: 

probability density function; RF: Random Forest; Acc.: Recognition accuracy (%). 

MSR Action3D -following evaluation protocol [15] http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/ 

Depth-based Skeleton-based Hybrid feature-based 

Ref. Year Classifier Acc. Ref. Year Classifier Acc. Ref. Year Classifier Acc. 

Hand-crafted [26] (2013) SVM 89.30 [42] (2014) SVM 92.46 [43] (2014) SVM 88.20 

[34] (2015) kNN 92.10 [38] (2014) kNN 93.61 [51] (2018) SVM 90.8 

[21] (2014) SVM 93.90 [123] (2016) SVM 93.96 [50] (2017) HMM 93.30 

[27] (2016) SVM 94.28 [124] (2016) Matching 94.40 [125] (2016) SVM 93.99 

[17] (2017) ELM 96.70 [126] (2016) SVM 94.4 [49] (2013) RF 94.30 

[28] (2018) SVM 97.64 [35] (2018) SVM 95.24 [31] (2013) SVM 94.84 

[106] (2018) SVM 95.60 [46] (2016) SVM 98.20 

[33] (2017) SVM 95.90 

[127] (2016) Graph 96.10 

Deep learning [107] (2015) CNN 94.58 [81] (2015) RNN 92.03 [105] (2016) CNN 84.07 

[74] (2016) CNN 100.0 [82] (2015) RNN 94.49 [102] 2018 CNN 94.51 

[128] (2018) CNN + LSTM 96.00 [104] (2017) RNN 94.90 

[129] (2017) LSTM 97.22 

UTKinect-Action3D -following evaluation protocol [49] http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html 

Depth-based Skeleton-based Hybrid feature-based 

Ref. Year Classifier Acc. Ref. Year Classifier Acc. Ref. Year Classifier Acc. 

Hand-crafted [28] (2018) SVM 86.00 [38] (2014) kNN 90.95 [44] (2016) HMM 87.90 

[22] (2014) PDF 95.25 [124] (2016) matching 93.47 [49] (2013) RF 91.90 

[127] (2016) Graph 95.96 [53] (2015) HCRF 92.00 

[42] (2014) SVM 97.08 [55] (2016) SVM 93.90 

[35] (2018) SVM 97.85 

[123] (2016) SVM 98.20 

Deep learning [105] (2016) CNN 82.00 [84] (2017) LSTM 95.96 [105] (2016) CNN 96.00 

[74] (2016) CNN 90.91 [129] (2017) LSTM 96.97 

[107] (2015) CNN 91.92 [90] (2016) LSTM 97.00 

[128] (2018) CNN + LSTM 99.00 

[89] (2018) LSTM 99.00 

MSRDailyActivity3D -following evaluation protocol [45] http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/ 

Depth-based Skeleton-based Hybrid feature-based 

Ref. Year Classifier Acc. Ref. Year Classifier Acc. Ref. Year Classifier Acc. 

Hand-crafted [20] (2013) SVM 80.00 [32] (2013) kNN 73.80 [125] (2016) SVM 73.21 

[21] (2014) SVM 86.25 [33] (2017) SVM 75.00 [51] (2018) SVM 81.30 

[23] (2016) SVM 80.63 [130] (2016) MIL 78.52 [55] (2016) SVM 86.00 

[17] (2017) ELM 89.00 [28] (2018) SVM 91.00 [57] (2016) DRRL 87.50 

[46] (2016) SVM 91.25 

[48] (2014) SVM 93.10 

[50] (2017) HMM 94.10 

Deep learning [107] (2015) CNN 78.12 [128] (2018) CNN + LSTM 63.10 

[74] (2016) CNN 85.00 

[131] (2017) CNN + LSTM 86.90 
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eaders may refer to [6,134] to find more human activity recog-

ition datasets. 

The adopted RGB-D datasets are divided into three categories,

amely, human action dataset, human interaction dataset, and on-

ine human activity dataset, based on the recorded action types. If

he dataset contains different actions performed continually in a

ideo stream, it is judged as an online action dataset, otherwise,

f the dataset contains human interactions, it is referred as a hu-

an interaction dataset. MSR-Action3D [15] contains 20 single per-

on actions collected in a fixed of view with a clean background.

TKincet-Action3D [36] and MSRDailyActivity3D [45] are collected

or the human-object interaction purpose. By simultaneously using

 Kinect sensor and an inertial sensor to capture human actions,

TD-MHAD [132] dataset explores the possibility in fusing differ-

nt sources of data to improve the recognition performance. SBU

inect Interaction [58] is recorded for the study of human-human

nteractions in a laboratory environment. In NTU RGB + D [85] , a

arge number of single human actions, human-object interactions,

nd human-human interactions are collected. PKU-MMD [133] pro-

ides over a thousand videos involving continuous actions for on-

ine human activity understanding. 
Table 3 categorizes techniques and compares their performance

n three commonly used human action datasets to help select

uitable techniques for particular applications. Each column of the

able contains one type of methods, i.e., depth-based, skeleton-

ased or hybrid feature-based methods. Inside the column, the al-

orithms are further ranked according to the achieved accuracy. It

an be seen that all the three categories of methods have achieved

ood recognition performance on the MSR Action 3D dataset due

o its simplified experimental setting and action classes. Among

hem, 100% accuracy is obtained by Wang et al. [74] which con-

erted the classic DMM to RGB images and utilized CNN for clas-

ification. However, their performance decreases greatly in dif-

erent viewpoint settings due to the dramatic variation of depth

aps. This depth image’s viewing angle sensitivity problem can

e also observed by comparing the first and second column of

he UTKincet-Action3D dataset collected in three views, where

ost of the skeleton-based methods achieve overwhelming accu-

acy than the depth-based methods. Actually, based on the accu-

acy on this dataset, it is also easy to find that the skeleton-based

ethods are better suited for the classification of actions under

ifferent viewing angles than the depth-based methods and hybrid

http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
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Table 4 

Comparison of state of the art methods on the UTD-MHAD dataset in terms of accuracies, classifier 

types, and sensor types. Notation: Acc.: Accuracy(%); K: Kinect sensor; I: Inertial sensor; CRC: Collabo- 

rative Representation Classifier; MBC: Multi-Class Boosting; MVS: Multi-View Stacking. 

UTD-MHAD (cross-subject [132] ) http://www.utdallas.edu/ ∼kehtar/UTD-MHAD.html 

Hand-crafted Deep learning 

Ref. Year Sensor Classifier Acc. Ref. Year Sensor Classifier Acc. 

[132] (2015) K CRC 66.10 [75] (2016) K CNN 86.97 

[132] (2015) K + I CRC 79.10 [71] (2017) K CNN 88.10 

[18] (2017) K MBC 84.40 [102] (2018) K CNN 88.14 

[135] (2018) K SVM 92.00 [80] (2018) K CNN 94.51 

[135] (2018) K + I SVM 96.10 [136] (2017) K CNN 96.27 

[137] (2018) K MVS 90.90 [73] (2017) K CNN 97.20 

[137] (2018) K + I MVS 98.10 [138] (2018) K CNN 97.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison of the state-of-the-art methods on the SBU Kinect Interaction and 

NTU RGB+D dataset in terms of accuracies, method types, and solutions to differ- 

ent challenges. Notation: Acc.: Accuracy(%); S: skeleton; Separately: consider each 

person’s action as an individual sample and averaging the classification scores for 

the final prediction; Maxout: use an element-wise maximum operation to merge 

two persons’ feature maps in the designed network structure; Concatenation: sim- 

ply stack each person’s feature together or further include the interrelationship be- 

tween the two persons. 

SBU Kinect Interaction (5-fold cross-validation [58] ) 

( http://www3.cs.stonybrook.edu/ ∼kyun/research/kinect _ interaction/ ) 

Ref. Year Acc. Type 

Interaction 

solution 

[58] 2012 80.30 (S + MIL) Distance 

[60] 2014 86.90 S + SVM Body part 

[61] 2015 89.40 (S + SVM) Body part 

[62] 2017 91.00 (S + SLM) Distance 

[139] 2017 91.12 (S + SVM) Body part 

[87] 2016 90.4 S + LSTM Seperately 

[91] 2017 91.5 S + LSTM Concatenation 

[90] 2016 93.3 S + LSTM Concatenation 

[72] 2017 93.6 S + CNN Seperately 

[92] 2017 94.8 S + RNN Seperately 

[89] 2018 94.90 S + LSTM Concatenation 

[88] 2018 97.2 S + RNN Concatenation 

[84] 2017 99.0 S + LSTM Concatenation 

NTU RGB + D (following evaluation protocol [85] ) 

( http://rose1.ntu.edu.sg/datasets/actionrecognition.asp ) 

Ref. Year Acc. Type Interaction 

solution 
cross-subject cross-view 

[85] 2016 62.93 70.27 S + LSTM Concatenation 

[128] 2018 67.50 76.21 S + CNN+LSTM Concatenation 

[78] 2017 69.20 77.70 S + CNN Concatenation 

[84] 2017 70.26 82.39 S + LSTM Concatenation 

[92] 2017 71.30 79.50 S + RNN Seperately 

[91] 2017 73.40 81.20 S + LSTM Concatenation 

[129] 2017 74.60 81.25 S + LSTM Concatenation 

[98] 2017 75.20 83.10 S + depth Concatenation 

[89] 2018 76.10 84.00 S + LSTM Concatenation 

[71] 2017 76.20 82.30 S + CNN Concatenation 

[88] 2017 79.40 87.60 S + RNN Concatenation 

[140] 2018 79.5 87.6 S + RNN Concatenation 

[72] 2017 79.56 84.83 S + CNN Seperately 

[141] 2017 80.03 87.21 S + CNN Concatenation 

[73] 2017 81.30 89.20 S + CNN Concatenation 

[77] 2018 81.50 88.30 S + GCN Concatenation 

[142] 2018 83.5 89.8 S + GCN Maxout 

[76] 2018 82.67 93.22 S + RNN+CNN Concatenation 

[93] 2018 84.80 92.4 S + RNN+CNN Concatenation 

[80] 2018 91.71 95.26 S + CNN Concatenation 

I  

s  

i  

l  
features-based methods. On the other hand, the hybrid features-

based approaches outperform the skeleton-based or depth-based

methods in the human-object interaction dataset of MSRDailyAc-

tivity3D, indicating that the skeleton alone is insufficient to distin-

guish actions which involve human-object interactions. The reason

might be that the contexture information of objects also plays an

important role in the defined actions. 

Table 3 also divides the methods into hand-crafted methods

and deep learning methods. The table shows that the top recog-

nition accuracy of MSR Action3D dataset and UTKinect-Action3D

dataset are both achieved by deep learning based methods, which

demonstrates their effectiveness in human action recognition. On

the other hand, it can also be observed that the highest perfor-

mance of hand crafted-based methods has also reached 98.2% ac-

curacy [46,123] on both datasets, leaving few spaces for further

development. Compared to the former two datasets, fewer deep

learning based methods are evaluated on the MSRDaliyAcitivity3D

dataset and hand-crafted methods achieve better performance at

this stage. Regarding the classifier, most of the hand-crafted meth-

ods adopt the SVM, while deep learning methods normally use

CNN, LSTM or their combination for recognition. 

Table 4 shows a comparison of human action recognition per-

formance on the multi-model UTD-MHAD dataset to analyze the

feasibility in combining data from different sensors to boost the

recognition performance. It can be easily observed that the ben-

efit of combining the Kinect sensor and inertial sensor is over-

whelming among the hand-crafted based methods. For example,

both [132] and [137] achieved over 7% of accuracy improvement

by combining the data from the Kinect sensor and inertial sensor.

Using an effective fusing strategy, the hand-crafted based methods

have achieved similar performance with the deep learning based

methods (98.1% and 97.9%, respectively). It should also be noted

that most of the existing deep learning based methods only used

the data from the Kinect sensor. Thus, their performance might be

improved by jointly using the data from the both sensors. 

Table 5 reports a comparison of the state-of-the-art methods on

two commonly used human interaction datasets: SBU Kinect Inter-

action and NTU RGB+D, in terms of accuracies, method types, and

solutions to the interaction challenge. The interaction challenge lies

in the adapting of single human’s action features into a represen-

tation that is suitable for the human interaction scenario. On the

SBU Kinect Interaction dataset, the top performance of deep learn-

ing based methods (99.0%, [84] ) outperforms the top hand-crafted

based method (91.12%, [139] ) to a large extent, indicating that the

deep learning based methods are better suited for human interac-

tion recognition. It can also be observed that most of the existing

methods on the NTU RGB+D dataset are based on deep learning

technologies. 

Table 5 also shows that most of the human interaction ap-

proaches are based on the skeleton data rather than depth images.
n hand-crafted methods, the inter-relationship between two per-

ons is modeled by using interactive body parts or joints distance

nformation. While in the deep learning based methods, this chal-

enge is handled by a concatenation operation, maxout operation

http://www.utdallas.edu/~kehtar/UTD-MHAD.html
http://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/
http://rose1.ntu.edu.sg/datasets/actionrecognition.asp


B. Liu, H. Cai and Z. Ju et al. / Pattern Recognition 94 (2019) 1–12 9 

Table 6 

Online performance of the state-of-the-art methods on the PKU-MMD dataset . Notation: mAP (%): mean Average 

Precision under a threshold θ ; S: Skeleton. 

PKU-MMD following the evaluation protocol [133] http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html 

Methods Year Type Cross-subject (mAP) Cross-view (mAP) Detection operation 

θ = 0 . 1 θ = 0 . 5 θ = 0 . 1 θ = 0 . 5 

[121] 2016 S + RNN 45.2 32.5 69.9 53.3 Sliding window 

[133] 2017 S + LSTM 47.9 13.0 54.5 15.9 Sliding window 

[122] 2018 S + LSTM 51.3 35.2 63.2 48.6 Action proposal 

[140] 2018 S + RNN 87.4 81.1 95.3 91.1 Sliding window 

[143] 2018 S + CNN – 92.6 – 94.2 Action proposal 
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r the simple separation strategy which recognizes each person’s

ction and averages the classification scores for the final predic-

ion. In the concatenation operation, similar technologies in hand-

rafted methods can be explored to further improve the recogni-

ion performance. A prominent example is [84] , which modeled

he skeleton and the bone relationship between two people before

nputting into a three layer LSTM network and achieved 99% ac-

uracy on the SBU Kinect Interaction dataset. [78] also shows that

eep learning based methods can use the similar feature (the lie

roup) with the hand-crafted method [42] . 

To make the action recognition problem simpler, each action

ideo in the previous six datasets is manually trimmed to con-

ain only one complete activity. However, in many practical sce-

arios, it is hard to know the exact starting time and ending time

f an action ahead. The algorithms are required to continuously

utput the recognition results even when the activity is still on-

oing. The big gap between the simplified scenarios and practical

cenarios makes the online performance of the existing methods

nclear when applied in real-world applications. PKU-MMD was

ollected to provide continuous activity videos for the study of on-

ine activity recognition. Table 6 compares the existing methods on

he PKU-MMD dataset in terms of detection accuracies and detec-

ion strategies. The accuracy is measured by mean average preci-

ion (mAP) [144] which evaluates the detection precision of dif-

erent overlapping ration between the predicted interval and the

round truth interval. As shown in Table 6 , existing online action

ecognition methods usually use a sliding window strategy or an

ction proposal strategy for action detection. The action proposals

re normally generated by training an extra network [122] . Com-

ared to the sliding window strategy which might yield noisy pre-

ictions for some frames, the action proposal based solutions can

chieve a more stable detection performance. 

It can be observed from the tables that deep learning based

ethods have achieved overwhelming recognition performance

ver hand-crafted based methods in most of the existing human

ctivity datasets. However, it is also well-known that most of the

eep learning based approaches require large training samples to

educe the effect of overfitting and achieve better performance. Ex-

sting solutions to this problem mainly focus on three aspects: 1)

netune the models pre-trained on larger datasets [71,80] ; 2) ran-

omly crop sub-sequences from an entire sequence [87] ; 3) adopt

ynthetic data with existing data to improve the performance. For

xample, Rahmani et al. [94] proposed to learn a view-invariant

ose model with the depth images synthesized from a small num-

er of human poses. Thus, enhancing existing datasets to boost the

erformance of CNNs remains a great potential future direction. 

Apart from the recognition accuracy, it is also essential for the

lgorithms to be computationally efficient for many real-world mo-

ion recognition applications. Most of the existing hand-crafted

ethods achieved real-time performance via a careful design of

he features and the use of low computational cost classifiers such

s SVM [28,123,127] . Due to the complex structure of neural net-

orks, existing deep learning based methods heavily rely on ad-
anced parallel computing devices such as GPU and TPU to reach

eal time performance. Thus, exploring effective light weighted

etworks is a good solution to relieve the computational burden. 

. Conclusion and future directions 

In this paper, we have provided a comprehensive analysis of

GB-D sensing based human action and interaction recognition,

anging from hand-crafted algorithms to deep learning algorithms.

hile significant progress has been achieved in improving the

ecognition accuracy, there remains great challenges such as on-

ine adaption, viewpoint variations, occlusions, and action duration

ariations. Along with existing solutions, these challenges have also

een investigated in detail in this paper. The future directions are

ummarized as follows: 

Fusion of multi-modal data. Multi-modal data is beneficial for

uman activity recognition, mainly because it not only provides

icher information but also it can be used for reducing the noises

n single source data and improving the robustness of the recog-

ition performance. Thus, for the future research on human ac-

ivities, more effective integration of diverse information should

e developed instead of the monotonous concatenation of fea-

ures from different sources. For human interactions, the fusion

f features from individuals and correlations extracted from var-

ous data sources might produce the more robust interpretation.

n addition, the contextual information from the surrounding en-

ironment which is relatively unexplored could enhance the per-

ormance of traditional feature representation for human action

ecognition. 

Development of view-invariance algorithms. Tolerance to dif-

erent viewing angles is an useful property since it not only al-

ows the subjects to move around but it also removes extra cal-

bration procedures for different sensor locations. The skeleton-

ased methods have an inherent resistance towards different view-

ng angles, however, the estimated skeleton data might not be

ccurate in side views, which will probably result in a drop of

ecognition performance. Current efforts of depth-based meth-

ds in this direction mainly focus on generating synthetic multi-

iew data to augment the training samples. Thus, future research

ay devote more attention to develop view-invariant feature

escriptors. 

Evaluation on practical scenarios. Evaluation of the activity

ecognition algorithms on practical scenarios is yet only a partially

olved problem since most of the existing RGB-D datasets are col-

ected in constrained environments. There is a big gap between the

ollected datasets and the wild environment due to the insufficient

ategories, samples and occlusion cases, restricted actions, limited

istance variations and constrained indoor environment settings.

his makes it hard for algorithms to be generalized to practical

ituations in the real world. Therefore, the collection of large-scale

ction datasets for both training and evaluation for practical sce-

arios should be one future direction. 

http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
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Learning directly from raw video data. Although many deep

learning methods could outperform hand-crafted methods, most

of them require a pre-processing step to extract hand-crafted rep-

resentations from RGB, depth or skeleton data. While the hand-

crafted representations simply the feature dimensions to a large

extent, they also limit the interpretation ability of deep learn-

ing methods. Currently, this compromise might be due to the

insufficient training samples. Thus, given sufficient training sam-

ples, another future direction will be to develop novel deep learn-

ing architectures to learn representations directly from raw video

data. 

Online activity recognition. While large attentions have been

focused on developing highly accurate activity recognition algo-

rithms for pre-segmented video sequences, the online recognition

system, which aims to analyze human behaviors instantly from a

continuous video stream, is indeed demanded by practical appli-

cations. Moreover, since most of the current research are evalu-

ated on trimmed data where each segment contains one whole

category, it still remains unclear about their performance when

applied to online cases. Therefore, developing recognition ap-

proaches that can be applied to practical scenarios is an essential

direction. 

Interpretation of human behavior. Human behavior, which

consists of many components such as human activity, facial expres-

sions, visual focus of attention etc, is more complicated than hu-

man action or interaction. Automatic interpretation of human be-

havior is an essential step towards developing real intelligent sys-

tems and is beneficial in the application that explores the human

cognitive status. 
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